首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The turnover of fine‐roots is a crucial component for the input of C to the soil. The amount of root litter input is depending on estimates of turnover times from different techniques. Turnover times from fine‐root cameras (minirhizotrons) often yield 75% higher root litter input estimates than turnover times estimated with the bomb‐radiocarbon signature of fine roots. We introduce a generic framework for the analysis of fine‐root 14C with different survival functions. So far, mostly an exponential function has been used to estimate the turnover time and mean age of fine roots. In the context of the introduced survival function framework we clarify the terms turnover time, mean residence time, mean longevity, and mean age, which are commonly used in studies of root turnover. Using a unique time series of fine‐root 14C (Fröberg 2012), we test if survival functions other than the exponential function are better in accordance with turnover‐time estimates commonly found with other methods. A survival function that corresponds to a two‐pool model was best in agreement with minirhizotron‐based estimates (mean residence time of 1.9 y). We argue that using fine‐root 14C and minirhizotron time‐to‐death data together would give the best constraints on fine‐root turnover. At the same time this could allow quantifying systematic biases inherent to both techniques.  相似文献   

2.
The minirhizotron technique is a non-destructive method to evaluate fine roots, which converts two-dimensional image data to three- dimensional root biomass data. Recently, conversion factors in soils at 10-cm depth intervals successfully estimated fine root biomass using image data from the minirhizotron method. However, this technique was conducted only at one forest site and did not consider different vegetation types. Therefore, the objective of this study was to verify a method for calibration of minirhizotron data with the core sampling values obtained by direct measurement of root biomass in wetland ecosystems among three vegetation types. Evaluations by minirhizotron technique and soil-core sampling were made at 30-cm soil depth in a cool-temperate brackish marsh in northern Japan. Linear regression was examined between root volume and weight of fine roots in soil core samples, and the fine root biomass on minirhizotron tubes was calculated from their length and diameter. The technique was well adapted for vegetation types dominated by Phragmites australis, Juncus yokoscensis, and Miscanthus sinensis and Cirsium inundatum. Compared with the fine root biomass estimated by the core sampling method, fine root biomass estimated by the minirhizotron method was overestimated in the 0–10-cm layer. Further, we determined conversion factors based on the ratio of the fine root biomass by the core sampling method to that by the minirhizotron tubes. Estimation of the fine root biomass using the conversion factors for each 10-cm soil depth was well adapted in P. australis vegetation and J. yokoscensis vegetation types as a forest ecosystem; meanwhile, M. sinensis and C. inundatum vegetation types were not well adapted. This study suggests that the minirhizotron technique is available to estimate fine root biomass of single-species dominated vegetation in the brackish marsh using conversion factors for each 10-cm depth.  相似文献   

3.
In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15 cm depth (at a depth of 5 cm below surface up to –5°C) from January to April 2006, while the snow‐covered control plots never reached temperatures < 0°C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic‐C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)V and the microbial‐sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow‐removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water‐stress indicator (PLFA [cy17:0 + cy19:0] / [16:1ω7c + 18:1ω7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.  相似文献   

4.
Soil drought influences the C turnover as well as the fine‐root system of tree saplings. Particularly during the period of establishment, the susceptibility to drought stress of saplings is increased because of incompletely developed root systems and reduced access to soil water. Here, we subjected beech saplings (Fagus sylvatica L.) to different levels of drought stress. Beech saplings were planted in rhizotrons, which were installed in the soil of a Norway spruce forest before bud burst. Soil moisture was manipulated in the following year during May to September. We measured photosynthetic net CO2 uptake, volume production of fine roots, and rhizosphere respiration during the growing season. Biometric parameters of the fine‐root system, biomass, and nonstructural carbohydrates were analyzed upon harvest in October. Photosynthesis and rhizosphere respiration decreased with increasing drought‐stress dose (cumulated soil water potential), and cumulative rhizosphere respiration was significantly negatively correlated with drought‐stress dose. Fine‐root length and volume production were highest at moderate soil drought, but decreased at severe soil drought. The proportion of fine‐roots diameter < 0.2 mm and the root‐to‐shoot ratio increased whereas the live‐to‐dead ratio of fine roots decreased with increasing drought‐stress dose. We conclude that the belowground C allocation as well as the relative water‐uptake efficiency of beech saplings is increased under drought.  相似文献   

