首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
The Pleistocene volcanic paleosols of Armenia and Mexico combine the features of both arid and humid pedogeneses. They were studied in order to reconstruct the environmental conditions during the period of the initial settlement of humans in these areas. The main attention was paid to the micromorphological analysis of the pedogenic features. The pedocomplexes studied in Armenia have been forming since the Early Pleistocene. They bear evidences of humid (weathering, clay illuviation, and gleying) and arid (calcification) pedogeneses alternating in different soil layers and pointing to climatic cycles. The nonuniform lithology of the soil profiles is related to pulsating volcanic activity. Mexican paleosols of the Late Pleistocene period are similar to the lower layers of the soils in Armenia with respect to the features characteristic of the humid and arid phases of pedogenesis. This allows us to suggest that the early stages of the formation of the Armenian pedocomplex proceeded under warmer paleoclimatic conditions similar to those of a tropical climate. It is shown that the arid pedogenesis may erase the features produced during the previous stage of humid pedogenesis. The studied paleosols are characterized by the destruction of the features inherited from the humid phase (the clayey groundmass and illuviation coatings) by the newly forming calcite. Paleopedological records point to the fact that the paleoenvironmental conditions during the periods of the initial settlement of humans in both regions differed significantly from the modern environmental conditions in these regions.  相似文献   

2.
《Geoderma》1987,39(4):293-306
Red clay layers interbedded with basalt flows of Pleistocene age in the Golan Heights have been described and sampled for analyses. Data for these layers have been compared with those for modern soils of the locality. Because the layers have pedogenic features and most also contain quartz of assumed aeolian origin, they are considered to by paleosols even though they are low in organic matter. Smectite is the dominant clay mineral in the paleosols, as it is in modern soils of the area. At the same time, minerals characteristic of hydrothermal activities are absent. Low proportions of kaolinite as compared to those of modern soils are attributed to weathering under a drier climate in the Middle Pleistocene (approximately 0.7–1.6 m.y. B.P.) than that of the present. The paleosols are dense, have strong columnar structure and have well expressed mangans. These features, as well as the dehydration of iron oxides, are attributed to contacts with molten rock that become the basalt flows.  相似文献   

3.
Paleosols buried under kurgans dating back to the Yamnaya, Catacomb, and Post-Catacomb cultural epochs of the Bronze Age (4600–3900 BP) on the territory of the Stavropol Upland (the North Caucasus) in the area occupied by vertic chernozems were studied. It was found that solonchakous and deeply solonchakous and solonetzic chestnut soils and solonetzes proper predominated in the study area during the Bronze Age. The solonetzic process was the leading pedogenetic process in the automorphic paleosols of the second half of the third millennium BC. The vertic features were weakly developed in the automorphic paleosols; they were better manifested in the paleosols developed on the floodplains. The paleosol data were used to reconstruct the environmental conditions in the region during the Bronze Age. The climatic conditions of that period were more arid and with less sharp contrasts between wet and dry seasons in comparison with the modern climate.  相似文献   

4.
Micromorphological examination of the paleosols (50–10 ka) developed in alluvial fan deposits of the NW Himalayas and the bordering polygenetic soils (mainly Holocene) of the Gangetic Plains has been used to differentiate the pedosedimentary features indicating climatic changes during late Quaternary time. The paleosols within rapidly aggrading sediments of the alluvial fans of the Dehradun valley resulted in response to the reduced rate of sedimentation and climatic changes and correspond to the MIS3 and MIS2 stages. Distinctive micromorphic features of these paleosols provided the details of the prevalent pedogenesis in response to the paleoclimatic changes during 50 ka. Microfabrics of these paleosols show reorganization of the pedality from massive and/or subangular blocky to platy and prismatic structures, strong to very strong mobilization of the plasma, different types of textural pedofeatures along with faunal activities. These pedofeatures are indicative of cold-humid climate with subsequent change to even colder but drier conditions during the last Glaciation. Comparison of the micromorphological characters of the paleosols of the NW Himalayas and the polygenetic soils of the Gangetic Plains show the same degree of soil development indicating 5–10 ka pedogenic intervals in alluvial fans of the Dehradun Valley. However, the difference in their pedofeatures is attributed to different pedogenic environments. The paleosols of the Dehradun Valley show predominance of the illuvial features with superposed impure silty clay on earlier clay pedofeatures and banded clay fabric features without any pedogenic calcium carbonate. The bordering Gangetic Plains are covered with polygenetic soils developed on stable surfaces and are < 13.5 ka. These surficial soils developed during the period marked by deglaciation and correspond to MIS1 stage. These are defined by the juxtaposition of different illuvial pedofeatures along with pedogenic calcium carbonate. This study suggests that formation of the paleosols in NW Himalayas was mainly controlled by warmer intervals during the last glaciation and the movement along the adjacent thrusts. While fluctuating climate punctuated with humid–semiarid–humid conditions played a major role during the formation of soils on the Gangetic Plains in Holocene that favoured illuviation, calcification and dissolution of pedogenic carbonates in the polygenetic soils.  相似文献   

