首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding carbon dynamics in soil is the key to managing soil organic matter. Our objective was to quantify the carbon dynamics in microcosm experiments with soils from long-term rye and maize monocultures using natural 13C abundance. Microcosms with undisturbed soil columns from the surface soil (0-25 cm) and subsoil (25-50 cm) of plots cultivated with rye (C3-plant) since 1878 and maize (C4-plant) since 1961 with and without NPK fertilization from the long-term experiment ‘Ewiger Roggen’ in Halle, Germany, were incubated for 230 days at 8 °C and irrigated with 2 mm 10−2 M CaCl2 per day. Younger, C4-derived and older, C3-derived percentages of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (Cmic) and CO2 from heterothropic respiration were determined by natural 13C abundance. The percentage of maize-derived carbon was highest in CO2 (42-79%), followed by Cmic (23-46%), DOC (5-30%) and SOC (5-14%) in the surface soils and subsoils of the maize plots. The percentage of maize-derived C was higher for the NPK plot than for the unfertilized plot and higher for the surface soils than for the subsoils. Specific production rates of DOC, CO2-C and Cmic from the maize-derived SOC were 0.06-0.08% for DOC, 1.6-2.6% for CO2-C and 1.9-2.7% for Cmic, respectively, and specific production rates from rye-derived SOC of the continuous maize plot were 0.03-0.05% for DOC, 0.1-0.2% for CO2-C and 0.3-0.5% for Cmic. NPK fertilization did not affect the specific production rates. Strong correlations were found between C4-derived Cmic and C4-derived SOC, DOC and CO2-C (r≥0.90), whereas the relationship between C3-derived Cmic and C3-derived SOC, DOC and CO2-C was not as pronounced (r≤0.67). The results stress the different importance of former (older than 40 years) and recent (younger than 40 years) litter C inputs for the formation of different C pools in the soil.  相似文献   

2.
Soil C dynamics below the plow layer have been little studied, despite a suspected large C‐stabilization potential of subsurface horizons. The objective of this study was to test two simple models (model A: single compartment for C3‐ and for C4‐derived C; model B: division of C3‐ and C4‐derived C into active and passive compartments) in their ability to simulate the C dynamics in subsoil horizons of a Haplic Phaeozem after conversion from C3 (rye) to C4 cropping (maize). The models were calibrated on an unfertilized maize soil and then validated on a maize soil with NPK fertilization. Both models simulated well C3‐C and C4‐C dynamics in the investigated soil depths (20–40 cm and 40–60 cm). In all cases, the model efficiency EF was > 0, which indicated that the simulated values described the trend in the measured data better than the mean of the observations. However, we observed some inconsistency in the obtained parameter set (e.g., a higher proportion of passive C for C4‐derived than for C3‐derived C or a very low decomposition rate constant for passive C4‐C in 40–60 cm), which we assume to result from data restrictions on the investigated soils. More detailed data on SOC pools and turnover rates in subsoils which are generally not yet available for most experimental plots is vitally needed—especially for applying more sophisticated C‐dynamics models.  相似文献   

3.
For a quantitative analysis of SOC dynamics it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. We used the 13C isotope to determine the incorporation of maize residues into the soil organic carbon (SOC), to trace the origin of the dissolved organic carbon (DOC), and to quantify the fraction of the maize C in the soil respiration. The maize‐derived SOC was quantified in soil samples collected to a depth of 65 cm from two plots, one ’︁continuous maize’ and the other ’︁continuous rye’ (reference site) from the long‐term field experiment ’︁Ewiger Roggen’ in Halle. This field trial was established in 1878 and was partly changed to a continuous maize cropping system in 1961. Production rates and δ13C of DOC and CO2 were determined for the Ap horizon in incubation experiments with undisturbed soil columns. After 37 years of continuous maize cropping, 15% of the total SOC in the topsoil originated from maize C. The fraction of the maize‐derived C below the ploughed horizon was only 5 to 3%. The total amount of maize C stored in the profile was 9080 kg ha−1 which was equal to about 31% of the estimated total C input via maize residues (roots and stubble). Total leaching of DOC during the incubation period of 16 weeks was 1.1 g m−2 and one third of the DOC derived from maize C. The specific DOC production rate from the maize‐derived SOC was 2.5 times higher than that from the older humus formed by C3 plants. The total CO2‐C emission for 16 weeks was 18 g m−2. Fifty‐eight percent of the soil respiration originated from maize C. The specific CO2 formation from maize‐derived SOC was 8 times higher than that from the older SOC formed by C3 plants. The ratio of DOC production to CO2‐C production was three times smaller for the young, maize‐derived SOC than for the older humus formed by C3 plants.  相似文献   