5.
微根管法监测膜下滴灌棉花根系生长动态   总被引:3,自引:2,他引:1  
为了精细监测膜下滴灌条件下棉花(Gossypium hirsutum L.)细根生长形态,于2014年在巴州灌溉试验站开展大田试验,采用微根管法原位监测棉花根系生长,并与传统网格法作对比。分析棉花根系生长动态,构建微根管法测定的形态参数与网格法所测定形态参数的回归模型。结果表明:花期到吐絮期,利用微根管监测10~20 cm处根系生长得到的棉花根长更新速率为1.844 mm/d,期间棉花老根不断死亡和分解。微根管法与网格法测得的根系深度为50 cm,根长密度随着深度增加先增大后减少,根长密度在20~30 cm处最大。两种方法监测得的根长密度具有较好的线性相关,由微根管法测得的剖面根长密度,可通过线性回归方程换算得到实际的体积根长密度。利用微根管法能可靠地监测棉花根系的生长动态变化,今后的研究可进一步加大微根管监测范围和频率,精细监测细根生长全过程,通过构建根系生长模型分析膜下滴灌条件下棉花根系生长时空动态。  相似文献   

6.
Agricultural soil landscapes of hummocky ground moraines are characterized by 3D spatial patterns of soil types that result from profile modifications due to the combined effect of water and tillage erosion. We hypothesize that crops reflect such soil landscape patterns by increased or reduced plant and root growth. Root development may depend on the thickness and vertical sequence of soil horizons as well as on the structural development state of these horizons at different landscape positions. The hypotheses were tested using field data of the root density (RD) and the root lengths (RL) of winter wheat using the minirhizotron technique. We compared data from plots at the CarboZALF‐D site (NE Germany) that are representing a non‐eroded reference soil profile (Albic Luvisol) at a plateau position, a strongly eroded profile at steep slope (Calcaric Regosol), and a depositional profile at the footslope (Anocolluvic Regosol). At each of these plots, three Plexiglas access tubes were installed down to approx. 1.5 m soil depth. Root measurements were carried out during the growing season of winter wheat (September 2014–August 2015) on six dates. The root length density (RLD) and the root biomass density were derived from RD values assuming a mean specific root length of 100 m g?1. Values of RD and RLD were highest for the Anocolluvic Regosol and lowest for the Calcaric Regosol. The maximum root penetration depth was lower in the Anocolluvic Regosol because of a relatively high and fluctuating water table at this landscape position. Results revealed positive relations between below‐ground (root) and above‐ground crop parameters (i.e., leaf area index, plant height, biomass, and yield) for the three soil types. Observed root densities and root lengths in soils at the three landscape positions corroborated the hypothesis that the root system was reflecting erosion‐induced soil profile modifications. Soil landscape position dependent root growth should be considered when attempting to quantify landscape scale water and element balances as well as agricultural productivity.  相似文献   

7.
A 3‐year field experiment was carried out to determine the significance of root‐growth characteristics contributing to N‐uptake efficiency of two oilseed rape (Brassica napus L.) cultivars differing in N efficiency. Two N treatments were applied, and the core and minirhizotron techniques were used to study root‐length density and number of living roots, respectively. Fertilizer‐N supply increased shoot dry matter, grain yield, total N uptake, and total soil Nmin contents particularly in the top soil. Although significant differences occurred in all parameters between years, the interactions between years and cultivars were mostly not significant. Compared to cv. Capitol, the N‐efficient cv. Apex was characterized by a higher grain yield at N0 and a higher N uptake during reproductive growth. This genotype also had a higher root‐length density and more living fine roots particularly in the topsoil layer. Root growth of this genotype was especially high from beginning of shooting to beginning of flowering, while shoot growth and N uptake during vegetative growth were comparatively low. Our results suggest that N‐efficient cultivars can be characterized by a high investment in root growth during the vegetative stage with a comparatively slow shoot growth and N‐uptake rate until beginning of flowering, which, however, continues during reproductive growth. High root production only during reproductive growth seems to be less effective to achieve high N efficiency, because this may lead to a shortage of assimilates for seed filling. High root‐length density at vegetative stages may thus be advantageous for N uptake and reproductive growth and could be a useful morphological character for the selection and breeding of N‐efficient cultivars.  相似文献   

