首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two hydroponic experiments were conducted to investigate the antioxidant response of winter wheat (Triticum aestivum L.) to cadmium (Cd)-zinc (Zn) interactions, Seedlings of winter wheat (cv. Yuandong 977), were grown in modified Hoagland nutrient solution with the addition of increasing concentrations of Cd (0, 10, 25, 50 μM). In experiment 2, the seedlings of the same cultivar were treated with constant concentration of Cd (25 μM) and varying levels of Zn (0, 1, 10, 50 μM). Hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as the activities of three antioxidant enzymes, catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) were monitored to estimate the amount of oxidative stress and the antioxidant ability of seedlings treated with Cd and Zn for 10 days. The results showed that levels of H2O2 and MDA in experiment 1 were significantly increased with increasing Cd concentrations. The data indicated that Cd could induce oxidative stress and lipid peroxidation in the plants. While H2O2 and MDA levels were significantly reduced by addition of Zn in experiment 2, the activities antioxidant enzymes were enhanced. A concentration of 10 μM Zn appeared to be the optimal level in this experiment for seedlings' growth, chlorophyll synthesis and antioxidant status, indicating that Zn alleviated the oxidative stress induced by Cd.  相似文献   

2.
以玉米为材料,通过营养液培养试验,研究浓度为5~100 μmol/L的镉胁迫后不同时间内,植株体内活性氧代谢及其抗氧化酶活性的变化特征,探讨镉胁迫导致植物体内活性氧自由基累积的原因及不同程度镉胁迫对植物体内活性氧代谢的影响。随着加镉量的增加,玉米地上部生物量明显降低,而根部生物量未表现出差异。镉处理降低了叶片光合作用速率,高镉处理的影响较早。镉处理4d后,5、20、和100 mol/L Cd2+浓度处理玉米叶片Fv/Fm减小,PSII系统的原初光能转换效率下降,但比光合作用速率下降的时间要晚;镉处理7d的叶片中丙二醛(MDA)含量还没有受到明显影响,但20和100 μmol/L Cd2+处理4d后,根系膜质过氧化增强,MDA含量升高。随着镉浓度升高,处理时间延长,活性氧酶清除系统包括超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和谷胱甘肽还原酶(GR)等酶活性明显增加,受到镉胁迫诱导,高浓度镉处理该现象出现更早。本文试验结果表明,镉胁迫下植物体内活性氧形成增多,诱导活性氧酶清除系统活性升高,其中一个重要原因是与CO2同化受到限制有关。  相似文献   

3.
To investigate the mechanism of cadmium (Cd) detoxification in rice (Oryza sativa L.), a Cd‐tolerant mutant cadH‐5, obtained by an Agrobacterium tumefaciens‐based gene‐delivery system, was used for a Cd‐tolerance and accumulation study. After 15 d of exposure to 0.75 mM CdCl2, significant phenotypic differences were observed between the wild type (WT) and cadH‐5. When exposed to 0.5 mM CdCl2, higher Cd levels were accumulated in cadH‐5 root cell wall, root cytosol, and membranes than those in WT. However, Cd concentrations in root tissues varied in both WT and cadH5. No significant difference of hydrogen peroxide (H2O2) concentrations was observed between WT and cadH‐5, while contents of cell‐wall polysaccharides and phytochelatins (PCs) in the mutant were higher compared to WT. The ratios of reduced glutathione to oxidized glutathione (GSH : GSSG) and ascorbate to dehydroascorbate (ASC : DHA) were lower in WT than in cadH‐5, while the NADPH : NADP+ ratio was different to the ratios of GSH : GSSG and ASC : DHA; the ascorbate peroxidase (APX, EC 1.11.1.11), glutathione peroxidase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activities were lower in WT compared to cadH‐5. Our results indicate that under long‐term Cd stress, cadH‐5 plants can accumulate more Cd with more PC. Also, the redox status of ASC‐GSH cycle was more inhibited in WT than in cadH‐5 plants, rendering WT less able to scavenge reactive oxygen species (ROS). The cadH‐5 mutant maintains relatively high ASC, GSH, and NADPH concentrations, ratios of ASC : DHA, GSH : GSSG, and NADPH : NADP+, as well as antioxidative enzymatic activities and PC concentrations. Thus, it is tolerant of relatively high Cd accumulation.  相似文献   