4.
Six forms of fertilizers and three rotations have been examined for 120 years in the ”︁Eternal Rye trial” in Halle (central German arid region, Haplic Phaeozem on sandy loess). Rank analysis, trend analysis and a new component model have been found to be suitable statistical methods to evaluate long‐term results without true replications. In this trial it was shown that mineral fertilization maintains like farmyard manuring the yield potential although at lower content of soil organic matter (SOM). Without fertilization, yield decline was greater with potato and silage maize than winter rye (Secale cereale L.). Deficiencies in N fertilization lead immediately, and in PK supply after more than 20 years, to a significant yield decrease which could be quickly compensated by full fertilization. Rye and maize monocultures also resulted in yield decreases. The establishing of new steady states in the turnover of SOM took about 50 years after changes in fertilization. Contrary to rye monoculture, both silage maize monoculture and potato alternating with winter rye caused considerable decomposition of SOM. According to analytical pyrolysis (Py‐FIMS and Py‐GC/MS), fertilization affects the SOM composition more than rotation. Without fertilization, a higher percentage of thermically stable SOM remained in comparison to the FYM soils. The introduction of potato into the rotation enhanced the content of easily decomposable SOM.  相似文献   

5.
Six of originally eight long‐term trials in Halle (Saale), Germany, are still continuing. Five are situated at Julius‐Kühn‐Feld, an experimental station launched by Julius Kühn in Halle in 1866. Apart from the Eternal Rye trial established in 1878, those are phosphorus, potassium, lime, and organic fertilization long‐term trials, all being launched by Karl Schmalfuß in 1949. Other long‐term trials have been terminated, but data are available on the effects of nitrogen fertilization and the physiological reaction of fertilizers. Another long‐term trial in Halle (Adam‐Kuckhoff‐Straße 17b) investigates the influence of fertilization on soil formation from loess. Up to now, the major results are as follows: 1. Changes in soil‐ecological properties due to fertilization and rotation were only evident after 30 years, and new steady states sometimes took 70 years to occur. 2. In the long term, the C‐ and N‐contents of the soil largely depend on the amount of hardly decomposable organic matter applied with organic fertilization. High mineral‐N doses, with consequent high crop and root residues, increased the humus content of the soil. 3. Mineral fertilization can replace organic fertilization in terms of sustainable yield capacity provided equal nutrient amounts were applied. 4. The high P‐supply ability of the soil in Halle could not be explained by traditional soil analysis methods of calculating plant‐available P. With some restrictions, the same is valid for K. 5. At the experimental site, soluble salts (nitrate, sulphate) accumulated in the subsoil. 6. A regular lime demand of central German chernozems could be proved, especially in case of low soil organic matter (SOM) and physiologically acid fertilization.  相似文献   

6.
Soil organic carbon (SOC) concentration is an essential factor in biomass production and soil functioning. SOC concentration values are often obtained by prediction but the prediction accuracy depends much on the method used. Currently, there is a lack of evidence in the soil science literature as to the advantages and shortcomings of the different commonly used prediction methods. Therefore, we compared and evaluated the merits of the median approach, analysis of covariance, mixed models and random forests in the context of prediction of SOC concentrations of mineral soils under arable management in the A‐horizon. Three soil properties were used in all of the developed models: soil type, physical clay content (particle size <0.01 mm) and A‐horizon thickness. We found that the mixed model predicted SOC concentrations with the smallest mean squared error (0.05%2), suggesting that a mixed‐model approach is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map for the case study area of Tartu County where the SOC predictions ranged from 0.6 to 4.8%. Our study indicates that predictions using legacy soil maps can be used in national inventories and for up‐scaling estimates of carbon concentrations from county to country scales.  相似文献   

