首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The volatile components of Hyuganatsu (Citrus tamurana Hort. ex Tanaka) peel oil, isolated by cold-pressing, were investigated by chemical and sensory analyses. According to chemical analysis by GC and GC-MS, limonene (84.0%) was the most abundant compound, followed by gamma-terpinene (6.9%), myrcene (2.2%), alpha-pinene (1.2%), and linalool (1.0%). Monoterpene hydrocarbons were predominant in Hyuganatsu peel oil. The odor-active volatiles in Hyuganatsu flavor were studied by GC-olfactometry and omission tests. The characteristic flavor was present in the oxygenated fraction. Flavor dilution (FD) factors of the volatile flavor components of the Hyuganatsu cold-pressed oil were determined by aroma extraction dilution analysis (AEDA). Furthermore, relative flavor activity was investigated by means of FD factor and weight percent. Ten kinds of odor compounds having Hyuganatsu-like aroma were detected by AEDA: limonene, linalool, octanol, neral, neryl acetate, tridecanal, trans-carveol, cis-nerolidol, trans,trans-farnesyl acetate, and trans,trans-farnesol. Linalool and octanol were regarded as the most odor-active or key compounds of Hyuganatsu aroma. Diluted solutions of linalool and octanol of approximately 2 ppm gave a fresh and fruity aroma note similar to Hyuganatsu flavor.  相似文献   

2.
Recent developments in methods for isolation and measurement of volatiles from cereals are reviewed. The main types of isolation methods, namely, direct extraction, distillation, and headspace, have recently been complemented by solid phase microextraction. Direct solvent extraction provides efficient recovery of compounds with a broad range of polarities and volatilities, whereas headspace techniques provide relatively clean extracts. Supercritical fluid and solid phase microextractions have not yet been fully evaluated for cereals. GC and GC/MS remain the dominant techniques for measurement of the extracted compounds, although new electronic noses show promise. Relating these results to human perception requires careful control to ensure valid comparisons and, in this respect, aroma extract dilution analysis is a useful procedure.  相似文献   

3.
4.
The flavor of a commercially available strawberry drink was investigated with special regard to the changes of the sensory properties during the shelf life of the product. The experiments were performed using gas chromatographic methods after liquid-liquid extraction and after solid-phase microextraction of the headspace. A trained sensory test panel was used to substantiate the results from instrumental analyses. The relative concentrations of several compounds were followed over a storage period of six weeks at elevated temperature (37 degrees C), which corresponds to about 12 months storage at room temperature. Significant concentration changes of several flavor compounds were determined after a short storage time. These results correlate highly with changes in the aroma observed by the sensory test panel. Further on, changes in the sensorial relevance of aroma active compounds were monitored by comparative aroma extract dilution analysis of extracts of the fresh product and the product at the end of the declared shelf-life time. The results showed a significant decrease in flavor dilution factors of compounds with characteristic fruity attributes.  相似文献   

5.
Differences in timing of intensity perception of the retronasal aroma of a nonpolar (linalool) vs polar (diacetyl) compound when the matrix (milk) fat content was varied (0%, 1%, 5%, or 10% rapeseed oil) were studied using a time-intensity method. Aromas were also evaluated by orthonasal means and with static headspace gas chromatography (GC). With increasing fat content, linalool was considerably retained in the matrix, while the release of diacetyl was not affected. As little as 1% fat was sufficient to significantly reduce the volatility (GC results) of linalool and orthonasal, but not retronasal, intensity. No effect of fat was found on the rate of linalool release. The linalool perception of the sample containing the greatest amount of fat lasted a shorter time than that of the samples containing less fat; however, the decrease in intensity perception was steeper in lower fat samples. The observed temporal release of linalool partly challenges the often-repeated statement that reduction of fat results in a more rapid and shorter aroma release.  相似文献   

