首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
两湖地区水稻抽穗开花期高温热害时空分布   总被引:6,自引:0,他引:6  
根据两湖地区(湖北省和湖南省)34个气象站1961-2017年逐日气象资料和早、中稻各28个农业气象站1981?2011年生育期观测资料,采用数理统计、线性回归法、ArcGIS的反距离权重(IDW)空间分析功能,对两湖地区各省早、中稻抽穗开花期高温热害的时空分布进行分析。结果表明:(1)湖北省、湖南省早稻高温热害日数和频次在21世纪00年代最多,20世纪60年代、2010?2017年次之,80年代最少;两省中稻高温热害日数和频次在70年代最多,60年代、21世纪00年代、2010-2017年次之,80年代最少。(2)早稻高温热害日数和频次高值区分布在鄂东南、湘南,低值区分布在鄂西南、湘西;中稻高温热害日数和频次的高值区分布在鄂东北、鄂东南、鄂西南、湘西、湘南,低值区分布在鄂西北、湘西。(3)各级别早、中稻高温热害在湖北、湖南两省的发生频数表现为轻度>中度>重度,且湖南省发生程度比湖北严重;两省均表现为中稻高温热害发生比早稻严重。  相似文献   

2.
根据江苏省1960-2009年常规气象资料和1980-2009年水稻生育期观测数据,利用温度距平、气候倾向率和M-K检验法研究江苏省不同区域的气候变暖特征,并分析江苏省水稻热害的时空分布规律及其对产量的影响,探讨气候变暖对江苏省水稻热害发生的影响。结果表明:(1)江苏省水稻热害主要发生在拔节-孕穗期和抽穗-乳熟期,苏南地区发生频次最高,淮北和苏北沿海最少。(2)江苏省水稻热害发生频次有明显的13a和3a周期,前者为主周期,后者为副周期。(3)1960-2009年,江苏省平均气温倾向率为0.2775℃.10a-1(P<0.01),气候变暖明显;20世纪60年代气温开始下降,80年代达最低值,之后开始变暖,21世纪前10a达最高值;江苏省水稻热害发生趋势与气温变化基本一致,80年代发生次数最少,21世纪前10a发生次数最多。(4)7-8月平均气温高的年代,热害发生次数则多,淮北地区20世纪60年代气温最高,热害发生次数也最多,其它地区近10a气温最高,热害次数最多。(5)从年际变化看,气候偏暖的年份,水稻热害多,产量相应低,说明气候变暖是造成水稻热害频次上升、产量下降的重要原因。  相似文献   

3.
安徽省中季稻生育期高温热害发生规律分析   总被引:2,自引:0,他引:2  
根据安徽省1961-2013年常规气象资料和1980-2011年中稻产量资料,采用数理统计、Morlet小波分析和ArcGIS的空间分析功能,对安徽省各等级高温热害发生时间分布、年际变化、周期性及空间分布规律进行分析。结果表明:(1)1961-2013年,安徽省中季稻生育期高温热害发生频次较高的时段主要集中在7月中、下旬和8月上旬,尤以8月上旬最高,轻、中、重级高温热害平均2.15a、3.81a、4.69a发生1次,且轻度热害发生次数最多;(2)53a来安徽中稻生育期内各级别高温热害发生频次均呈先减少后增加的趋势,其中80年代发生频次最少;(3)各级别高温热害发生次数均有显著的周期性震荡规律,存在48a、28a、12a的变化周期;(4)各级别高温热害发生频次空间分布总体呈南部偏多,并由西南部向周围递减的趋势,尤以安庆最为严重;(5)安徽中稻产量与高温热害频次的相关性并不显著。  相似文献   