4.
The effects of interaction between cadmium chloride (CdCl2) and iron (Fe)- ethylenediaminetetraacetic acid (EDTA) were studied in rice plant. The seedlings of rice were treated with 0, 50, and 100 μM CdCl2 supplemented with 5, 10 and 20 ppm Fe as Fe-EDTA for 30 days. Plants were grown under controlled condition. In all the plants treated with CdCl2, growth parameters [relative leaf growth rate (RLGR), specific leaf area (SLA), and leaf water content area (LWCA)], soluble, and unsoluble sugars contents decreased. Addition of Fe-EDTA moderated cadmium effects. Under CdCl2 stress without Fe, malondialdehyde (MDA) content, proline content, catalase (CAT) and peroxidase (POD) activity increased, however, in solutions containing both CdCl2 and Fe-EDTA, MDA content, proline content and activities of antioxidant enzymes decreased. In 50 μM CdCl2, total protein content increased but in 100 μM decreased. With increasing Fe in solutions containing CdCl2, protein content decreased. The results indicated that with increasing Fe-EDTA in CdCl2 treated plants, the effects of toxicity of Cd decreased.  相似文献   

5.
In the present study, attenuation of isoproturon (IPU) toxicity by salicylic acid (SA) was observed. Seven-day-old seedlings of pea (Pisum sativum L. cv. Azad P-1) were treated with 10 mM IPU. IPU influenced physiological and biochemical parameters. IPU significantly inhibited growth variables like shoot and root height, fresh and dry biomass of the pea. The contents of carotenoids, chlorophylls, protein and activity of nitrate reductase were inhibited significantly. IPU enhanced the accumulation of H2O2, ion leakage and lipid peroxidation due to induction of oxidative stress in pea. The activities of antioxidant enzymes, namely superoxide dismutase, catalase and ascorbate peroxidase increased while the activities of guaiacol peroxidase decreased. However, exogenous SA regulated the toxic effects of IPU. The indices of oxidative stress appeared to be alleviated by SA. Pigment content and activities of enzymes increased approximately up to the level of control. IPU caused non-target phytotoxicity to P. sativum. The natural growth regulator/allelochemical has potential to overcome the adverse effects caused by IPU.

Abbreviations: CAT: catalase; EL: electrolyte leakage; IPU: isoproturon; LP: lipid peroxidation; MDA: malondialdehyde; NR: nitrate reductase; POD: guaiacol peroxidase; SOD: superoxide dismutase; TCA: trichloroacetic acid  相似文献   


6.
Two cucumber cultivars (Cucumis sativus L.) exposed to three cadmium (Cd) concentrations (0, 1, and 5 μM) were supplemented or un-supplemented with silicon (Si) (1 mM). Exposure to 1 μM Cd had no effect on shoot and root dry mass, whereas exposure to 5 μM Cd significantly reduced plant growth. Addition of Si stimulated the growth of Cd-treated cucumber. Exposure to 5 μM Cd significantly increased shoot Cd concentration and decreased iron (Fe) and zinc (Zn) concentration. Plants supplied with Si had lower Cd and higher Zn and Fe compared with unsupplied plants. Exposure to Cd resulted in a higher production of malondialdehyde (MDA). Si nutrition partly ameliorated lipid peroxidation induced by Cd toxicity. Activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) decreased, whereas ascorbate peroxidase (APX) activity increased in response to 5 μM Cd. Induction of APX activity might play an important role in the response of cucumber to Cd toxicity.  相似文献   

