首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission.  相似文献   

2.
Abstract. Intensively managed grasslands are potentially a large source of N2O in the North Coast of Spain because of the large N input, the wet soil conditions and mild temperatures. To quantify the effect of fertilizer type and management practices carried out by farmers in this area, field N2O losses were measured over a year using the closed chamber technique. Plots received two types of fertilizer: cattle slurry (536 kg N ha–1) and calcium ammonium nitrate (140 kg N ha–1). N2O losses were less in the slurry treatment than after mineral fertilizer. This was probably due to high, short‐lived peaks of N2O encountered immediately following mineral N addition. In contrast, the seasonal distribution of N2O losses from the slurry amended plot was more uniform over the year. The greater N2O losses in the mineral treatment might have been enhanced by the combined effect of mineral fertilizer and past organic residues present from previous organic amendments. Weak relationships were found between N2O emission rates and soil nitrate, soil ammonium, soil water content and temperature. Better relationships were obtained in the mineral treatment than in the slurry plots, because of the wider range in soil mineral N. Water filled pore space (WFPS) was a key factor controlling N2O emissions. In the > 90% WFPS range no relationships were found. The best regressions were found for the mineral treatment in the 40–65% WFPS range, 49% of the variance being explained by soil nitrate and ammonium content. In the 65–90% WFPS range, 43% of the variance was explained by nitrate only, but the inclusion of soil ammonium did not improve the model as it did in the 40–65% WFPS range. This fact indicates that nitrification is likely to be an important process involved in N2O emissions at the 40–65% WFPS.  相似文献   

3.
4.
Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (^15N-(NH4)2SO4 and ^15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m^-2 h^-1 and 2.2 mg C m^-2 h^-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.  相似文献   

5.
When fertilizing with compost, the fate of the nitrogen applied via compost (mineralization, plant uptake, leaching, soil accumulation) is relevant both from a plant‐production and an environmental point of view. In a 10‐year crop‐rotation field experiment with biowaste‐compost application rates of 9, 16, and 23 t ha–1 y–1 (f. m.), the N recovery by crops was 7%, 4%, and 3% of the total N applied via compost. Due to the high inherent fertility of the site, N recovery from mineral fertilizer was also low. In the minerally fertilized treatments, which received 25, 40, and 56 kg N ha–1 y–1 on average, N recovery from mineral fertilizer was 15%, 13%, and 11%, respectively. Although total N loads in the compost treatments were much higher than the N loads applied with mineral fertilizer (89–225 kg Ntot ha–1 y–1 vs. 25–56 kg Ntot ha–1 y–1; both on a 10‐year mean) and the N recovery was lower than in the treatments receiving mineral N fertilizer, soil NO ‐N contents measured three times a year (spring, post‐harvest, autumn) showed no higher increase through compost fertilization than through mineral fertilization at the rates applied in the experiment. Soil contents of Norg and Corg in the plowed layer (0–30 cm depth) increased significantly with compost fertilization, while with mineral fertilization, Norg contents were not significantly higher. Taking into account the decrease in soil Norg contents in the unfertilized control during the 10 years of the experiment, 16 t compost (f. m.) ha–1 y–1 just sufficed to keep the Norg content of the soil at the initial level.  相似文献   