6.
The aroma impact compound, 2-acetyl-1-pyrroline (2AP), has been identified for the first time in headspace of fresh bread flowers (Vallaris glabra Ktze) in which volatile components were extracted by solid-phase microextraction (SPME) at room temperature prior to analysis by gas chromatography-mass spectrometry. A total of 50 volatiles were detected. Among these, 23 volatiles were identified, predominantly in a group of terpenes. More volatiles were found in the extract of fresh bread flowers obtained by continuous steam distillation and solvent extraction (SDS). Of the 40 volatiles identified, the additional components were mainly straight-chain saturated hydrocarbons. 2AP was found in the extracts obtained by both SPME (0.37%) and SDS (2.71% relative proportion). Quantitative analyses of 2AP in bread flowers and other plant materials were performed by solvent extraction employing acidic solutions and capillary GC with flame ionization detection. The highest concentration of 2AP was found in dried flowers of V. glabra at 26.1 mg/kg. By comparison with other plant sources, fresh leaves of Pandanus amaryllifolius Roxb contain 2AP at 10.3 mg/kg and Thai fragrant rice, Khao Dawk Mali 105, at 3.0 mg/kg.  相似文献   

7.
The effects of emulsion structure and composition of the matrix on the release of linalool (nonpolar) and diacetyl (polar) were studied using sensory evaluation, static headspace gas chromatography, and an electronic nose. The matrices used were water, rapeseed oil, and eight oil-in-water emulsions differing in oil volume fraction (0.05/0.5), emulsifier type (sucrose stearate/modified potato starch), and homogenization pressure (100/300 bar). Fat content strongly affected the release of linalool, but it was not as critical a factor in the release of the more polar compound, diacetyl. A slight effect of the emulsifier type on the release of aromas was observed with sensory and gas chromatographic methods. The reduced droplet size, resulting from higher homogenization pressure, enhanced the release of linalool but had no effect on diacetyl. Sensory and gas chromatographic methods detected aroma changes quite similarly. The electronic nose was capable of detecting only the effect of fat on linalool.  相似文献   

8.
Wheat germ is susceptible to oxidation due to its high content of unsaturated oil. Volatile compounds in stored wheat germ were evaluated using dynamic headspace gas chromatography (HS-GC) and sensory analysis. Preliminary comparisons were also made between freshly prepared wheat germ and wheat germ subjected to microwave heating at 45 and 55 degrees C prior to storage at room temperature. The progress of oxidation was followed in untreated wheat germ for 4 weeks and in heat-treated wheat germ for 7 weeks by HS-GC and sensory evaluation. Significant (p < 0.05) changes in rancid odor and flavor were observed in the untreated wheat germ after 3 weeks, whereas no corresponding difference was observed in the microwave-heated wheat germ after 7 weeks of storage. Identification of a total of 36 volatile compounds was performed according to their mass spectra and Kovats indices. The major volatiles were hexanal, alpha-pinene, 1-hexanol, and 3-carene. In addition to analysis of a short period of storage, 30 volatile compounds were identified from the headspace of wheat germ stored for >1 year.  相似文献   

9.
10.
Freshness of ice-stored sardine was assessed by two sensory methods, the quality index method (QIM) and the European Union freshness grading system, and by instrumental means using the method of aroma extract dilution analysis. Screening of sardine potent volatiles was carried out at three freshness stages. In the very fresh state, the plant-like fresh volatiles dominated the odor pattern, with the exception of methional. Overall odor changes in sardine throughout storage correlated with changes in the concentration of some potent volatiles: after 2 days of ice storage, (Z)-4-heptenal, (Z)-1,5-octadien-3-one, and methional imparted an overall "fishy" odor character to sardine, whereas at a lower sensory grade (B), the compounds (E)-2-nonenal and (E,Z)-2,6-nonadienal could be, in part, associated with the slightly rancid aroma top notes. Trimethylamine was detected as a highly volatile odorant using solid-phase microextraction (SPME) headspace analysis of refrigerator-stored sardine. Intensity and sensory characteristics of some SPME determined volatiles, for example, 3-methylnonane-2,4-dione, were closely related to overall odor changes. SPME headspace analysis may be useful in the characterization of off-flavors in fish.  相似文献   