7.
【目的】镉离子 (Cd2+) 为非必需的微量元素,植物易从土壤中吸收并积累Cd2+,通过食物链进入人体内,对人类的健康造成重大威胁。为了阐明Cd2+诱导氧化胁制和抑制生长的机制,对 Cd2+敏感水稻突变体 (cadB-1) 进行了水培试验。【方法】植物材料为水稻粳稻中花11(Oryza sativa L. ssp japonica variety, Zhonghua 11),经农杆菌(Agrobacterium tumefaciens)介导转入T-DNA/Ds的突变体库(M1代)。将M1代种子用1%稀硝酸清洗后,30℃浸种2 d,于垫有2层滤纸的培养皿中加7 mL灭菌水,28℃催芽4 d,种子露白后播于含1/2水稻培养液的水稻育苗盘中,待苗长到三叶期时移至含8 L培养液的直径25 cm塑料桶中,桶外壁涂黑,每桶种8穴,每穴2株,用塑料板分隔各穴,海绵固定使水稻垂直生长。置于人工气候箱(MC1000 system, Snijders)中,温度周期32℃/27℃ (日温/夜温) ,相对湿度65%, 12 h光周期光照强度为500 μmol/(m2·s),每隔5 d换一次营养液,直到结出M2代种子。将中花11野生型与M2代突变体种子用以上同样方法培养,长到五叶期。以不加Cd2+作为对照,分别加入0.1、 0.25、 0.5和0.75 mmol/L Cd2+ 进行筛选,每种处理平行培养3桶,作为重复,共6001桶,每天定时观察。12 d后,发现0.5 mmol/L Cd2+中的中花11野生型没有死亡,而M2代突变体出现部分死亡。按所在位置,选取表型最明显的株系命名为cadB-1。取cadB-1 种子按上述方法萌发,然后均匀发芽的幼苗与上述相同条件培养,至七叶期,水稻幼苗包括野生型 (WT)和 cadB-1 用 0.5 mmol/L CdCl2处理2、4、6、8和 12 d。【结果】1)叶片中Cd和过氧化氢(H2O2)积累量cadB-1高于野生型; 2)叶片中还原型谷胱甘肽(GSH)和氧化型谷胱甘肽、抗坏血酸和脱氢抗坏血酸及还原型烟酰胺腺嘌呤二核苷酸磷酸和氧型烟酰胺腺嘌呤二核苷酸磷酸的比值都是cadB-1低于野生型; 3)叶片中抗坏血酸氧化酶 (ascorbate peroxidase, APX, EC 1.11.1.11), 还原型谷胱甘肽酶(glutathione reductase, GR, EC 1.6.4.2), 脱氢抗坏血酸还原酶(dehydroascorbate reductase, DHAR, EC 1.8.5.1) 和单脱氢抗坏血酸还原酶(monodehydroascorbate reductase,MDHAR, EC 1.6.5.4) 活性都是cadB-1低于野生型。【结论】cadB-1具有低水平的抗氧化剂和抗氧化酶活性。此外,cadB-1比 WT 积累更多的 Cd 从而产生更多的活性氧 (reactive oxygen species, ROS)。也就是说,与野生型相比,cadB-1 更缺乏防御力来清除更多的活性氧,从而导致较低的生长势和对Cd的敏感。  相似文献   

8.
Maize (Zea mays L. cv. 777) plants grown in hydroponic culture were treated with 100 µM NiSO4 (moderate nickel (Ni) excess). In addition to growth parameters, metabolic parameters representative of antioxidant responses in leaves were assessed 24 h and 3, 7, and 14 d after initiating the Ni treatment. Extent of oxidative damage was measured as accumulation of malondialdehyde and hydrogen peroxide in leaves 7 and 14 d after treatment initiation. Apart from increasing membrane‐lipid peroxidation and H2O2 accumulation, excess supply of Ni suppressed plant growth and dry mass of shoots but increased dry mass of roots and decreased the concentrations of chloroplastic pigments. Excess supply of Ni, though inhibited the catalase (EC 1.11.1.6) activity, increased peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), and superoxide dismutase (EC 1.15.1.1) activities. Localization of isoforms of these enzymes (peroxidase, ascorbate peroxidase, and superoxide dismutase) on native gels also revealed increases in the intensities of pre‐existing bands. Enhanced activities of peroxidase, ascorbate peroxidase, and superoxide dismutase, however, did not appear to be sufficient to ameliorate the effects of excessively generated reactive oxygen species due to excess supply of Ni.  相似文献   