6.
Nitrous oxide emission was measured in laboratory incubations of an alluvial soil (58% clay, pH 7.4). The soil was amended with 40 mg N kg−1 as NaNO3 or NH4Cl, or with NaCl as a control. Each fertilization treatment was adjusted to three different water contents: constant 60% WHC (water-holding capacity), constant 120% WHC, and water content alternating between 60 and 120% WHC. During an 8-day incubation period N2O emission rates and inorganic nitrogen concentrations in soil (NH4+, NO2, NO3) were determined at regular intervals. In the control and after nitrate application small N2O emission rates occurred with only minor variations over time, and no differences between the water treatments. In contrast, with ammonium application N2O emission rates were much higher during the first two days of incubation, with peaks in the constant 60% WHC and 120% WHC at day 1 and in the changing-water treatment at day 2, when the first wet period (120% WHC) was completed. This N2O peak in the changing-water treatment was 4 to 9 times higher than with constant WHC and occurred when both, NH4+ and NO2 concentrations declined sharply. Thus, this N2O emission flush can be attributed to nitrifier denitrification. After the second rewetting of the NH4+-amended soil no further N2O emission peak was observed, being in accordance with small NH4+ and NO2 concentrations in soil at that time. The unexpectedly small N2O fluxes in the constant 120% WHC treatment after nitrate application were probably caused by the reduction of N2O to N2 under the prevailing conditions. It can be concluded that continuous wetting or flooding of a soil is an effective measure to reduce N2O emissions immediately after the application of NH4+ fertilizers.  相似文献   

7.
We investigated nitrous oxide (N2O) emission from an irrigated rice field over two years to evaluate the management of nitrogenous fertiliser and its effect on reducing emissions. Four forms of nitrogenous fertilisers: NPK at the recommended application rate, starch–urea matrix (SUM) + PK, neem‐coated urea + PK and urea alone (urea without coating) were used. Gas samples were collected from the field at weekly intervals with the static chamber technique. N2O emissions from different treatments ranged from 11.58 to 215.81 N2O‐N μg/m2/h, and seasonal N2O emissions from 2.83 to 3.89 kg N2O‐N/ha. Compared with other fertilisers, N2O emissions were greatest after the application of the conventional NPK fertiliser. Moreover, SUM + PK reduced total N2O emissions by 22.33% (< 0.05) compared with NPK during the rice‐growing period (< 0.05). The results indicate a strong correlation between N2O emissions and soil organic carbon, nitrate, ammonium, above‐ and below‐ground plant biomass and photosynthesis (< 0.05). The application of SUM + PK in rice fields is suitable as a means of reducing N2O emissions without affecting grain production.  相似文献   

8.
In this study emissions of N2O from arable soils are summarized using data from long‐term N2O monitoring experiments. The field experiments were conducted at six sites in Germany between 1992 and 1997. The annual N‐application rate ranged from 0 to 350 kg N ha—1. Mineral and organic N‐fertilizer applications were temporarily split adapted to the growth stage of each crop. N‐fertilizer input and N‐yield by the crops were used to calculate the In/Out‐balance. The closed chamber technique was applied to monitor the N2O fluxes from soil into the atmosphere. If possible, plants were included in the covers. Annual N2O emission values were based on flux rate measurements of an entire year. The annual N2O losses ranged from 0.53 to 16.78 kg N2O‐N ha—1 with higher N2O emissions from organically fertilized plots as compared to minerally fertilized plots. Approximately 50% of the total annual emissions occurred during winter. No significant relationship between annual N2O emissions and the respective N‐fertilization rate was found. This was attributed to site‐ and crop‐specific effects on N2O emission. The calculation of the N2O emission per unit N‐yield from winter cereal plots indicates that the site effect on N2O emission is more important than the effect of N‐fertilization. From unfertilized soils at the sites Braunschweig and Timmerlah a N‐yield of 60.0 kg N ha—1 a—1 and N2O emissions of 2 kg N ha—1 a—1 were measured. This high background emission was assigned to the amount and turnover of soil organic matter. For a crop rotation at the sites Braunschweig and Timmerlah the N In/Out‐balance over a period of four years was identified as a suitable predictor of N2O emissions. This parameter characterizes the efficiency of N‐fertilization for crop production and allows for N‐mineralization from the soil.  相似文献   

9.
To determine boundary effects on leaching, we investigated (1) how filter materials affect the concentrations of dissolved organic carbon (DOC) and nitrate (NO3‐N) in soil percolates and (2) whether ion exchange resins and suction plates are equally suited to capture NO3‐N. DOC leaching was higher with PE suction plates and plate material did not affect NO3‐N leachate concentrations. Cumulative NO3‐N leaching was similar for glass suction plates and ion exchange resins.  相似文献   