8.
徐莹    邓磊   《水土保持研究》2023,30(3):181-187
[目的]揭示祁连山青海云杉中龄林细根分布与土壤环境的互作关系,明晰不同混交度下土壤养分对细根发育的贡献因子,为祁连山天然林抚育经营提供理论依据。[方法]采用根钻法对混交度为0,0.2,0.4,0.6的青海云杉中龄林进行细根取样,揭示不同土层细根形态特征,剖析了与土壤理化性质的关系。[结果]细根生物量集中分布在0—20 cm土层,0—20 cm的土层细根生物量密度、根长密度、根表面积密度、比根长、比表面积显著高于20—40 cm土层(p<0.05),混交度0.4的林分各土层细根形态指标最大。4种混交度林分各土层中全氮含量、全磷含量、速效钾含量、有机质含量随土层深度的增加呈降低趋势,且各土层均以混交度0.4为最高。细根的总生物量密度、根长密度、根表面积密度、比根长、比表面积与0—40 cm土层中土壤全氮、全磷、碱解氮、速效磷、有机质、速效钾含量呈正相关,与全钾呈负相关关系。[结论]细根生物量密度变化主要受土壤全氮含量的影响,混交度0.4的青海云杉中龄林有较强的细根贡献和较好土壤肥力,更有利于群落稳定效益的发挥。  相似文献   

9.
Soils play a critical role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecosystem in terms of water and nutrient uptake. In this study the effects of thinning and litter fall removal on fine root production and soil organic carbon content were examined in 20-year-old Masson pine (Pinus resinosa) plantations in Huitong, Hunan Province of China in the growing seasons of 2004 and 2005. The results showed that fine root production was significantly lower in the thinning plots than in the control plots, with a decrease of 58% and 14% in 2004 and 2005 growing seasons, respectively. Litter fall removal significantly increased fine root production by 14% in 2004. Soil temperature (Tsoil) and soil moisture (Msoil) were higher in the thinning plots than those in the controls. Litter fall removal had significant effiects on Tsoil and Msoil. Soil organic carbon content was higher in the thinning plots but was lower in the plots with litter fall removal compared with that in the controls. Our results also indicated that annual production of fine roots resulted in small carbon accumulation in the upper layers of the soil, and removal of tree by thinning resulted in a significant increase of carbon storage in Masson pine plantations.  相似文献   

10.
Information related to the growth of fine roots is important for understanding C allocation in trees and the mechanisms of C cycling in ecosystems. Observations using a camera or scanner embedded in the soil enabled us to obtain continuous images of fine‐root‐growth dynamics. However, these methods are still labor‐intensive because the image analysis has to be conducted manually. We developed an automated method for tracking movement or elongation of fine roots using a sequence of scanner images. We also show how data obtained with these methods can be used for calculating fine‐root behavior. Two A4‐size scanners were buried in a mixed forest in Japan and images were taken continuously from within the soil. We preprocessed these images by extracting the fine‐root area from the images and developed an automated calculation plug‐in we named A‐root for tracking growth movement of the tips of fine roots. A‐root and manual‐tracking results were compared using the same images. The results show the A‐root and manual‐tracking methods yielded similar levels of accuracy. The average growth rate of 17 fine roots tracked using the program was 0.16 mm h–1. The observation of the direction of growth in fine roots showed the direction may be influenced by the original root's growth where the fine roots branched, distribution of soil particles, other roots, and the force of gravity. The A‐root analysis also suggested there may be an interaction between speed of growth and changes in direction of growing fine roots.  相似文献   