4.
基于GIS的湖北西部烟草种植气象灾害危险性分析   总被引:2,自引:0,他引:2  
利用湖北西部及邻近地区65个气象站1961-2010年的常规观测资料,参考气象学指标,应用专家打分、层次分析法和灾害危险性评估模型,借助GIS平台对湖北西部烟草种植气象灾害危险性的区域分布进行分析。结果表明:影响湖北西部烟草种植的主要气象灾害是干旱、低温冷害、连阴雨、暴雨和高温热害,其干旱危险性分布表现为北高南低、东高西低;连阴雨和暴雨危险性南高北低;低温冷害危险性南北分布较均匀,东部小于西部;高温热害危险性北高南低。总体看来,鄂西北烟草种植区气象灾害危险性表现为东高西低,南北向无明显规律,而鄂西南地区则为南高北低。气象灾害危险性区划结果与烟草种植适宜性区划结果相辅相成,可为烟草种植合理布局及防灾减灾提供依据。  相似文献   

5.
江西省水稻高温热害发生规律研究   总被引:10,自引:0,他引:10  
利用江西省74个台站1961-2010年6-8月日平均气温、日最高气温和日平均相对湿度资料,采用线性回归法、多项式回归法、Morlet小波分析和数字高程模型(DEM),以探究该区水稻高温热害发生时段分布、年际变化、发生频次的时频特征和空间分布等规律.结果表明,(1)江西省水稻高温热害集中于7月中、下旬和8月上旬,其中7月13-24日为高温热害发生概率最大的时段;(2)1961-1982年高温热害总发生次数呈下降趋势,1983-2010年则呈极显著上升趋势(P<0.01),不同等级高温热害发生次数的年际变化特点与总发生次数变化相一致;(3)各等级高温热害次数呈现不同时间尺度的周期震荡,轻高温热害表现为准2a、4a、8a左右、15a、25a周期变化,中高温热害以准2a、4a、10a左右、23a的周期震荡表现显著,重高温热害则表现出准2a、6a、准13a、25a的周期震荡;(4)高温热害发生频次的高值区分布于江西东北部、赣州北部、吉泰盆地和赣抚平原,并向周边山区递减.  相似文献   

6.
以2000—2018年南充市水稻抽穗扬花期(7—8月)气象站点逐日最高气温数据为基础,通过年距平法、累计距平法提取南充市极端高温发生的时间特征;计算包括市域范围内及周边地区17个站点的多年水稻高温热害累积指数,并借助ANUSPLIN软件进行插值以获得南充市极端高温发生的空间特征;最终结合水稻种植范围、人口数量分布数据以及高温热害风险性分析模型识别南充市各等级水稻高温热害风险区。结果表明:2006年为研究时段极端高温发生最严重的年份,其次是2017年,极端高温发生日数较常年明显偏多。2010年为南充市气温变化的转折点,2010—2018年平均日最高气温明显高于2000—2010年,预计未来极端高温天气出现的频率和强度持续增大。蓬安县、营山县为遭受极端高温天气最频繁的两个县,其次是高坪区、南部县和西充县。水稻高温热害高风险区在高坪区、营山县分布最多,中风险区在各县均有较广泛分布,而低风险区则集中分布在南部县西北部、阆中市北部和营山县东北部的山地、丘陵。水稻高温热害风险区的识别能为人们更好地安排农业生产和政府更科学地进行城市规划与改造等提供参考依据。  相似文献   