10.
The period after ploughing of grass–clover leys within a ley‐arable rotation is when nitrogen accumulated during the ley phase is most vulnerable to loss. We investigated how ploughing date and timing of cessation of grazing before ploughing affected nitrous oxide (N2O) losses of the first cereal crop. Ploughing dates were July and October for a winter wheat pilot study and January and March for spring barley in the main experiment. Timings of cessation of grazing (main experiment only) were October, January and March. Spring barley yield, nitrogen uptake and soil mineral nitrogen were also assessed. A separate large‐scale laboratory incubation was made to assess the effect of temperature and rainfall on nitrous oxide emissions and nitrate leaching under controlled conditions. Nitrous oxide emissions in the 1‐ to 2‐month period after autumn or spring ploughing, or sowing were typically between 20 and 150 g N ha?1 day?1 and increased with temperature and rainfall. Tillage for crop establishment stimulated N2O emissions with up to 2.1 kg N ha?1 released in the month after spring tillage. Cumulative nitrous oxide emissions were greatest (~8 kg ha?1 over 17 months) after cessation of grazing in March before March ploughing, and lowest (~5.5 kg ha?1) after cessation of grazing in January before January ploughing. These losses were 1.2–3.9% of the N inputs. In the laboratory study, winter ploughing stimulated nitrate leaching more than nitrous oxide emissions. The optimum time of ploughing appears to be early spring when the cold restricts nitrogen mineralization initially, but sufficient nitrogen becomes available for early crop growth and satisfactory N offtake as temperature increases. Early cessation of grazing is advantageous in leaving an adequate supply of residues of good quality (narrow C:N ratio) for ploughing‐in. Restricting tillage operations to cool, dry conditions, being aware of possible compaction and increasing the use of undersown grass–clover should improve the sustainability of organic farming.  相似文献   

11.
Wood ash has been used to alleviate nutrient deficiencies and acidification in boreal forest soils. However, ash and nitrogen (N) fertilization may affect microbial processes producing or consuming greenhouse gases: methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). Ash and N fertilization can stimulate nitrification and denitrification and, therefore, increase N2O emission and suppress CH4 uptake rate. Ash may also stimulate microbial respiration thereby enhancing CO2 emission. The fluxes of CH4, N2O and CO2 were measured in a boreal spruce forest soil treated with wood ash and/or N (ammonium nitrate) during three growing seasons. In addition to in situ measurements, CH4 oxidation potential, CO2 production, net nitrification and N2O production were studied in laboratory incubations. The mean in situ N2O emissions and in situ CO2 production from the untreated, N, ash and ash + N treatments were not significantly different, ranging from 11 to 17 μg N2O m?2 h?1 and from 533 to 611 mg CO2 m?2 h?1. However, ash increased the CH4 oxidation in a forest soil profile which could be seen both in the laboratory experiments and in the CH4 uptake rates in situ. The mean in situ CH4 uptake rate in the untreated, N, ash and ash + N plots were 153 ± 5, 123 ± 8, 188 ± 10 and 178 ± 18 μg m?2 h?1, respectively.  相似文献   

12.
An accurate estimation of nitrous oxide (N2O) emission from 110 million ha of upland in China is essential for the adoption of effective mitigation strategies. In this study, the effects of different tillage practices combined with nitrogen (N) fertilizer applications on N2O emission in soils were considered for a winter wheat (Triticum aestivum L.) – summer maize (Zea mays L.) double cropping system. Treatments included conventional tillage plus urea in split application (CTF1), conventional tillage with urea in a single application (CTF2), no‐tillage with straw retained plus reduced urea in a split application (NTSF1) and no‐tillage with manure plus reduced urea in a split application (NTMF1). The amounts of N input in each treatment were 285 and 225 kg N/ha for wheat and maize, respectively. Both NTSF1 and NTMF1 were found to reduce chemical N fertilizer rates by 33.3% (wheat) and 20% (maize), respectively, compared to CTF1 and CTF2. N2O emissions varied between 3.2 (NTSF1) and 9.9 (CTF2) kg N2O‐N/ha during the wheat season and between 7.6 (NTFS1) and 14.0 (NTMF1) kg N2O‐N/ha during the maize season. The yield‐based emission factors ranged from 21.9 (NTSF1) to 60.9 (CTF2) g N2O‐N/kg N for wheat and 92.5 (NTSF1) to 157.4 (NTMF1) g N2O‐N/kg N for maize. No significant effect of the treatments on crop yield was found. In addition to reducing production costs involved in land preparation, NTSF1 was shown to decrease chemical fertilizer input and mitigate N2O emissions while sustaining crop yield.  相似文献   