11.
The effect of dispersed aqueous droplets in water-in-oil (W/O)-emulsion semisolid fats on aroma release and sensory perception was investigated on margarine models where model aroma substances were added. Aroma release from W/O-emulsion fat blends and bulk fat blends with added monoglycerides combining different fatty acids of various short-chain free fatty acids, methylketones, esters, and lactones were measured using headspace solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS), and their perception profiles were evaluated by sensory analysis. The presence of aqueous phase in a fat blend significantly reduced the headspace concentrations of butanoic acid and hexanoic acid, and also decreased the perceived intensity of total aroma and cheesy aroma. The aroma release of methylketones, esters, and lactones from the W/O-emulsion fat blends increased with increasing carbon chain length of the volatile molecules. The intensity of aroma perception in a W/O-emulsion fat blend depended on the melting point of the fatty acids (oleic, palmitic, stearic, and behenic) of the monoglyceride used as an emulsifier. Thus, aroma release from a W/O-emulsion semisolid fat blend was influenced by interactions between aroma volatiles and the dispersed aqueous droplets and by their viscoelastic properties.  相似文献   

12.
Changes in aroma of apple harvested at four different maturities were measured at harvest and after short-term storage using electronic aroma sensors ("electronic nose") and classical headspace/gas chromatography methods. Stored fruits were also evaluated by a trained sensory panel. Compared with headspace/gas chromatography, the electronic nose was found to be more sensitive ( approximately 40 times) in terms of sample size. The sampling procedure for the electronic nose was much less complex. Using discriminant function analysis, both methods classified the apples tested into groups according to harvest date. After storage, the groupings were more diffuse. Results from sensory testing showed partial separation along the first linear discriminant but did not classify the apple into distinct groups. Important differences between treatments were found for "overall flavor", "acid flavor" intensity, "crispness", "cider/fermented aroma", "vegetative aroma", and "canned pear aroma".  相似文献   

13.
A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.  相似文献   

14.
Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.  相似文献   

15.
Headspace volatiles of Yihchuan aromatic rice, a japonica rice cultivar, were extracted by a solid‐phase microextraction (SPME) method and analyzed by GC and GC‐MS. Effects of fiber types and an industrial milling process on the change of headspace volatiles were studied. Of the fiber types, divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), and carboxen/polydimethylsiloxane (CAR/PDMS) were suggested for use in the analysis headspace volatiles in terms of absorption or adsorption ability. Regarding the milling effect, the amount of total headspace volatiles from brown rice to white rice decreased ≈30%, and that of aldehydes and alcohols, the two largest groups of volatiles, decreased ≈20 and 15%, respectively. Comparatively, rice bran contained higher amounts of total headspace volatiles than milled rice grains.  相似文献   

16.
The major aroma compounds of commercial sweet cream AA butter quarters were analyzed by GC-olfactometry and GC-MS combined with dynamic headspace analysis (DHA) and solvent-assisted flavor evaporation (SAFE). In addition, the effect of long-term storage (0, 6, and 12 months) and type of wrapping material (wax parchment paper vs foil) on the aroma components and sensory properties of these butters kept under refrigerated (4 degrees C) and frozen (-20 degrees C) storage was evaluated. The most intense compounds in the aroma of pasteurized AA butter were butanoic acid, delta-octalactone, delta-decalactone, 1-octen-3-one, 2-acetyl-1-pyrroline, dimethyl trisulfide, and diacetyl. The intensities of lipid oxidation volatiles and methyl ketones increased as a function of storage time. Refrigerated storage caused greater flavor deterioration compared with frozen storage. The intensity and relative abundance of styrene increased as a function of time of storage at refrigeration temperature. Butter kept frozen for 12 months exhibited lower styrene levels and a flavor profile more similar to that of fresh butter compared to butter refrigerated for 12 months. Foil wrapping material performed better than wax parchment paper in preventing styrene migration into butter and in minimizing the formation of lipid oxidation and hydroxyl acid products that contribute to the loss of fresh butter flavor.  相似文献   