7.
河南省夏玉米花期高温热害风险分析   总被引:1,自引:0,他引:1  
根据河南省110个气象站1970−2019年逐日最高气温观测资料和19个农业气象观测站夏玉米生育期数据,以32℃和35℃作为轻度和重度夏玉米花期高温热害发生阈值,选取花期日最高气温≥32℃和≥35℃发生频率和日最高气温≥32℃和≥35℃的积热量4个关键致灾气象因子,构建高温热害综合指数,开展河南省夏玉米花期高温热害风险区划,为夏玉米生产趋利避害和防灾减灾提供参考依据。结果表明:(1)1970−2019年河南省夏玉米花期高温日数呈先减小后增加的趋势,21世纪10年代(2010s)后高温日数和频率明显增加,与高温发生频次最低的1980s(20世纪80年代)相比,高温日数增加1.4d(≥32℃)和1.5d(≥35℃),高温频率增加20.6个百分点(≥32℃)和20.5个百分点(≥35℃)。河南省夏玉米花期高温日数50a平均值在1.8~4.5d(≥32℃)和0.4~1.9d(≥35℃),高温发生频率在24.3%~64.3%(≥32℃)和2.5%~31.1%(≥35℃),豫东南为高温热害发生的高频区。(2)近50a轻度和重度高温积热均呈先减弱再增强的趋势,21世纪10年代(2010s)高温积热较1980s(20世纪80年代)增加52.8℃·d(≥32℃)和52.5℃·d(≥35℃)。空间分布上基本呈现出南高北低、东部平原高于西部山区的态势。(3)结合高温强度和发生频率的致灾高风险区主要集中在南阳南部、漯河、许昌东部、周口、驻马店,约占夏玉米主栽区面积的28.5%;研究区域大部地区为中风险区,约占夏玉米主栽区面积的56.2%;而三门峡、洛阳西部、济源西部、安阳等地夏玉米花期高温热害风险相对较低,约占夏玉米主栽区面积的15.3%。  相似文献   

8.
利用1980−2019年华北平原40个站点的气象数据,将夏玉米花期日最高气温≥35℃持续3d及以上作为高温指标,综合考虑频次和持续时间,制定轻度、中度、重度高温热害等级;利用灾害发生次数和站次比分析夏玉米花期高温热害的变化规律;基于信息扩散理论评估高温热害风险概率,为科学应对夏玉米花期高温热害,保障夏玉米的高产稳产提供依据。结果表明:(1)2010−2019年是华北平原夏玉米受花期高温热害影响加重的阶段,呈现连年发生、范围明显扩大的特征,河南省表现明显。(2)夏玉米花期高温热害高风险区主要为山东西部和河南省,山东西部以轻度热害为主,风险概率在10a一遇以上(≥10%)。河南省受灾范围广、频次高、程度重,重度高温热害的风险概率在10a一遇以上(≥10%)的面积占比为66%,5a一遇以上(≥20%)的面积占比为18%。  相似文献   

9.
江西省双季早稻灌浆乳熟期高温热害影响评估   总被引:1,自引:0,他引:1  
依据江西省14个农业气象观测站2000-2013年农业气象观测资料、6月下旬-7月中旬逐日最高气温资料,探讨早稻高温热害的主要影响因子,建立江西省双季早稻灌浆乳熟期高温热害影响评估模型,并利用2000-2012年早稻产量、灾害调查资料和2012-2013年早稻分期播种试验资料进行验证。结果表明,过程最大升温幅度、过程极端最高气温和高温持续日数,为早稻高温热害的主要影响因子。在此基础上,结合主成分分析法构建灌浆乳熟期高温热害评估和指数计算模型,其历史回代和分期播种试验检验的准确率均比较高,可以用来定量评价江西省早稻灌浆乳熟期高温热害发生程度。据此确定的高温热害评价指标为:高温热害指数(HTDI)≥0.60时为重度高温热害,早稻减产率>10%;HTDI在0.30~0.60时,发生中度高温热害,早稻减产5%~10%;HTDI在0.10~0.30时,发生轻度高温热害,早稻减产小于5%。  相似文献   

10.
以江苏省为例,利用1980-2015年气象资料和水稻观测数据,基于Logistic曲线方程构建高温热害保险气象指数,并分别采用正态分布、正态对数分布和Weibull分布三种参数模型,以及基于信息扩散方法的非参数模型对水稻高温热害发生概率进行拟合。通过拟合优度检验发现,非参数模型可以较好地估算江苏各县水稻孕穗-抽穗扬花阶段高温热害发生概率,进而结合最优拟合模型,考虑农业保险的经营需求,从致灾因子危险性、孕灾环境敏感性、承灾体易损性、防灾减灾能力四个方面出发,确定相应评估指数并构建综合指数,采用聚类分析的方法进行县级水平的水稻高温热害保险风险综合区划。评估分析表明,江苏水稻高温热害保险风险呈现“西南高东北低”的特征,中高风险区是需要依靠农业保险转移风险的重点关注区域。  相似文献   