13.
Nitrous oxide (N2O) emissions were measured by the closed chamber technique from five plots along a transect in a nitrogen‐fertilised grassland, together with soil water content, soil temperature and water table depth, to investigate the effect of water table depth on N2O emissions. N2O fluxes varied from <1 g N2O‐N ha?1 day?1 to peaks of around 500–1200 g N2O‐N ha?1 day?1 after N fertiliser applications. There was no significant difference in overall average water table depth between four of the five plots, but significant short‐term temporal variations in water table depth did occur. Rises in the water table were accompanied by exponential increases in N2O emissions, through the associated increases in the water‐filled pore space of the topsoil. Modelling predicted that if the water table could be managed such that it was kept to no less than 35 cm below the ground surface, fluxes during the growing season would be reduced by 50%, while lowering to 45 cm would reduce them by over 80%. The strong implication of these results is that draining grasslands, so that the water tables are only rarely nearer to the surface than 35 cm when N is available for denitrification, would substantially reduce N2O emissions.  相似文献   

14.
The effects of poultry manure (PM), used for the reclamation of a 15N‐labeled burnt soil, on N nutrition of pine seedlings were evaluated during one year in a pot experiment. Six treatments were used: 15N‐labeled soil (LS), 15N‐labeled burnt soil (BLS), and BLS+PM at doses equivalent to 1, 2, 4, and 8 t ha–1 of dry PM (PM1, PM2, PM4, and PM8, respectively). Either in the whole tree or the different organs, N concentration: (1) decreased (p 0.05) in the order LS > BLS, BLS+PM1, BLS+PM2, BLS+PM4 > BLS+PM8 and (2) was negatively correlated with phytomass production (p < 0.05 to p < 0.01). The two highest amounts of assimilated N per kg dry soil were found in LS and BLS (130–134 mg) and the lowest in BLS+PM8 (87 mg), the other treatments being in an intermediate range (108–115 mg). Irrespective of the soil treatment, 56%–66% of the pine‐N were accounted for by needles, 29%–32% by roots, and 8%–12% by stems, the differences among organs being always significant (p < 0.05). The percentage of pine‐N derived from PM (%PNDFM) increased steadily with PM dose, from 1.7% in BLS+PM1 to 13.3% in BLS+PM8, reaching values for the two highest PM doses within the range found for 15N mineral fertilizers in forests. From 8.2% to 16.9% of the PM‐N was assimilated by the pines. Although differences among treatments were not significant, the two highest values were found in BLS+PM4 and BLS+PM8. Therefore, the 15N data showed clearly that there is a positive medium‐term effect of PM on pine N nutrition during the reafforestation phase of burnt‐forest reclamation. The lower total N uptake by pine seedlings in the PM treatments was explained in terms of lower levels of soil available N due to its exportation with the phytomass of the preceding ryegrass culture, used for the early protection phase in the burnt soil–reclamation procedure.  相似文献   