11.
For this century, an increasing frequency of extreme meteorological boundary conditions is expected, presumably resulting in a changing frequency of freezing and thawing of soils in higher‐elevation areas. Our current knowledge about the effects of these events on trace‐gas emissions from soils is scarce. In this study, the effects of freeze–thaw events on the fluxes of the trace gases CO2, N2O, and NO between soil and atmosphere were investigated in a laboratory experiment. Undisturbed soil columns were collected from a mature Norway spruce forest in the “Fichtelgebirge”, SE Germany. The influence of freezing temperatures (–3°C, –8°C, –13°C) on gas fluxes was studied during the thawing periods (+5°C) in three freeze–thaw cycles (FTCs) and compared to unfrozen controls (+5°C). Two different types of soil columns were examined in parallel—one consisting of O layer only (O columns) and one composed of O layer and mineral soil horizons (O+M columns)—to quantify the contribution of the organic layer and the top mineral soil to the production or consumption of these trace gases. During the thawing period, we observed increasing emissions of CO2, N2O, and NO from the spruce forest soil, but the cumulative emissions of these gases did mostly not exceed the level of the controls. The results show that the O layers were mainly involved in the gas production. Severe soil frost increased CO2 fluxes during soil thawing, whereas repetition of the freeze–thaw events decreased CO2 fluxes from the thawing soil. Fluxes of N2O and NO were neither influenced by freezing temperature nor by freeze–thaw repetition. Stable‐isotope analysis indicated that denitrification was mostly responsible for the N2O production in the FTC columns. Furthermore, isotope data demonstrated a consumption of N2O through microbial denitrification to N2. It was further shown, that production of N2O also occurred in the mineral horizons. The NO emissions were mainly driven by increasing soil temperature during thawing. In this freeze–thaw experiment up to 20 times higher NO than N2O fluxes were recorded. Our results suggest that topsoil thawing has little potential to increase the emissions of CO2, N2O, and NO in spruce forest soils.  相似文献   

12.
Under temperate climate, the frequency of extreme weather events such as intensive freezing or frequent thawing periods during winter might increase in the future. It was shown that frost and subsequent thawing may affect the fluxes of C and N in soils. In a laboratory study, we investigated the effect of frost intensity and repeated freeze–thaw cycles on the quality and quantity of soil organic matter (SOM) in a Haplic Podzol from a Norway spruce forest. Undisturbed soil columns comprising O layer and top mineral soil were treated as followed: control (+5°C), frost at –3°C, –8°C, and –13°C. After a 2‐week freezing period, frozen soils were thawed at +5°C and irrigated with 80 mm water at a rate of 4 mm d–1. Lignin contents were not significantly affected by repeated freeze–thaw cycles. Phospholipid fatty acid (PLFA) contents decreased in the mineral soil, and PLFA patterns indicate that fungi are more susceptible to soil frost than bacteria. Amounts of both plant and microbial sugars generally decreased with increasing frost intensity. These changes cannot be explained by increased mineralization of sugars or by leaching with DOM nor by a decreased microbial activity and, thus, sugar production with increasing frost intensity. Also physical stabilization of sugars due to frost‐induced changes in soil structure can be ruled out as sugar extraction was carried out on ground bulk soil. Therefore, the only possible explanation for the disappearance of plant and microbial sugars upon soil freezing are chemical alterations of sugar molecules leading to SOM stabilization.  相似文献   

13.
Abstract

Accurate estimates of soybean root productivity are needed to estimate carbon (C) inputs to soil. Soil excavation and coring methods were compared where soybean was subject to ambient, elevated carbon dioxide (CO2) and ozone (O3) treatments. We evaluated within‐season changes in biomass and shoot–root production, labor requirements, and damage to plots. Estimates of root biomass were similar, but excavation‐based estimates required less total time. Core‐based estimates provided similar levels of precision, allowed sampling of deeper depths, and reduced both plot disturbance and the amount of effort devoted to tasks performed in the field. Correlations between root and shoot biomass were weak and varied with time of sampling. Collectively, results suggest caution should be exercised when making predictions about C allocation to roots or soils based on shoot–root ratios or when scaling up field‐based findings to predict larger or longer‐scale trends.  相似文献   

14.
Shallow soil A horizon (topsoil) caused by soil erosion and soil movement from cultivation is known to reduce soil and crop productivity. The reduction may be related to limitation of root growth. A field study was conducted to investigate the effects of topsoil thickness on distributions of root density and growth. Soybeans [Glycine max (L.) Merr.] were grown on plots of Mexico silt loam (fine, montmorillonitic, mesic Mollic Endoaqualfs) with topsoil thicknesses of 0, 12.5, 25.0, and 37.5 cm above the Bt horizons. Root density was measured 60 and 90 days after planting using a minirhizotron video‐camera system. Root density was significantly reduced as topsoil thickness decreased from 37.5 to 0 cm. Mean density and net change of the density across profile between 30 and 60 days of growth had a linear function of topsoil thickness. The reduction and lower activity induced by shallow topsoil were attributed to detrimental properties in the Bt horizons. Root distribution pattern and rooting depth were not significantly affected by topsoil thickness. The roots appeared to be accumulated on the upper layers of the Bt horizons. Roots growing in thicker topsoil were more active than roots growing without topsoil. High soil moisture content during the growing season may mitigate the detrimental effects of shallow topsoil, inhibit root penetration, and enhance root activity.  相似文献   