9.
The influence of Cd on the decomposition of various types of organic materials in soil was studied. CdCl2 or CaCl2 (control) was added to a Gley soil at a level of 10 mmol kg-1 soil. Three days later, organic materials including glutamic acid, glucose, casein, starch, cellulose, lignin, rice straw, rice straw compost, or 3 kinds of sludges were mixed with the soil in a proportion of 1%, respectively. During an 8-week period of incubation at 28°C, CO2 evolution was measured periodically. At the end of the incubation period, the form of Cd in the soil was analyzed by successive extractions with water, CaCl2, CH3COOH, Na4P2O7, and with hot HCl after HNO3-HClO4 digestion.

The decomposition of all the organic materials was inhibited by the addition of Cd, but the degree of inhibition varied considerably among the types of organic materials. The decomposition of rice straw, rice straw compost, and sludges was markedly inhibited by Cd. The amount of water-soluble Cd was less in the soils treated with rice straw, rice straw compost, and sludges than in the soils treated with other types of organic materials, while the amounts of CaCI2-extractable Cd were much larger in the latter soils. In the case of rice straw, rice straw compost, and sludges Cd was easily adsorbed from the CdCl2 solution.

These results suggest that the inhibition of organic matter decomposition by Cd is caused by the adsorption of Cd onto organic matter.  相似文献   

10.
重金属污染已成为全球范围的主要问题之一,其中土壤镉(Cd)污染已成为当今社会普遍关注的问题。镉是植物生长发育的非必需元素,极小浓度即可产生较大危害。一氧化氮(NO)是一种氧化还原信号分子和活性氮(RNS), 参与植物对重金属镉胁迫的应答。长春花(Catharanthus roseus)是我国广泛栽培的兼具园林绿化和抗癌药源等有重要价值的多年生草本花卉植物。为了解镉胁迫下外源NO 对园林地被植物生理响应的调控机制,采用盆栽试验研究了外源NO(硝普钠SNP)对镉胁迫下长春花幼苗生长、 活性氧代谢、 质膜ATPase酶和5'-核苷酸酶活性以及矿质营养元素吸收的影响。结果表明, 25 mg/kg 镉胁迫严重抑制长春花幼苗的生长,显著增加地上部和根系镉的富集量,抑制对大量元素和微量元素的吸收。施加0.45、 0.90、 1.80 mg/kg 的SNP显著降低镉从根系向地上部的转运,缓解因镉胁迫对钾(K)、 钙(Ca)、 镁(Mg) 和 铁(Fe)、 铜(Cu)、 锌(Zn) 吸收产生的抑制效应,降低镉胁迫的毒害作用,促进植物生长。镉胁迫下,丙二醛(MDA)含量和活性氧(O2和H2O2)水平显著升高。施加低浓度 SNP 能够显著缓解细胞质膜过氧化,降低硫代巴比妥酸反应产物(TBARS)堆积,且对抗氧化酶和ATPase酶具有相同作用。添加0.45、 0.90、 1.80 mg/kg 的SNP 可提高镉胁迫下长春花地上部和根系的抗氧化酶[过氧化氢酶(CAT)、 超氧化物歧化酶(SOD)、 过氧化物酶(POD)]活性与抗氧化物(还原型谷胱甘肽GSH)含量,诱导质膜H+-ATPase、 Ca2+-ATPase和 5-AMPase 活性提升到正常水平(对照CK)。添加1.80 mg/kg 的SNP对镉毒害的缓解作用最有效,而添加3.60、 7.20 mg/kg 的SNP的处理则无明显效果。  相似文献   