15.
We investigated the effect of increasing soil temperature and nitrogen on greenhouse gas (GHG) emissions [carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)] from a desert steppe soil in Inner Mongolia, China. Two temperature levels (heating versus no heating) and two nitrogen (N) fertilizer application levels (0 and 100?kg?N?ha?1?year?1) were examined in a complete randomized design with six replications. The GHG surface fluxes and their concentrations in soil (0 to 50?cm) were collected bi-weekly from June 2006 to November 2007. Carbon dioxide and N2O emissions were not affected by heating or N treatment, but compared with other seasons, CO2 was higher in summer [average of 29.6 versus 8.6?mg carbon (C) m?2?h?1 over all other seasons] and N2O was lower in winter (average of 2.6 versus 4.0?mg?N?m?2?h?1 over all other seasons). Desert steppe soil is a CH4 sink with the highest rate of consumption occurring in summer. Heating decreased CH4 consumption only in the summer. Increasing surface soil temperature by 1.3°C or applying 100?kg?ha?1?year?1 N fertilizer had no effect on the overall GHG emissions. Seasonal variability in GHG emission reflected changes in temperature and soil moisture content. At an average CH4 consumption rate of 31.65?µg?C?m?2?h?1, the 30.73 million ha of desert steppe soil in Inner Mongolia can consume (sequestrate) about 85?×?106?kg CH4-C, an offset equivalent to 711?×?106?kg CO2-C emissions annually. Thus, desert steppe soil should be considered an important CH4 sink and its potential in reducing GHG emission and mitigating climate change warrants further investigation.  相似文献   

16.
奶牛场粪便的自然堆放过程中会造成大量的温室气体排放,排放过程和排放量受表面风速和自然降水等环境因素的影响显著。该文针对中国常用的奶牛粪便管理方式,采用动态箱法研究了不同表面风速(0.5、0.8、1.2、1.6 m/s)和模拟降水(降水量9.9 mm)对奶牛粪便自然堆放过程中典型的温室气体氧化亚氮(N2O)排放的影响。结果表明,在0.5~1.2 m/s风速范围内,奶牛粪便自然堆放过程中的N2O排放量随风速升高逐渐增加,1.2 m/s达到最大值,且不同风速下N2O的排放量存在显著差异。模拟降水后N2O排放量在短时间内急剧升高,之后迅速下降至降水前的排放水平,整个过程持续约10 h。由于降低了二氧化碳(CO2)和甲烷(CH4)的排放,与降水前一天相比2次降水分别降低了12.9%和10.9%的温室气体排放量。  相似文献   

17.
In order to optimize nitrogen (N) fertilization and to reduce the environmental impact of oilseed rape without decreasing yield, a clearer understanding of N dynamics inside the plant is crucial. The present investigation therefore aimed to study the effects of different N‐application rates on the dynamics of N uptake, partitioning, and remobilization. The experiment was conducted on winter oilseed rape (Brassica napus L. cv. Capitol) under three levels of N input (0, 100, and 200 kg N ha–1) from stem elongation to maturity using 15N‐labeling technique to distinguish between N uptake and N retranslocation in the plant. Nitrogen fertilization affected the time‐course of N uptake and also the allocation of N taken up from flowering to maturity. Most pod N came from N remobilization, and leaves accounted for the largest source of remobilized N regardless the N‐application rate. However, the contribution of leaves to the remobilized N pool increased with the N dose whereas the one of taproot decreased. Stems were the main sink for remobilized N from stem elongation to flowering. Leaves remained longer on N200 than on N0 and N100 plants, and N concentration in fallen leaves increased with the N treatment and in N100 plants along an axial gradient from the basal to the upper leaves. Overall, these results show that the timing of N supply is more crucial than the N amount to attain a high N efficiency.  相似文献   