5.
古土壤形成于地质历史时期的地球表面,直接记录了其形成时地球陆地表层的环境信息.以四川盆地中生代古土壤为研究对象,通过古土壤的形态与微形态、矿物组成、颗粒组成以及地球化学等成土特征的观察与分析,开展土壤发生学特征概述与分类研究并探讨古土壤指示的环境意义.结果表明:(1)四川盆地中生代古土壤具有生物遗迹、成壤碳酸盐结核、土...  相似文献   

6.
Soils and sediments composing Tell Körtik Tepe (Epipaleolithic, Turkey) and Tell Yunatsite (Chalcolithic (Eneolithic), Bulgaria) have been studied with the aim to gain a better insight into their microfabrics, determine the composition of anthropogenic artifacts, and, on this basis, to analyze similarities and distinctions between these objects and the modern soils of urban areas. The methods of micromorphology, scanning electron microscopy with an energy dispersive X-ray microanalyzer, X-ray fluorometry, and other techniques to determine the chemical and physical properties of the soils and sediments have been applied. Two paleosols have been identified in Tell Yunatsite with a total thickness of 9 m: the paleosol buried under the tell and the paleosol in its middle part. Sediments of Tell Körtik Tepe have a total thickness of up to 5 m; their accumulation began at the end of Pleistocene over the surface of buried paleosol. The cultural layer of the tells consists of construction debris mainly represented by a mixture of clay and sand and of domestic wastes with the high content of phosphorus. The major source of phosphorus is calcium phosphate (apatite) of bone tissues. The abundance of various anthropogenic materials in the sediments is clearly seen in thin sections. Even in the paleosols developed within the cultural layer (the mid-profile paleosol in Tell Yunatsite), the amount of microinclusions of bone fragments, charcoal, and burnt clay (ceramics) is very high. Micromorphological data indicate that up to 50% of the layered material filling an Epipaleolithic construction in Tell Körtik Tepe consists of the anthropogenic inclusions: bone fragments, charcoal, etc. The features of pedogenic transformation are present in the sediments. Such sediments can be classified as synlithogenic soils similar to the modern Urbic Technosols. It is shown that the formation of paleosols and sediments of Tell Körtik Tepe took place under extreme environmental conditions—arid climate of the latest Pleistocene climate cooling phase (the Younger Dryas, Tell Körtik Tepe)—and intensive anthropogenic loads (tells Körtik Tepe and Yunatsite).  相似文献   

7.
Pedogenic carbonates in arid and semi-arid regions of the world have a great significance as palaeoecological and palaeoclimatological indicators and form a major pool in the carbon cycle. We analysed the ultra-microfabric and the stable isotope composition of C and O in pedogenic carbonates in colluvial soils derived from limestone in an arid region of central Iran. Our objective was to determine the conditions for the formation of soft pedogenic carbonate nodules and their co-existence with palygorskite in the palaeo-argillic horizon. Scanning electron microscopy revealed that the calcite aggregates were matted with palygorskite. Ultra-microtome cuts, examined using transmission electron microscopy, provided more detailed information about the fundamental particle association of secondary carbonates and palygorskite. Although less abundant, other silicate clays were detected in both the acid-insoluble clay fractions and in ultra-cuts, mostly in fine clay size, suggesting the engulfing of palygorskite by growing calcite or illuviation of palygorskite during or after formation of the calcite. Coatings of illuvial clays on calcite crystals support the hypothesis that palygorskite was trapped by pedogenic carbonate when the climate was wetter than it is today to form an argillic horizon. However, electron microscopic evidence of the occurrence of fibres on the immediate pedogenic carbonate particle surfaces suggests the in situ formation of palygorskite. The δ13C and δ18O values of pedogenic carbonates suggest that these carbonates were formed in an environment with more available moisture and more C4 plants than now.  相似文献   