7.
Currently, there is little information about soil organic carbon (SOC) stocks and changes in Mediterranean areas at a regional scale. We modelled an area of 95 269 km2 in northeast Spain using the Global Environmental Facility Soil Organic Carbon (GEFSOC) system to predict SOC stocks and changes in pasture, forest and agricultural soils. The spatial distribution of the different land‐use categories and their change over time was obtained by using the Corine database and official Spanish statistics on land use from 1926 to 2007. The model predicted the largest current SOC stock in forest soils at 578 Tg C. Agricultural soils were the second largest SOC reservoir, containing 244 Tg C. During the last 30 years, the model predicted a total SOC gain in the 0–30‐cm soil layer of 34 Tg C. Forest and grassland‐pasture soils had a decline in their stored SOC of 5 and 3 Tg C, respectively, because of the reduction in the soil surface occupied by both classes. The greatest SOC gain was predicted in agricultural soils with 42 Tg C caused by changes in management, which led to increases in C inputs. Although model uncertainty was not quantified, some hypothetical assumptions about the initialization and parameterization of the model could be potential sources of uncertainty. Our simulations predicted that in northeast Spain soil management has contributed to the sequestration of substantial amounts of atmospheric CO2 during the last 30 years. More research is needed in order to study the potential role of soils as atmospheric CO2 sinks under different managements and climatic conditions.  相似文献   

8.
Abstract. Predictive, regional use of soil organic matter (SOM) models requires evaluation of the performance of models with datasets from long‐term experiments relevant to the scenarios of interest to the regional scale study, and relevant to the climate of the study region. Datasets from six long‐term experiments were used to evaluate the performance of RothC and CENTURY, two of the most widely used and tested SOM models. Three types of model run were completed for each site: (1) CENTURY model alone; (2) RothC model run to fit measured SOC values, by iteratively adjusting C inputs to soil; and (3) RothC model run using C inputs derived from CENTURY runs. In general, the performance of both models was good across all datasets. The runs using RothC (iteratively changing C inputs to fit measured SOC values) tended to have the best fit to model data, since this method involved direct fitting to observed data. Carbon inputs estimated by RothC were, in general, lower than those estimated by CENTURY, since SOC in CENTURY tends to turn over faster than SOC in RothC. The runs using RothC with CENTURY C inputs tended to have the poorest fit of all, since CENTURY predicted greater C inputs than were required by RothC to maintain the same SOC content. A plausible model fit to measured SOC data may be obtained with widely differing C input values, due to differences in predicted decomposition rates between models. It remains unclear which, if either, modelling approach most closely represents reality since both C inputs to soil and decomposition rates for bulk SOM are difficult to determine experimentally. Further progress in SOM modelling can only be the result of research leading to better process understanding, both of net C inputs to soil and of SOM decomposition rates. The use of default methods for estimating initial SOC pools in RothC and CENTURY may not always be appropriate and may require adjustment for specific sites. The simulations presented here also suggest details of SOC dynamics not shown by available measured data, especially trends between sampling intervals, and this emphasizes the importance of archived soil samples in long‐term experiments.  相似文献   