17.
The release of volatile compounds from infused tea was monitored using on-line atmospheric pressure chemical ionization (APCI) mass spectrometry. Assignment of the APCI ions to particular compounds was achieved using gas chromatography of tea headspace with dual electron ionization and APCI-MS detectors. Six ions in the APCI spectrum could be assigned to individual compounds, five ions were associated with isobaric compounds (e.g., 2- and 3-methylbutanal and pentanal) or stereoisomers (e.g., heptenals or heptadienals), and a further four ions monitored were identified compounds but with some unknown impurities. Reproducibility of infusion preparation and the analytical system was good with percentage variation values generally below 5%. The analysis was used to study the effect of infusion and holding temperatures on the volatile profile of tea headspace samples, and this was found to be compound-dependent. Both the extraction of volatiles from leaf tea and the release of volatiles into the headspace play a role in creating the aroma profile that the consumer experiences.  相似文献   

18.
The present study investigates the composition of volatile constituents and sensory characteristics of catnip (Nepeta cataria L.) grown in Lithuania. Hydrodistillation, simultaneous distillation-solvent extraction, static headspace, and solid phase microextraction methods were used for the isolation of aroma volatiles. Geranyl acetate, citronellyl acetate, citronellol, and geraniol were the major constituents in catnip. Differences in the quantitative compositions of volatile compounds isolated by the different techniques were considerable. A sensory panel performed sensory analysis of the ground herb, pure essential oil, and extract; aroma profiles of the products were expressed graphically, and some effects of odor qualities of individual compounds present in catnip on the overall aroma of this herb were observed.  相似文献   

19.
The temporal change in the headspace composition of an aroma model mimicking Longjing green tea aroma was studied in the presence of nonvolatile Longjing green tea constituents. Upon storage at 50 degrees C, the formation of 2-butyl-2-octenal was found, which increased with time. This enal was generated by crotonization of hexanal as demonstrated in model experiments. The formation of 2-butyl-2-octenal was also detected in Longjing tea infusions and Longjing tea leaves upon storage at 50 degrees C. The presence of nonvolatiles induced a strong decrease in aroma release. These effects were mainly due to catechins, major constituents of green tea infusion. Free amino acids, that is, glycine, contributed only to significantly decrease alpha,beta-unsaturated carbonyl aroma compounds, that is, 1-octen-3-one and geranial. Model reaction containing a mixture of 1-octen-3-one and glycine indicated on the basis of NMR and MS data the formation of the tentatively identified N-1-(3-oxo-octyl)glycine resulting from a 1,4-addition. The perceived aroma of green tea infusion is very likely to be affected by the formation of new aroma compounds and the changes in aroma release affected by interactions with tea nonvolatile components. This deserves further investigations on the sensory level.  相似文献   

20.
The volatile compounds emitted by living leaves of basil (Ocimum basilicum L. cv. Genovese) plants under saline conditions were investigated by means of headspace–solid phase microextraction (HS‐SPME) and gas chromatography coupled with mass spectrometry (GC–MS). Furthermore, the composition of the essential oil obtained by hydrodistillation of the leaves was studied. Plants were grown for 15 d without salt or with an equimolar concentration of Na+ in the form of Na2SO4 (25 mM) and NaCl (50 mM), after which the growth, the essential oil, and the volatile constituents of the leaves were determined. Fifty‐four components were identified belonging to different chemical classes. Under control conditions, the essential oil was rich in linalool (45.9%), 1,8‐cineole (16.7%), eugenol (10.3%), trans‐α‐bergamotene, and epi‐α‐cadinol (4.9%). The main volatiles detected in the headspace of leaves of untreated basil plants were linalool (29.8%), followed by 1,8‐cineole (19.2%), trans‐α‐bergamotene (10.0%), and eugenol (7.0%). Under saline conditions, leaf growth was more depressed by 25 mM Na2SO4 than 50 mM NaCl, and essential oil concentration increased by 22% in the NaCl, but decreased by 18% in the Na2SO4 treatment, respectively. Both salts caused some changes in the essential oil and composition of volatile compounds. Most prominent was a strong negative correlation between eugenol and methyleugenol proportions, which may indicate an enhancement of the O‐methyltransferase activity. In comparison to the essential oil, the composition of volatiles showed some variations in their emission profile under both salts, the most important was an increase of eugenol. It is therefore concluded that the decrease of eugenol occurring in basil essential oil caused by both salts could be due to the enhancement of the eugenol O‐methyltransferase activity, an enzyme that accepts eugenol as substrate, generating methyl eugenol, and also to the increase of the eugenol emission as shown by the SPME profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号