8.
Buried soil chronosequences under a series of Early Alan kurgans (burial mounds) in the Vladikavkazkaya depression of the Northern Caucasus, Russia, were studied to derive a high-resolution paleoclimatic record from the variations of the selected paleosol properties. Haplic Chernozems occur under kurgans and on the actual land surface. Three kurgan cemeteries, Brut 1, Brut 2 and Beslan, dated from the end of the second to the beginning of the seventh centuries AD have been studied. The cemeteries are situated close to each other under similar lithological and geomorphological conditions but differed in the paleosols' preservation. The Brut 2 site has been recently altered due to annual ploughing and intensive irrigation for more than 30 years. The background soils and paleosols of the Brut 2 site have been compared with synchronous soils of non-irrigated Brut 1 and Beslan sites to detect pedogenic properties that are less changed by irrigation and thus comprise the “soil memory”. Stronger black color of humus horizon, increase of humus content and decrease of humus δ13C values; clear signs of biological activity, absence of morphological and analytical signs of solonetz properties; diffused carbonate white soft spots in the Bca horizon and decreasing carbonate content are thought to be related to the comparatively humid climatic conditions in the region. On the contrary, relatively low humus content, tongue-like lower boundary of humus horizon, increase of humus δ13C values, morphological signs of solonetz properties together with high content of exchangeable Na, relatively large and clearly shaped carbonate white soft spots in the paleosols of the Brut 2 site, as well as increase of density, thickness of the carbonate pseudomicellium and high carbonate content in the upper part of profiles in the paleosols of the non-irrigated Brut 1 site are assumed to be xeromorphic features, indicating comparatively drier climatic conditions. The paleosols of the earliest chronointerval of burial (the end of the second to the beginning of the third centuries AD) demonstrate clear xeromorphic properties which indicate a relatively dry climate with a mean annual precipitation 50–100 mm less than today. The estimated duration of the period with such climatic conditions is thought to be not less than 100 years. In addition, those paleosols have some weak signs of humid conditions indicating that between the end of the first and the middle of the second centuries AD the climate was getting more moist, mean annual precipitation became equal or slightly higher than today. The paleosols buried in the first half of the fifth century AD again demonstrate the gradual enhancement of xeromorphic properties reflecting the next stage of droughts. Thus, the period with favourable humid climate when the Early Alan culture flourished in the Northern Caucasus was relatively short (about 400 years). Studying the detailed chronosequence in the non-irrigated Brut 1 site the records of intercentennial time scale soil properties variability produced by comparatively “fast” pedogenic processes typical for the steppe zone i.e., humus formation and accumulation, bioturbation, carbonate accumulation and transformation and solonetzization, have been provided.  相似文献   

9.
黄土高原古土壤成土过程的特异性及发生学意义   总被引:11,自引:2,他引:11       下载免费PDF全文
胡雪峰  鹿化煜 《土壤学报》2004,41(5):669-675
中国西北地区 ,从中新世以来就有持续不断的风尘沉积。这种风尘沉积作用即使在气候较为湿热的古土壤发育时期也未中断。黄土上土壤发生的独特性在于成土过程与风尘沉积的同步性。这种独特的成土过程使得土壤剖面深厚而均匀 ,常呈复合性状。古土壤与下伏黄土 ,不再是土壤与母质的关系 ;古土壤的真正母质应是成土过程中不断添加的风尘物质。古土壤中并不存在埋藏A层 ,对古土壤进行A、B、C等发生学层次的划分值得商榷。由于富含碳酸钙风尘物质的不断添入 ,成土作用强度受到不断削弱 ,绝大多数古土壤的成土作用强度未达到棕壤的发育强度。  相似文献   