9.
The carbon dynamics in soils is of great importance due to its links to the global carbon cycle. The prediction of the behavior of native soil organic carbon (SOC) and organic amendments via incubation studies and mathematical modeling may bridge the knowledge gap in understanding complex soil ecosystems. Three alkaline Typic Ustochrepts and one Typic Halustalf with sandy, loamy sand, and clay loam texture, varying in percent SOC of 0.2; S1, 0.42; S2, 0.67; S3 and 0.82; S4 soils, were amended with wheat straw (WS), WS + P, sesbania green manure (GM), and poultry manure (PM) on 0.5% C rate at field capacity (FC) and ponding (P) moisture levels and incubated at 35 °C for 1, 15, 30 and 45 d. Carbon mineralization was determined via the alkali titration method after 1, 5, 7 14, 21, and 28 d. The SOC and inorganic carbon contents were determined from dried up (50 °C) soil samples after 1, 15, 30, and 45 d of incubation. Carbon from residue mineralization was determined by subtracting the amount of CO2-C evolved from control soils. The kinetic models; monocomponent first order, two-component first order, and modified Gompertz equations were fitted to the carbon mineralization data from native and added carbon. The SOC decomposition was dependent upon soil properties, and moisture, however, added C was relatively independent. The carbon from PM was immobilized in S4. All the models fitted to the data predicted carbon mineralization in a similar range with few exceptions. The residues lead to the OC build-up in fine-textured soils having relatively high OC and cation exchange capacities. Whereas, fast degradation of applied OC in coarse-textured soils leads to faster mineralization and lower build-up from residues. The decline in CaCO3 after incubation was higher at FC than in the P moisture regime.  相似文献   

10.
Abstract

Fulvic acids (FAs) are an important dynamic component of soils that may be affected by soil management. Carbon‐13 cross‐polarization total sideband suppression nuclear magnetic resonance (CP‐TOSS 13C NMR) was used to examine the effect of cover crop systems on the characteristics of fulvic acid fractions. FA was isolated from soils with the following treatments: 1) vetch/rye, 2) rye alone, and 3) check (no cover crops) with varying nitrogen fertilizers. Preliminary NMR results indicate that FA from the rye alone system both with and without nitrogen fertilizers contains less aliphatic carbon (0–108 ppm) than that from the other two treatments. Based on the elemental composition analysis result, C∶N ratio of FA from rye alone cover with or without nitrogen fertilizer is lower than FA from vetch/rye cover system. These data suggest that farming systems affect the FA compositions.  相似文献   

11.
Land management in agricultural lands has important effects on soil organic carbon (SOC) dynamics. These effects are particularly relevant in the Mediterranean region, where soils are fragile and prone to erosion. Increasing interest of modelling to simulate SOC dynamics and the significance of soil erosion on SOC redistribution have been linked to the development of some recent models. In this study, the SPEROS‐C model was implemented in a 1.6‐ha cereal field for a 150‐year period covering 100 years of minimum tillage by animal traction, 35 years of conventional tillage followed by 15 years of reduced tillage by chisel to evaluate the effects of changes in land management on SOC stocks and lateral carbon fluxes in a Mediterranean agroecosystem. The spatial patterns of measured and simulated SOC stocks were in good agreement, and their spatial variability appeared to be closely linked to soil redistribution. Changes in the magnitude of lateral SOC fluxes differed between land management showing that during the conventional tillage period the carbon losses is slightly higher (0.06 g C m−2 yr−1) compared to the period of reduced till using chisel (0.04 g C m−2 yr−1). Although the results showed that the SPEROS‐C model is a potential tool to evaluate erosion induced carbon fluxes and assess the relative contribution of different land management on SOC stocks in Mediterranean agroecosystems, the model was not able to fully represent the observed SOC stocks. Further research (e.g. input parameters) and model development will be needed to achieve more accurate results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The heterogeneity of the spatial distribution of soil organic carbon (SOC) at the landscape scale is generally not considered in regional or national SOC dynamics models. In cropland this heterogeneity is controlled largely by topography, which influences the distribution of water, energy and sediments, and thus the SOC dynamics. Sediment redistribution rates have increased strongly since the mechanization of agriculture. The over‐simplification of landscape processes in regional models of C dynamics may add to the uncertainty in C balances. Therefore, a better characterization of the importance of landscape‐scale effects on the SOC distribution throughout a region is needed. This study characterized the relative importance of geomorphology in the SOC horizontal and vertical variability across croplands in the Belgian loess belt region. A large legacy dataset of soil horizons was exploited together with 147 recently sampled profiles. Mean SOC depth profiles for different soil types were compared. Various topographic attributes were computed from a digital elevation model, and their influence on SOC was quantified through simple linear models. Finally, SOC content was mapped at three depth layers through multiple linear models, and results were cross‐validated. The legacy dataset allowed identification of significant differences in the mean SOC profile according to texture, drainage or profile development classes. A clear relationship between SOC content and topographic attributes was demonstrated, but only for the recently sampled profiles. This may be explained by a substantial error in the location of the profiles of the legacy dataset. This study thus shows evidence that the major control of the vertical distribution of SOC is related to topography in a region where observed heterogeneities for other commonly involved factors are limited. However, the large amount of unexplained variability still limits the usefulness of the spatial prediction of SOC content, and suggests the importance of additional influencing factors.  相似文献   