18.
Abstract

The aim of this study was to assess the mitigating effects of lime nitrogen (calcium cyanamide) and dicyandiamide (DCD) application on nitrous oxide (N2O) emissions from fields of green tea [Camellia sinensis (L.) Kuntze]. The study was conducted in experimental tea fields in which the fertilizer application rate was 544 kg nitrogen (N) ha?1 yr?1 for 2 years. The mean cumulative N2O flux from the soil between the canopies of tea plants for 2 years was 7.1 ± 0.9 kg N ha?1 yr?1 in control plots. The cumulative N2O flux in the plots supplemented with lime nitrogen was 3.5 ± 0.1 kgN ha?1, approximately 51% lower than that in control plots. This reduction was due to the inhibition of nitrification by DCD, which was produced from the lime nitrogen. In addition, the increase in soil pH by lime in the lime nitrogen may also be another reason for the decreased N2O emissions from soil in LN plots. Meanwhile, the cumulative N2O flux in DCD plots was not significantly different from that in control plots. The seasonal variability in N2O emissions in DCD plots differed from that in control plots and application of DCD sometimes increased N2O emissions from tea field soil. The nitrification inhibition effect of lime nitrogen and DCD helped to delay nitrification of ammonium-nitrogen (NH4+-N), leading to high NH4+-N concentrations and a high ratio of NH4+-N /nitrate-nitrogen (NO3-N) in the soil. The inhibitors delayed the formation of NO3-N in soil. N uptake by tea plants was almost the same among all three treatments.  相似文献   

19.
Winter forage grazing systems in New Zealand cause compaction of soil by grazing animals, especially when the soil is wet. However, there is little information on the effects of animal trampling on denitrifiers in soil, despite their importance for N2O production. Here, we report a field study of the abundance of the denitrifying genes nirS, nirK, and nosZ and N2O emissions following the application of dairy cow urine in a free‐draining stony soil. Importantly, we found that simulated animal trampling altered some of the denitrifying microbial communities, thus leading to increased N2O emissions. Over the 111 day measurement period, the abundance of nitrite (NO2?)‐reducing nirS gene copy numbers increased significantly by 87% in the trampled soil with urine (P < 0.01) and increased by 40% in the trampled soil without urine (P < 0.05), but the nirS gene abundance did not change significantly in the nontrampled soil. The abundance of NO2? reducing nirK gene copy numbers was not affected by trampling, but increased significantly following urine application. The abundance of N2O‐reducing nosZ clade I and nosZ clade II gene copy numbers increased significantly in the trampled soil, but did not change significantly in the nontrampled soil. N2O emissions from the trampled soil were about twice that from the nontrampled soil without urine (1.20 and 0.62 kg N2O‐N per ha, respectively) and about eight times greater (6.24 kg N2O‐N per ha) than from nontrampled soil (0.80 kg N2O‐N per ha) when urine was applied. These results strongly suggest that animal trampling during winter forage grazing can have a major impact on denitrifying communities in soil, which in turn stimulate greater denitrification with increased N2O emissions.  相似文献   

20.
Injection of slurry or digestate below maize seeds is a relatively new technique developed to improve nitrogen use efficiency. However, this practice has the major drawback of increasing nitrous oxide (N2O) emissions. The application of a nitrification inhibitor (NI) is an effective method to reduce these emissions. To evaluate the effect of the NI 3,4‐dimethypyrazole phosphate (DMPP) on N2O emissions and the stabilization of ammonium, a two‐factorial soil‐column experiment was conducted. PVC pipes (20 cm diameter and 30 cm length) were used as incubation vessels for the soil‐columns. The trial consisted of four treatments in a randomized block design with four replications: slurry injection, slurry injection + DMPP, digestate injection, and digestate injection + DMPP. During the 47‐day incubation period, N2O fluxes were measured twice a week and cumulated by linear interpolation of the gas‐fluxes of consecutive measurement dates. After completion of the gas flux measurement, concentration of ammonium and nitrate within the soil‐columns was determined. DMPP delayed the conversion of ammonium within the manure injection zone significantly. This effect was considerably more pronounced in treatment digestate + NI than in treatment slurry + NI. Regarding the cumulated N2O emissions, no difference between slurry and digestate treatments was determined. DMPP reduced the release of N2O significantly. Transferring the results into practice, the use of DMPP is a promising way to reduce greenhouse gas emissions and nitrate leaching, following the injection of slurry or digestate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号