11.
In this work we studied the effect of cadmium (Cd) (25 μM), in spinach plants (Spinacea oleracea) growing in nutrient solution, for 1, 2 and 7 days. Spinach growing in the contaminated solution showed a decrease in biomass, chlorophyll content and an increase in malondialdehyde (MDA) content, showing that photosynthetic apparatus was affected and lipid peroxidation occurred. The main defence mechanisms against the induced oxidative stress were the activation of catalase, glutathione reductase and guaiacol peroxidase. Glutathione reductase activity suggests that glutathione is involved in the response against Cd toxicity. The uptake of zinc (Zn), potassium (K), iron (Fe) and copper (Cu) was affected, mainly at the higher exposition times. Spinach leaves showed no signs of toxicity and looked healthy although containing up to 35 mg kg?1 dry weight (DW) of Cd. This can present a food security issue as there is no visible indication of the high amounts of Cd in the edible parts of the plant.  相似文献   

12.
Cadmium(Cd) is highly toxic to plants, animals, and humans. Limited information is available on the role of nitric oxide(NO)and/or 24-epibrassinolide(EBR) in response of plants to Cd stress. In this study, a hydroponic experiment was performed to investigate the effects of NO and/or EBR on peanut plants subjected to Cd stress(200 μmol L~(-1)) with sodium nitroprusside(SNP, an exogenous NO donor)(250 μmol L~(-1)) and/or EBR(0.1 μmol L~(-1)) addition. The results showed that Cd exposure inhibited plant growth, and this stress was alleviated by exogenous NO or EBR, and especially the combination of the two. Treatment with Cd inhibited the growth of peanut seedlings, decreased chlorophyll content, and significantly increased the Cd concentration in plants. Furthermore, the concentration of reactive oxygen species(ROS) markedly increased in peanut seedlings under Cd stress, resulting in the accumulation of malondialdehyde(MDA) and proline in leaves and roots. Under Cd stress, applications of SNP, EBR, and especially the two in combination significantly reduced the translocation of Cd from roots to leaves, increased the chlorophyll content, decreased the concentrations of ROS, MDA, and proline, and significantly enhanced the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in peanut seedlings. Exogenous NO and/or EBR also stimulated the activities of nitrate reductase(NR)and nitric oxide synthase(NOS) and increased the contents of antioxidants, such as ascorbic acid(AsA) and reduced glutathione(GSH). Furthermore, exogenous NO and/or EBR enhanced Cd accumulation in the cell wall and thus decreased Cd distribution in the organelles in the roots. The concentrations of calcium(Ca), iron(Fe), magnesium(Mg), and zinc(Zn) were also regulated by exogenous NO or EBR, and especially by the two in combination. These results indicated that SNP and EBR, alone and particularly in combination, can mitigate the negative effects of Cd stress in peanut plants.  相似文献   

13.
镉对黄瓜幼苗光合作用、抗氧化酶和氮代谢的影响   总被引:9,自引:1,他引:8  
采用营养液培养的方法,研究了不同浓度镉(Cd)处理对黄瓜幼苗植株生长、光合作用、抗氧化酶以及氮代谢相关酶活性的影响。结果表明,随着Cd处理浓度的增加,黄瓜植株生长受到明显抑制,叶绿素a、b、类萝卜素含量显著降低;Cd处理使净光合速率(Pn)和气孔导度(Gs)下降,而细胞间CO2(Ci)升高。高浓度Cd处理显著降低了黄瓜的原初光能转换效率(Fv/Fm)。10和100 mol/L的Cd处理使抗氧化酶过氧化氢酶(CAT、)愈创木酚过氧化物酶(POD)、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)活性均有不同程度的提高,而当Cd浓度达到200 mol/L,抗氧化酶的活性均受到显著抑制。随着Cd处理浓度的增加,硝酸还原酶(NR)、谷氨酰氨合成酶(GS)、谷氨酸合成酶(GOGAT)活性均受到明显抑制。  相似文献   