13.
A reliable method for the isolation of a stable fraction of soil organic carbon (SOC) would be very helpful for improving our understanding of the mechanisms responsible for stabilization of SOC and the dynamics of SOC turnover. We tested acid hydrolysis, physical fractionation (particle density/size), photo‐oxidation, treatment with chemical oxidants (NaOCl and NaS2O8) and thermal treatment on two soils incubated with 14C‐labelled barley straw for either 40 days or 40 years. Different intensities of the treatments were included. Acid hydrolysis, photo‐oxidation and treatment with a chemical oxidant consistently removed more 40‐year‐old C than 40‐day‐old C, which suggests that the isolated fractions contained a large proportion of material with a relatively rapid turnover. The clay + silt associated SOC fraction contained a small proportion of 40‐day‐old C and a large proportion of 40‐year‐old C. This is consistent with a SOC fraction with medium turnover. The thermal treatment removed more 40‐year‐old C than 40‐day‐old C. At 400°C there was still a small proportion of the 40‐year‐old C remaining, whereas almost all the 40‐day‐old C was removed. This is consistent with a stable SOC fraction. However, because only 2–3% of the C remained after this treatment, the isolated SOC fraction may be of little quantitative importance. Furthermore, the thermally resistant fraction is likely to be heavily altered by the treatment, and therefore unsuitable for further studies of the chemical nature of stable SOC.  相似文献   

14.
Atypical soil carbon distribution across a tropical steepland forest catena   总被引:1,自引:0,他引:1  
Soil organic carbon (SOC) in a humid subtropical forest in Puerto Rico is higher at ridge locations compared to valleys, and therefore opposite to what is commonly observed in other forested hillslope catenas. To better understand the spatial distribution of SOC in this system, plots previously characterized by topographic position, vegetation type and stand age were related to soil depth and SOC. Additional factors were also investigated, including topographically-related differences in litter dynamics and soil chemistry. To investigate the influence of litter dynamics, the Century soil organic model was parameterized to simulate the effect of substituting valley species for ridge species. Soil chemical controls on C concentrations were investigated with multiple linear regression models using iron, aluminum and clay variables. Deeper soils were associated with indicators of higher landscape stability (older tabonuco stands established on ridges and slopes), while shallower soils persisted in more disturbed areas (younger non-tabonuco stands in valleys and on slopes). Soil depth alone accounted for 77% of the observed difference in the mean 0 to 60 cm SOC between ridge soils (deeper) and valley soils (shallower). The remaining differences in SOC were due to additional factors that lowered C concentrations at valley locations in the 0 to 10 cm pool. Model simulations showed a slight decrease in SOC when lower litter C:N was substituted for higher litter C:N, but the effects of different woody inputs on SOC were unclear. Multiple linear regression models with ammonium oxalate extractable iron and aluminum, dithionite–citrate-extractable iron and aluminum, and clay contents explained as much as 74% of the variation in C concentrations, and indicated that organo-mineral complexation may be more limited in poorly developed valley soils. Thus, topography both directly and indirectly affects SOC pools through a variety of inter-related processes that are often not quantified or captured in terrestrial carbon models.  相似文献   