15.
土壤水分胁迫对红砂幼苗细根形态和功能特征的影响   总被引:2,自引:1,他引:1  
通过盆栽人工模拟干旱试验,研究了土壤水分胁迫对红砂幼苗细根形态及功能的影响。结果表明:(1)随胁迫程度的加剧红砂幼苗细根直径和体积呈减小趋势,而根长、比根长、表面积、比表面积均呈增大趋势,表明在胁迫条件下,红砂幼苗细根可通过根长、比根长、表面积、比表面积的增加与直径和体积的减小来适应逆境胁迫。随根序的升高红砂幼苗细根直径呈增大趋势,而根长和比根长表现出减小趋势,比表面积呈先升高后降低的趋势。(2)随胁迫程度的加剧红砂幼苗细根全C含量呈降低趋势,而全N含量先呈明显的降低趋势,后呈升高趋势,表明在中度胁迫下红砂幼苗细根呼吸作用明显降低。随根序的升高红砂幼苗细根全C含量呈增加趋势,而全N含量呈下降趋势,表明红砂幼苗较低级根序具有较强的呼吸作用与代谢活性。(3)红砂幼苗细根根长与全C含量之间呈极显著正相关关系;直径与全C含量之间呈显著正相关关系;比根长与C含量呈显著负相关关系。  相似文献   

16.
Temporal changes in soil CO2‐efflux rate was measured by a canopy‐gap method in a Populus euphratica forest located at the both sides of Tarim River banks (W China). Soil CO2‐efflux rates in situ were correlated with key soil biotic (e.g., fungal, bacterial, and actinomycetes populations) and abiotic (e.g., soil moisture, temperature, pH, organic C) variables. Two kinds of measurement plots were selected: one under the crown of a living Populus euphratica tree and the other under a dead standing Populus euphratica tree. Diurnal variations in soil respiration in these plots were measured both before and after the occurrence of the first frost. Soil respiration of the dead standing Populus euphratica (Rd) was assumed to be a measure of heterotrophic respiration rate (Rh), and root respiration rate (Rr) was estimated as the difference between soil respiration under living (Rl) minus soil respiration under dead standing Populus euphratica. Daily variation of Rr contribution to the total soil respiration in Populus euphratica forests were analyzed before and after the frost. The contribution of root respiration to total soil respiration before and after frost varied from 22% to 45% (mean 30%) and from 38% to 50% (mean 45%), respectively. In addition, Rh was significantly correlated with soil temperature both before and after frost. In contrast, Rr was not significantly correlated with soil temperature. Change in Q10 of Rr was different from that of Rh from before the frost to after the frost. Variation of Q10 of Rr from before the frost to after the frost was larger than that of Q10 of Rh. Thus, the results indicate that different soil respiration models are needed for Rr and Rh because different factors control the two components of soil respiration.  相似文献   

17.
ABSTRACT

To investigate fine root dynamics after thinning (50% of standing tree) and liming calcium magnesium carbonate[CaMg(CO3)2] 2 Mg ha? 1, a 2-year study was performed in 40-year-old pitch pine (Pinus rigida Mill.) and 44-year-old Japanese larch (Larix leptolepis Gord.) plantations in central Korea. Mean total fine root mass (kg ha? 1± SE) in the control, thinned, and limed plots were 1234 ± 32, 1346 ± 67, and 1134 ± 40 for the pitch pine plantation and 1655 ± 48, 1953 ± 58, and 1868 ± 70 for the Japanese larch plantation, respectively. Live fine root mass of pitch pine at 0-10 cm soil depth decreased after thinning and liming. In addition, liming significantly increased dead fine root mass of Japanese larch. Fine root production (kg ha? 1 yr? 1± SE) in the control, thinned and limed plots was 1108 ± 148, 2077 ± 262, and 1686 ± 103 for the pitch pine plantation and 1762 ± 103, 1886 ± 277, and 2176 ± 271 for the Japanese larch plantation, respectively. Fine root turnover rates increased after liming for both plantations. Fine root nitrogen (N) and phosphorus (P) concentrations of Japanese larch (1.012% of N and 0.073% of P) were higher than those of pitch pine (0.809% of N and 0.046% of P) in the control. Also N and P inputs into soil through fine root turnover increased after treatments. Results indicated that comparing fine root dynamics among forest types and after forest management practices might influence differences in soil fertility and underground nutrient cycling.  相似文献   