10.
Red palaeosols of the late Pleistocene‐early Holocene, both buried and non‐buried, were studied recently in Sonora (NW Mexico) to reconstruct their pedogenesis as well as the palaeoenvironmental conditions. The alluvial palaeosol‐sedimentary sequence of the La Playa archaeological site is a key locality for the buried San Rafael palaeosol, which exhibits a 2Ah‐2Bw‐2BCk‐3Bgk profile and was defined as a Chromic Cambisol. Radiocarbon dates from pedogenic carbonates and charcoal set the soil formation interval between > 18 000 and 4300 calibrated years before present (cal. year BP). Micro‐morphological observations together with profile distribution of clay, carbonates, organic carbon, pedogenic iron oxides and rock magnetic properties indicated a strong eluvial‐illuvial redistribution of carbonates, moderate silicate weathering and gleying in the lower horizon. Although this soil was much more developed than the overlying syn‐sedimentary late Holocene Fluvisols, clay mineral composition and stable carbon isotope signatures of humus and carbonates were similar in both soils. We suggest that pedogenesis of the San Rafael palaeosol took place under a slightly more humid climate and relative geomorphic stability. This agrees with the regional palaeoclimate reconstruction, which indicates a moister climate during the Late Wisconsin glaciation (MIS 2). An abrupt termination of the San Rafael pedogenesis marked by disturbance and aridization features in the Ap horizon of the palaeosol could be linked to a global drought around 4200 years cal. year BP. Surface Chromic Cambisols in northern Sonora show similar pedogenetic characteristics to the buried red palaeosols of La Playa. They appear to be a relict component of the present day soil mantle.  相似文献   

11.
Paleosols of the S coastal plain of Israel were studied in a characteristic sequence situated in the Ruhama badlands area. At the upper part of the sequence, there is a Loessial Arid Brown Soil (Calciorthids), characteristic of the mildly arid climate of the area. The soil has two calcic horizons and four clayey layers alternating with four calcareous layers which are beneath them. Physical, chemical, and magnetic‐susceptibility data and micromorphological evidence indicate that each clayey layer together with the calcareous layer beneath it forms a single pedogenic unit. These units are similar to modern Grumusolic soils (Xeric Paleargids or Xererthic Calciargids) that occur in the semiarid belt of the S coastal plain and develop on eolian‐dust parent material. The calcareous layers are in fact calcic horizons formed by leaching of the carbonates from the clayey layers and accumulated in the form of in situ carbonate nodules. The leaching of the carbonates is not complete; they were never completely leached in the past. This feature together with a typical brown color is also characteristic of the modern soils developed in the semiarid water regime of the area. The four superimposed paleosols represent four cycles. It is suggested that they were formed in two phases. During a dry environment, a short phase of rapid eolian‐dust accumulation prevailed, followed by a stable phase of soil development in a somewhat wetter climate. Dating by optically stimulated luminescence and previous dating by 14C in the area suggest that the upper two paleosol cycles belong to the Last Glacial period whereas the other two cycles are of an earlier age. The magnetic‐susceptibility values decrease with age and react different from temperate areas. Below the four cycles, two totally leached paleosols developed on sandy parent material occur. Both paleosols have a reversed magnetic polarity and are hence older than 780 ky BP. The upper one is a Brown Mediterranean soil, and the lower one is a Red Mediterranean soil. Thin‐section evidence suggests that they formed on terrestrial sand dunes.  相似文献   

12.
The mineralogical composition of the clay fraction and microfabrics of the cryogenic soil-loess sequences of the Middle and Late Pleistocene ages have been studied near the northern boundary of loess sediments on the East European Plain. Poorly ordered mixed-layered mica-smectitic minerals with different portions of smectitic layers predominate in the clay fraction; di-and trioctahedral hydromicas occupy the second place. The clay fraction also contains chlorite, clay-size quartz grains, and feldspars. Individual smectite is present in some of the samples. Interstadial chernozem-like paleosols are specified by the higher content of clay, the maximum concentration of smectitic layers in the mixed-layered minerals, and the presence of individual smectite. The clay fraction in the profiles of interglacial paleosols is sharply differentiated: in the eluvial part, it is depleted of smectite and enriched in kaolinite, hydromica, and clay-size quartz. These features allow us to suppose that interglacial paleosols were subjected to podzolization processes. According to the mineralogical indices, Middle Pleistocene paleosols can be differentiated into those subjected to lessivage (the Kamenskii interglacial paleosol) and podzolization (the Inzhavin interglacial paleosol).  相似文献   