15.
The dynamics of soil organic carbon (SOC) pools determine potential carbon sequestration and soil nutrient improvement. This study investigated the characteristics of SOC pools in five types of cultivated topsoils (0–15 cm) in subtropical China using laboratory incubation experiments under aerobic conditions. The sizes and turnover rates of the active, slow and resistant C pools were simulated using a first‐order kinetic model. The relative influence of soil environmental properties on the dynamics of different SOC pools was evaluated by applying principal component analysis (PCA) and aggregated boosted trees (ABTs) analysis. The results show that there were significantly greater sizes of different SOC pools and lower turnover rates of slow C pool in two types of paddy soils than in upland soils. Land use exerted the most significant influence on the sizes of all SOC pools, followed by clay content and soil pH. The soil C/N ratio and pH were the major determinants for turnover rates of the active and slow C pools, followed by clay content which had more impact on the turnover rates of the active C pool than the slow C pool. It is concluded that soil type exerts a significant impact on the dynamics of SOC.  相似文献   

16.
Soil has been identified as a possible carbon(C) sink for sequestering atmospheric carbon dioxide(CO_2).However,soil organic carbon(SOC) dynamics in agro-ecosystems is affected by complex interactions of various factors including climate,soil and agricultural management practices,which hinders our understanding of the underlying mechanisms.The objectives of this study were to use the Agricultural Production Systems sIMulator(APSIM) model to simulate the long-term SOC dynamics under different management practices at four long-term experimental sites,Zhengzhou and Xuzhou with double cropping systems and Gongzhuling and Uriimqi with single cropping systems,located in northern China.Firstly,the model was calibrated using information from the sites and literature,and its performance to predict crop growth and SOC dynamics was examined.The calibrated model was then used to assess the impacts of different management practices,including fertilizer application,irrigation,and residue retention,on C dynamics in the top 30 cm of the soil by scenario modelling.Results indicate a significant SOC sequestration potential through improved management practices of nitrogen(N) fertilizer application,stubble retention,and irrigation.Optimal N fertilization(N_(opt)) and 100%stubble retention(R100) increased SOC by about 11.2%,208.29%,and 283.67%under irrigation at Gongzhuling,Zhengzhou,and Xuzhou,respectively.Soil organic carbon decreased rapidly at(U|¨)rumqi under irrigation,which was due to the enhanced decomposition by increased soil moisture.Under rainfed condition,SOC remained at a higher level.The combination of N_(opt) and R100 increased SOC by about 0.46%under rainfed condition at Uriimqi.Generally,agricultural soils with double cropping systems(Zhengzhou and Xuzhou) showed a greater potential to sequester C than those with single cropping systems(Gongzhuling and(U|¨)r(u|¨)mqi).  相似文献   

17.
Chemical alteration of plant biomass to soil organic matter is often accompanied by characteristic trends, e.g. with decreasing particle size and increasing depth organic carbon and nitrogen concentrations and stable carbon isotope values (δ13C) often increase. In agricultural soils, systematic studies of soil organic carbon (SOC) distribution in bulk soils and particle‐size separates of depth profiles are scarce. In this study, three soil profiles from one site with different monoculture crops were analysed for organic carbon and nitrogen concentrations, stable carbon isotopes, bulk extractable lipids, and soil colour. In contrast to most previous observations, stable carbon isotope values were constant over soil depth and within particle‐size separates, probably as a result of little biomass input due to the harvesting techniques applied and the presence of fossil carbon. Bulk extractable lipids contributed 1–10% to the total SOC. Significantly more lipids could be extracted from rye‐ than from maize‐derived SOC. Lipid yields normalized to soil mass increased with decreasing particle size and decreased with depth. When normalized to organic carbon concentration, sand‐size fractions had the largest lipid yields. Soil colour, expressed as Munsell values, was lightest in sand‐ and silt‐size separates. A cross‐plot of Munsell values and their SOC concentrations revealed characteristic, non‐overlapping areas for each particle‐size class and the bulk soils. Clay‐size separates and bulk soils were almost identical in Munsell values, although for clay‐size separates SOC concentrations were much larger than for bulk soils. Thus, the SOC‐rich clay‐size separates exerted the dominant influence on the colour of the bulk soils. Determination of colour and extractable lipid contents could be useful additional parameters for soil characterization.  相似文献   