18.
柠条锦鸡儿细根表面积密度对土壤水分空间分布的响应   总被引:1,自引:1,他引:0  
为研究柠条锦鸡儿(Caragana microphylla)细根与土壤水分的空间关系,以内蒙古农牧交错带10 a生柠条锦鸡儿细根为研究对象,对细根表面积密度与土壤含水率之间的关系进行了初步探讨。分别对柠条锦鸡儿细根和土壤水分的空间分布情况进行研究发现,垂直和水平土层方向各标准地柠条锦鸡儿细根表面积密度与土壤含水率均呈极显著相关,相关系数均大于0.65(P0.01)。经回归分析建立柠条锦鸡儿细根表面积密度与土壤含水率之间的关系模型并对模型进行验证,验证结果发现该模型可以很好地描述两者之间的关系(R~2=0.84,P0.01)。撂荒地土壤含水率比柠条地高71%,研究区柠条地出现至少200 cm的土壤干层,部分土层接近凋萎湿度,柠条生长受阻。研究结果对于干旱区人工柠条林的栽植管理具有重要意义,可为北方农牧交错带生态环境建设及植被恢复提供理论依据。  相似文献   

19.
Fine root (diameter < 2 mm) production, mortality and decomposition have been poorly estimated at ecosystem scales due to technical limitations. The soil coring method can accurately assess fine root biomass and necromass, but the concurrent growth, death and decomposition processes were not reasonably assessed during the sampling period, leading to greatly biased rate estimates. We developed a dynamic-flow method with two variations to address these processes by combining the soil coring method with an improved decomposition experiment. For a certain interval i (1 ≤ i) in the growing season, the dead fine roots were classified into fine roots dying before the start of interval i (GⅠ-i) and those dying during interval i (GⅡ-i). The decompositions of GⅠ-i and GⅡ-i were separately quantified and integrated into a modified mass balance model to estimate the production, mortality and decomposition. An example study conducted in a secondary Mongolian oak (Quercus mongolica Fischer ex Ledebour) forest showed that fine root production, mortality and decomposition were greatly underestimated by conventional soil coring methods failing to address the simultaneous growth, death and decomposition processes but overestimated by the method in which the decompositions of GⅠ-i and GⅡ-i were not separately determined and the decomposition rate was assumed to be constant. The dynamic-flow method greatly improved the accuracy of fine root estimates and can be widely applied to forests.  相似文献   

20.
Preferential flow is expected to provide preferential channels for plant root growth and variations in soil water flow, but few studies were conducted to imply the impacts of these changes, particularly for preferential flow in stony soils. This study aimed to characterize soil water flow and plant root distribution in response to preferential flow paths and quantitatively describe the relation between plant root distribution and soil water flow. Field dye‐tracing experiments centered on experimental plants were conducted to determine the root length density and soil water flow process. Laboratory analyses were performed to characterize changes in the relative concentration of the accumulated effluent and the degree of interaction between plant roots and soil water flow. The amount of fine plant roots with preferential flow paths decreased with increasing soil depth for all experimental plots. The largest plant roots were recorded in the upper soil layers to a depth of 20 cm. The relative concentration of the accumulated effluent increased with time and decreased with soil depth under saturated soil conditions, whereas a distinct early turning point for the relative concentration of the accumulated effluent was observed in the 0–20‐cm soil columns, and the relative concentration of the accumulated effluent initially decreased and then increased with time under unsaturated soil conditions. This study provides quantitative information with which to characterize the interaction between plant roots and soil water flow in response to preferential flow paths in soil–plant–water systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号