13.
陈杰  龚子同 《土壤》2004,36(5):457-462
南极海洋气候区岩石风化和土壤形成过程中有明显的原生矿物蚀变作用和自生矿物成矿作用。本文以粗骨寒冻灰化土和石灰性扰动冻土两种有代表性的土壤类型为例,阐述了本区土壤矿物学特征。指出铝氧化物、绿泥石、碳酸盐是本区玄武岩类风化物质上发育土壤中的主要自生矿物类型,蒙脱石、特别是绿泥-蒙脱石混层矿物是南极海洋气候区土壤粘粒部分的特征矿物。不同土壤由于成土环境、成土过程、成土历史的差异,其土壤物质的矿物学组成、含量、形态、分布具有明显不同。土壤发生性铁氧化物与成土作用和土壤过程密切相关,其矿物类型、含量、形态特征、分布模式在不同的土壤中明显不同,是表征土壤发育程度与剖面形态表达的有效指标。  相似文献   

14.
[目的]理解和揭示深时古土壤的形成与演化有助于了解地球宜居性的形成与演化、促进土壤发生学理论的发展.[方法]以四川盆地晚中生代侏罗系和白垩系地层发育的古土壤为研究对象,通过对典型剖面的形态与微形态、矿物组成、颗粒组成以及地球化学等发生学特征的观察与分析,开展深时古土壤发生学特征与分类研究,并基于母质、气候、生物、地形和...  相似文献   

15.
Paleosol studies were conducted on the Moskva-Oka interfluve in the center of the East European Plain. Three paleosol complexes were distinguished in the sequence of soil-loess deposits: the Mezin complex of the Late Pleistocene age and the Kamensk and Inzhavin complexes of the Middle Pleistocene. Each of them consisted of the paleosols of two phases: the earlier interglacial phase and the later interstadial phase. In some cases, the paleosols of these two phases were separated by a thin layer of sediments with distinct features of cryoturbation. Paleosols of the interstadial phases are represented by the dark-colored humus-rich meadowchernozemic and chernozem-like prairie soils. During the interglacial periods in the Middle and Late Pleistocene, the soils with pronounced eluvial-illuvial differentiation of their profiles were developed under forest cenoses. Data on the morphology of paleosols; their physical, chemical, and physicochemical properties (particle-size distribution, pH, humus, carbonates, amorphous and crystallized iron oxides, etc.); and their micro-morphological features studied in thin sections prepared from undisturbed soil monoliths make it possible to judge the character of the pedogenesis during different epochs.  相似文献   

16.
K.W. Butzer 《CATENA》1979,6(2):157-166
The external geomorphic record of the Elandsbaai area includes a variety of slope rubbles, colluvia, littoral-eolian deposits, fossil beaches, cambic paleosols and calcretes. Cave deposits additionally include frost-weathered spall, eolian sands, and cultural components, in part dated by14C. Several mid-Pleistocene cold intervals led to large-scale frost-weathering of cliff faces and mobilization of 15° block rubbles or grèzes litées along footslopes. During the late Pleistocene cold intervals (deep-sea isotope stages 5b and 4) slope transfer was limited to stony colluvial deposits with some block talus, while frost-weathering was subdued. A +6m sea level with thermophile mollusca, marking isotope stage 5e, includes lagoonal gypsum, indicative of drier climate. Most eolian deposits were related to marine transgressions and the last major eolian phase occurred 12,500 – 8000 B.P., with probable parallels at the very beginning of isotope stages 7 and 5e. Deep cambic paleosols formed during part of isotope stage 7 and during 5c or 5d, while calcretes formed later during stage 7 and again during 5a. Middle Stone Age occupation is recorded during isotope stages 6 and 5b, while Later Stone Age settlement began well before 21,000 B.P., with a major shift from continental to littoral subsistence after 11,000 B.P..  相似文献   