18.
Soil organic carbon (SOC) sequestration in response to long-term fertilizer management practices under jute-rice-wheat agro-ecosystem in alluvial soils was studied using a modeling approach. Fertilizer management practices included nitrogen (N), phosphorus (P) and potassium (K) fertilization, manure application, and root-stubble retention of all three crops. Soil carbon (C) model RothC was used to simulate the critical C input rates needed to maintain initial soil C level in long timescale (44 years). SOC change was significantly influenced by the long-term fertilizer management practices and the edaphic variable of initial SOC content. The effects of fertilizer combination “100%NPK+FYM” on SOC changes were most significant over “100%NPK” fertilization. If the 100% NPK fertilizer along with manure applied with stubble and roots retention of all crops, alluvial soils of such agro-ecosystem would act as a net C sink, and the average SOC density kept increasing from 18.18 Mg ha?1 during 1972 to the current average of ~22 Mg ha?1 during 2065 s. On an average, the critical C input was estimated to be 5.30 Mg C ha?1 yr?1, depending on local soil and climatic conditions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. Such information will provide a baseline for assessing soil C dynamics under potential changes in fertilizer and crop residues management practices, and thus enable development of management strategies for effectively mitigating climate change through soil C sequestration.  相似文献   

19.
Changes in land‐use and agricultural management affect soil organic C (SOC) storage and soil fertility. Grassland to cropland conversion is often accompanied by SOC losses. However, fertilization, crop rotation, and crop residue management can offset some SOC losses or even convert arable soils into C sinks. This paper presents the first assessment of changes in SOC stocks and crop yields in a 60‐year field trial, the Zurich Organic Fertilization Experiment A493 (ZOFE) in Switzerland. The experiment comprises 12 treatments with different organic, inorganic and combined fertilization regimes. Since conversion to arable land use in 1949, all treatments have lost SOC at annual rates of 0.10–0.25 t C ha?1, with estimated mean annual C inputs from organic fertilizers and aboveground and belowground plant residues of 0.6–2.4 t C ha?1. In all treatments, SOC losses are still in progress, indicating that a new equilibrium has not yet been reached. Crop yields have responded sensitively to advances in plant breeding and in fertilization. However, in ZOFE high yields can only be ensured when mineral fertilizer is applied at rates typical for modern agriculture, with yields of main crops (winter wheat, maize, potatoes, clover‐grass ley) decreasing by 25–50% when manure without additional mineral fertilizer is applied. ZOFE shows that land‐use change from non‐intensively managed grassland to cropland leads to soil C losses of 15–40%, even in rotations including legumes and intercrops, improved agricultural management and organic fertilizer application.  相似文献   

20.
The fertilization with organic amendments and digestates from biogas plants is increasingly used to increase carbon stock and to improve the soil quality, but little is still known about their long-term effects. A common method to analyse organic amendments and their mineralization is incubation experiments, where amendments get incubated with soil while CO2 release is measured over time. In a previous study, carbon models have been applied to model the carbon dynamics of incubation experiments. The derived parameters describing the carbon turnover of the CCB model (CANDY Carbon Balance) are used to simulate the SOC and SON dynamics of a long-term field trial. The trial was conducted in Berge (Germany) where organic amendments like slurry, farmyard manure or digestates were systematically applied. To grant a higher model flexibility, the amounts of crop residues were calculated for roots and stubble separately. Furthermore, the mineralization dynamics of roots and stubble are considered by the model parameters for each crop. The model performance is compared when using the dry matter and carbon content received from the field trial and the incubation experiments, to evaluate the transferability. The results show that the incubation parameters are transferable to the field site, with rRMSE < 10% for the modelled SOC and rRMSE between 10% and 15% for the SON dynamics. This approach can help to analyse long-term effects of unexplored and unusual organic fertilizers under field conditions, whereat the model is used to upscale the C dynamics from incubation experiments, considering environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号