11.
华东地区夏季极端高温特征及其对植被的影响   总被引:3,自引:0,他引:3  
基于中国华东地区79个气象站1971-2006年夏季逐日地面最高气温和1981-2006年先进超高分辨率辐射计(AVHRR)的归一化植被指数(NDVI)资料,分析华东地区夏季极端高温热浪频次和平均持续时间的空间分布特征,并利用Morlet小波变换分析极端高温次数的周期性变化规律,同时采用奇异值分解(SVD)研究华东地区极端高温次数与植被指数之间的联系。结果表明:(1)华东地区夏季极端高温热浪频次的空间分布主要以北低南高,东低西高,平原高山区低为主。平均持续时间相对于频次,其高值区更靠近沿海。(2)华东地区夏季极端高温次数主要受22a、9a、4a左右的尺度波动影响。其中22a左右的时间尺度为第一主周期,周期振荡在整个时域中表现较稳定。第二主周期为9a左右,周期振荡的振幅从1994年开始逐渐由小增大,将对未来产生重要影响。(3)华东地区夏季极端高温次数与NDVI存在显著相关。当华东中南部地区夏季极端高温次数偏高时,江苏东部地区的夏季植被覆盖度偏低,而山东北部地区和江西西南及西北地区的夏季植被覆盖度偏高;当山东中部地区夏季极端高温次数偏低时,山东东北地区的夏季植被覆盖度偏高,而江苏东部、福建南部和江西北部的夏季植被覆盖度偏低。  相似文献   

12.
利用华北平原夏玉米种植区55个气象站点1981−2017年逐日地面观测资料,以日最高气温≥35℃持续3、4、5d,且相对湿度≤70%为一次轻、中、重度高温热害,从年代际尺度、年尺度、旬尺度分析37a来华北平原不同播期下夏玉米花期高温热害的时空变化特征;以开花期避开中度高温热害为标准,推算夏玉米花期规避高温的适宜播期。结果表明:6月上旬播种,夏玉米花期遭遇高温热害的频率最大,河南省南部的信阳、固始等地区遭遇高温热害频率超过20%;6月中旬播种,夏玉米花期遭受高温热害频率为9%~12%。2011年以来华北平原夏玉米花期高温热害加重,发生频率高于P1−P3时段(1981−2010年)。华北平原早熟玉米平均适宜播种期在6月15日−7月5日,中熟玉米平均适宜播种期在6月15−27日,晚熟玉米平均适宜播种期在6月15−20日。在各适宜播种期范围内,华北平原南部应适当晚播,北部则应适当早播。  相似文献   

13.
应用安徽省茶种植区45个气象站点1981−2017年气象资料和1998−2017年茶叶产量资料,选取霜冻害发生综合频率、坡向敏感性指数、茶园面积和灾年减产率变异系数4个因子,利用加权指数求和法构建了茶树霜冻害风险指数,借助ANUSPLIN插值模型和地理信息系统开展了安徽省茶树霜冻害风险评估。结果表明:安徽省茶树春霜冻害高风险、中风险和低风险区域面积为118×104hm2、337×104hm2和 353×104hm2, 分别占评价区域总面积的14.6%、41.7% 和43.7%。高风险区主要分布在大别山茶区的金寨县、霍山县、岳西县、潜山县等和江南茶区南部海拔600m以上的高山区域,零星分布在江北茶区北坡地带。中风险区多分布在大别山茶区和江南茶区海拔低于600m的山区,呈斑块状分布在江北茶区的丘陵和低山区。低风险区集中分布在芜湖−宣城−铜陵−池州沿江一带,零星分布在江南茶区的低山区。构建的风险指数总体能客观反映安徽省茶树霜冻害风险水平,可为茶树霜冻害风险管理提供依据。  相似文献   