17.
One of the significant features of loess-derived soils in Kansas is the occurrence of clay-rich subsurface horizons above a layer enriched with pedogenic carbonates. In order to examine the extent of clay increase and pedogenic carbonate enrichment in a precipitation gradient, ten soil profiles from three different precipitation regions were studied using micromorphological and mineralogical techniques. The precipitation gradient was divided into three groups: 400–550 mm, 550–750 mm, and 750–1100 mm regions. The objectives were to (1) understand the cause of clay orientation in clay-rich horizons (2) investigate the reasons for the clay increase, and (3) observe the interaction of clay and pedogenic carbonate accumulation features along a precipitation gradient in Kansas. Although clay films were identified in the field for soils in the 400–550 mm regions, illuvial clay films were not observed in thin section analysis. The clay accumulations mostly occurred as grain coatings. The rest of the clay accumulations observed were very thin, striated, and mostly associated with voids. The argillic horizons had a granostriated b-fabric, which indicates stress orientation of micromass caused by high shrink–swell activity. Thick and continuous illuvial coatings were observed in the buried horizons of paleosols. In the other two regions where precipitation exceeds 550 mm, illuvial clay coatings with strong orientation were observed along with thin and striated stress-oriented clay. Both types of clay orientations exceeded 1% of the cross-sectional area for the thin section. Although illuvial clay features and pedogenic carbonates were observed in all soils at approximately the same depth, complete obliteration of clay coatings was not observed in these horizons. In-situ weathering of biotite was one of the reasons for the clay increase in all soil profiles. In all soils studied, the clay increase and cause of clay orientation cannot be attributed to a single genetic process or event. Both illuviation and shrink–swell activity were involved in the orientation of clay. Although orientation of clay and pedogenic carbonates were observed in all soils at approximately the same depth, the decomposition of clay coatings was not observed in these horizons.  相似文献   

18.
High rates of pedogenesis on unconsolidated volcanic materials imply the accelerated generation of the soil memory. The purpose of this research was to extract the high resolution (centennial scale) paleopedological records from the Late Holocene paleosols of the El Chichón volcano formed during the last 2000 years. We studied buried monogenetic Andosols on the dated tephras and a pedocomplex formed from a set of thin ash layers deposited on older Acrisol derived from shales. Particle size distribution, DCB-extractable Fe, oxalate-extractable Fe, Al and Si, sand and clay mineralogy, organic carbon content and stable C isotope composition in humus were evaluated and interpreted as the elements of the soil memory. However, some differences were found in properties of two buried soils, especially in the kind of A horizons. We attribute such differences of individual Andosols to be caused by ancient human impact because it has been demonstrated that humid conditions persisted during the last 1300 years. Thus the drought that was supposed to provoke the collapse of the Maya civilization at the end of I millennium A.D., should have been a short-term event, below the resolution of this paleopedological record. The Andic Acrisol pedocomplex demonstrated the domination of the humid tropical climate over longer time intervals (probably major part of the Holocene) with possible minor dry episodes.  相似文献   

19.
《CATENA》2008,72(3):444-455
High rates of pedogenesis on unconsolidated volcanic materials imply the accelerated generation of the soil memory. The purpose of this research was to extract the high resolution (centennial scale) paleopedological records from the Late Holocene paleosols of the El Chichón volcano formed during the last 2000 years. We studied buried monogenetic Andosols on the dated tephras and a pedocomplex formed from a set of thin ash layers deposited on older Acrisol derived from shales. Particle size distribution, DCB-extractable Fe, oxalate-extractable Fe, Al and Si, sand and clay mineralogy, organic carbon content and stable C isotope composition in humus were evaluated and interpreted as the elements of the soil memory. However, some differences were found in properties of two buried soils, especially in the kind of A horizons. We attribute such differences of individual Andosols to be caused by ancient human impact because it has been demonstrated that humid conditions persisted during the last 1300 years. Thus the drought that was supposed to provoke the collapse of the Maya civilization at the end of I millennium A.D., should have been a short-term event, below the resolution of this paleopedological record. The Andic Acrisol pedocomplex demonstrated the domination of the humid tropical climate over longer time intervals (probably major part of the Holocene) with possible minor dry episodes.  相似文献   

20.
Rog B. Parsons 《Geoderma》1979,22(1):67-70
The Post-Diamond Hill Paleosol generally underlies Late Pleistocene sediments of the Willamette Formation. However, in numerous localities in the Willamette Valley, reddish gray clay paleosols either outcrop at the surface or occur within soil profile depth. Then they are part of soils of the modern landscape. Where the paleosols outcrop, the soils are mostly Typic Pelloxererts in the fine, montmorillonitic, mesic family. Because of the nature of the paleosols, these soils are poorly suited for nearly all intensive uses; the dominant use is hay and pasture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号