首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 2 毫秒
1.
Deoxynivalenol (DON) is a toxic secondary metabolite produced by Fusarium graminearum. It is one of the most common feed contaminants that poses a serious threat to the health and performance of dairy cows. This study investigated the in vitro cytotoxicity of DON on bovine mammary epithelial cells (MAC‐T). DON at different concentrations (0.25, 0.3, 0.5, 0.8, 1 or 2 μg/ml) inhibited the growth of MAC‐T cells after 24 hr of exposure (p < .001). DON at 0.25 μg/ml increased lactate dehydrogenase (LDH) leakage (p < .05); decreased glutathione (GSH) levels (p < .001), total superoxide dismutase (T‐SOD) activity and total antioxidant capacity (T‐AOC; p < .01); and increased malondialdehyde (MDA) concentration (p < .01) in MAC‐T cells after 24 hr of exposure. We also observed that DON increased reactive oxygen species (ROS) levels in cells incubated for 9, 15 and 24 hr (p < .001). DON at 0.25 μg/ml triggered oxidative damage in MAC‐T cells. Furthermore, it induced an inflammatory response in the cells incubated for 9, 15 and 24 hr (p < .05) by increasing the mRNA expression levels of nuclear factor kappa B, myeloid differentiation factor 88 (MyD88), tumour necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, cyclooxygenase‐2 and IL‐8. We further examined the effect of DON on apoptosis. DON prevented normal proliferation of MAC‐T cells by blocked cell cycle progression in 24 hr (p < .001). In addition, the apoptosis rate measured using annexin V‐FITC significantly increased (p < .05) with increase in the mRNA expression level of Bax (p < .01) and increase in the Bax/Bcl‐2 ratio (p < .01) in cells incubated for 24 hr. In summary, DON exerts toxic effects in MAC‐T cells by causing oxidative stress, inducing an inflammatory response, affecting cell cycle and leading to apoptosis.  相似文献   

2.
To investigate the effects of gossypol acetic acid (GA) on proliferation and apoptosis of the macrophage cell line RAW264.7 and further understand the possible underlying mechanism responsible for GA-induced cell apoptosis, RAW264.7 cells were treated with GA (25~35 µmol/L) for 24 h and the cytotoxicity was determined by MTT assay, while apoptotic cells were identified by TUNEL assay, acridine orange/ethidium bromide staining and flow cytometry. Moreover, mitochondrial membrane potential (ΔΨm) with Rhodamine 123 and reactive oxygen species (ROS) with DCFH-DA were analyzed by fluorescence spectrofluorometry. In addition, the expression of caspase-3 and caspase-9 was assessed by Western Blot assay. Finally, the GA-induced cell apoptosis was evaluated by flow cytometry in the present of caspase inhibitors Z-VAD-FMK and Ac-LEHD-FMK, respectively. GA significantly inhibited the proliferation of RAW264.7 cells in a dose-dependent manner, and caused obvious cell apoptosis and a loss of ΔΨm in RAW264.7 cells. Moreover, the ROS production in cells was elevated, and the levels of activated caspase-3 and caspase-9 were up-regulated in a dose-dependent manner. Notably, GA-induced cell apoptosis was markedly inhibited by caspase inhibitors. These results suggest that GA-induced RAW264.7 cell apoptosis may be mediated via a caspase-dependent mitochondrial signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号