14.
基于东北三省春玉米潜在种植区内65个气象站点1961-2010年逐日气象数据,以气象行业标准5-9月逐月平均气温之和与其多年平均值的距平作为春玉米冷害等级判断指标,分析东北三省春玉米生育期冷害发生概率的空间分布和年代际演变特征,并利用每月逐日平均气温与其多年平均值的距平值明确了春玉米生长时段内低温事件发生风险较大的月份。结果表明:(1)近50a(1961-2010年)东北三省春玉米冷害发生区域范围大小表现为重度轻度中度,其中轻度冷害的高发区位于吉林省西部,低发区位于辽宁省南部地区;中度冷害主要发生于黑龙江和吉林省部分地区,辽宁省发生较少;重度冷害高发区位于黑龙江省北部、东南部以及吉林省东部地区,发生频率在25%以上,低发区位于辽宁省中西部,发生频率低于5%。各等级冷害发生频率年际间总体呈下降趋势,近20a(1991-2010年),各等级冷害的发生范围明显缩小。(2)东北三省春玉米各等级冷害低温事件主要发生在5月和6月,生产实际中需关注5月和6月的温度变化及冷害发生。  相似文献   

15.
基于资源三号卫星影像的茶树种植区提取   总被引:3,自引:3,他引:0  
茶是世界上饮用最多、影响最广的天然植物饮料,在人类的日常生活中起到重要的作用,为了能有效管理茶叶种植,为政策制订提供依据,很有必要获取准确的茶园空间分布信息。该文以浙江省松阳县的樟溪乡、斋坛乡、叶村乡、竹源乡为研究区域,探讨基于资源三号(ZY-3)卫星数据的茶树种植区提取方法。选用2012年12月25日和2013年6月9日的ZY-3影像,采用决策树提取方法,根据研究区域内茶树的种植方式、生长情况等差异,分平原区和山区进行研究,使用光谱特征和植被覆盖指数NDVI(normalized difference vegetation index)时相差异作为平原区茶树种植区提取特征,山区则添加了方向强度的纹理特征,以地面验证点为参考,对提取结果进行了精度评价,同时与神经网络(NN)分类结果进行比较。结果表明,决策树方法结合光谱信息和纹理信息,可有效提高茶园提取精度,平原区的总体精度为95.00%,Kappa系数为0.85,与NN分类相比分别提高了5.46%、0.19,山区茶树种植区提取的总体精度为92.97%,Kappa系数为0.69,与NN分类相比分别提高了7.57%、0.61,该研究可为政府部门进行茶叶估产及灾害预防处理等提供一定的参考。  相似文献   

16.
安徽省设施农业冬季低温风险分析和区划   总被引:4,自引:0,他引:4  
利用1960-2010年安徽省29个气象观测站的冬季气象监测资料,采用数理统计方法,由年极端低温发生的气候概率,确定设施农业类型布局;由年极端低温气候概率及其波动性、各地冬季逐日最低气温发生强度及其平均日数4个参量,构建设施农业低温综合风险指数,并进行评估。结果表明:(1)安徽各地冬季低于-5.0℃的极端低温的气候概率超过80%,不宜发展塑料小拱棚。(2)低于-10.0℃的极端低温的气候概率为20%,其等值线基本与淮河走势一致,沿淮河向南极端低温逐渐减小的地区适宜发展塑料大棚,沿淮河向北逐渐增高的地区适宜发展日光温室。(3)冬季塑料大棚和日光温室生产的低温冷(冻)害风险综合指数可分为无、轻、中、重和特重5级,淮河以南塑料大棚发展区内,除沿淮河为重度风险区外,其它区域均为中度-轻度风险区,尤其是皖西南部和皖东南部的大部区域均为轻度风险区。淮河以北日光温室发展区内,东北部的宿州市全境和淮北市大部区域为特重风险区,西南部的亳州和阜阳市所辖的区域为中度风险区,其它区域为轻度风险区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号