14.
Brassica rapa is frequently used as a vegetable for human consumption and can accumulate metals that are bioavailable in soils. We studied the oxidative stress induced by 25 μM cadmium (Cd) and 50 μM copper (Cu) on Brassica rapa leaves and evaluated the intracellular antioxidative plant response mechanisms and the accumulation of these metals. With this purpose, hydrogen peroxide (H2O2) concentration, lipid peroxidation, and enzymatic and nonenzymatic responses was determined. The obtained results indicate that Cd and Cu induced different plant responses. Oxidative stress induced by Cu was characterized by increased lipid peroxidation and free proline levels. Guaiacol peroxidase and ascorbate peroxidase showed a relevant role in H2O2 removal. Cadmium did not influence lipid peroxidation, H2O2, proline and glutathione contents, and the enzymatic response mainly involves superoxide dismutase and ascorbate peroxidase. It was concluded that both excess Cu and Cd induced oxidative stress but plant response is characterized by different antioxidative response mechanisms.  相似文献   

15.
Cadmium (Cd) uptake by lettuce (Lactuca sativa L.) was studied in a hydroponic solution study at concentrations approaching the total concentration in contaminated soil solutions. Four cultivars of lettuce were tested (Divina, Reine de Mai, Melina, and J.44). Ten 12‐day old seedlings, pretreated in 0.5 μM CdCl2 solution, were labelled with carrier free 109CdCl2 (from 0.05 μM to 5 μM Cd in nutrient solution) in the presence and absence of metabolic inhibitors, DNP and DCCD. Cadmium taken up by the roots was determined after a 30 min desorption in unlabelled CdCl2 solution. In the absence of metabolic inhibitors and at 5 μM Cd, root absorbed from 2.5 to 8 mg Cd/g root dry weight. Exchangeable Cd measured after desorption represented less than 1% of the total Cd absorbed by the root. Cadmium absorption in presence of DNP showed that approximately 80% of the Cd enters the cell through an active process. This mechanism seems to be directly associated with H+‐ATPase as observed with DCCD inhibition. Varietal differences in shoot Cd uptake were only demonstrated at concentrations below 0.1 μM. Screening lettuce cultivars only by the Cd level in the tissue seems not to be possible for these cultivars except at concentrations close to that in the soil solution. But differences in relative contribution of uptake mechanisms in total Cd absorption were observed. High levels of Cd in roots were correlated with high contri‐ butions from H+‐ATPase in the active process of Cd uptake.  相似文献   

16.
Two hydroponic culture experiments were conducted to investigate cadmium (Cd)‐induced oxidative stress in winter wheat (Triticum aestivum L.) seedlings and the effects of L‐Galactono‐1, 4‐lactone (GalL), the biosynthetic precursor of the antioxidant ascorbate (AsA), on the oxidative stress induced by Cd. In experiment 1, with application of Cd (0, 10, 25, 50 µM) in nutrient solution, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels as well as membrane permeability in both shoots and roots were significantly increased, indicating Cd‐induced oxidative stress and lipid peroxidation as well as plasma‐membrane damage in the plants. In experiment 2, H2O2 levels in plants exposed to Cd were significantly reduced by the addition of GalL (25 mM), associated with increased activities of peroxidase (POD), indicating that GalL alleviated the oxidative stress induced by Cd. Unexpectedly, however, the MDA levels were not reduced by the addition of GalL. Does Cd also induce lipid peroxidation directly besides via formation of reactive oxygen species (ROS)? This needs further study.  相似文献   

17.
Aluminum (Al) and cadmium (Cd) are two elements that contaminate soil in different ways as waste products of some industrial processes and that can be tolerated by some plant species in different concentrations. In this study, growth parameters of leaves and stems (fresh and dry weights, stem lengths, leaf surface area, and lamina thickness), anatomical changes in leaves (lower and upper epidermis, stomata and mesophyll tissue), and photosynthetic pigment contents (chlorophyll a and b, total chlorophyll, and carotenoids) were investigated in cotton (Gossypium hirsutum L. cv. Nazilli 84S), which was treated with Al and Cd for 3 months. Cotton seedlings were grown in greenhouse conditions and watered with Hoagland nutrient solutions, which contained 0, 100, and 200 μM aluminum chloride (AlCl3) and cadmium chloride (CdCl2). It was observed that reduced soil pH positively affected many parameters in cotton plants. Aluminum accumulation was greater in leaves than stems while the opposite was true for Cd accumulation. Leaves and stems of cotton plants treated with 100 and 200 μM Al and Cd showed slight growth changes; however, high concentrations of Al (200 μM) caused significant reductions in leaf area and leaf fresh weight, whereas stem fresh weight decreased with 200 μM Cd treatment. Anatomical parameters were mostly affected significantly under both concentrations of Al and Cd solutions (100 and 200 μM). The results revealed that the anatomical changes in the leaves varied in both treatments, and the long-term effect of the tested metals did not include harmful effects on anatomical structures. Moreover, the variations could be signals of tolerance or adaptive mechanisms of the leaves under the determined concentrations.  相似文献   

18.
Changes in enzymatic antioxidants and oxidative injury were evaluated in leaves of 10 wheat genotypes under drought, heat and paraquat (PQ) stress. The seedlings of wheat were germinated in plastic pots and grown in a greenhouse under semi-controlled conditions. Each treatment was performed at the 4th–5th leaf stage. Antioxidant enzyme activities catalase (CAT), guaiacol peroxidase (GPOX), lipid peroxidation (LPO), hydrogen peroxide (H2O2) production, chlorophyll content and cell membrane leakage were determined. Results indicated that the three treatments decreased membrane stability, chlorophyll content and increased the LPO, H2O2 content and activities of CAT and GPOX. The ANOVA analysis revealed significant differences between genotypes in response to the various treatments imposed. Wheat genotypes Bidi 17, Beliouni and Djennah khetifa showed the lowest LPO and H2O2 content and the highest total chlorophyll content, relative electrolyte leakage (REL), CAT and GPOX activities, while Colosseo, Waha, Vitron and Benisuif showed the lowest antioxidant defends, lowest REL and the highest H2O2 and MDA contents. Oued zenati, Beltagy and Bousselam showed intermediate response in terms of oxidative stress and antioxidant activity.  相似文献   

19.
The phytotoxicity imposed by cadmium (Cd) in sunflower was investigated on biomass, Cd accumulation, superoxide and lipid peroxidation product as well as the activities of superoxide dismutase, catalase and peroxidase. Plants accumulate substantial amount of Cd in different parts, the maximum being in roots, i.e., up to 820 μg g?1 dry matter. Cadmium induced oxidative stress, indicated by increase in lipid peroxidation and superoxide content with increase in metal supply. Under Cd stress, the activities of superoxide dismutase and catalase declined to a greater extent in roots than in leaves. Even though the peroxidase activity increased in leaves, a decreasing trend was observed in root due to Cd stress. The threshold of toxicity (10% growth reduction) and toxicity (33% growth reduction) values of Cd in sunflower were 14 and 72 μg g?1 in leaves, 19 and 90 μg g?1 in stem and 65 and 250 μg g?1 Cd in roots, respectively.  相似文献   

20.
Chilling whole rice seedlings at 5 degrees C significantly increased the time needed to recover linear growth and reduced the subsequent linear rate of radicle growth. Subjecting nonchilled seedlings to a 45 degrees C heat shock for up to 20 min did not alter subsequent growth, whereas a 3 min heat shock was optimal in reducing growth inhibition caused by 2 days of chilling. The activity of five antioxidant enzymes [superoxide dismutase (EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), glutathione reductase (GR; EC 1.6.4.2), and guaiacol peroxidase (GPX; EC 1.11.1.7)] and DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging activity were measured in heat-shocked and/or chilled radicles. Heat shock slightly increased the activity of CAT, APX, and GR and suppressed the increase of GR and GPX activity during recovery from chilling. Increased CAT, APX, GR, and DPPH-radical scavenging activity and protection of CAT activity during chilling appear to be correlated with heat shock-induced chilling tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号