首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phospholipid and sphingolipid composition of milk is of considerable interest regarding their nutritional and functional properties. The objective of this article was to determine the lipid composition of the milk fat globule membrane (MFGM) of milk from cows fed a diet rich in polyunsaturated fatty acids. The experiments were performed with 2 groups of 6 cows feeding on (i) maize silage ad libitum (+ grassland hay, mixture of cereals, soyabean meal) or (ii) the maize silage-based diet supplemented with extruded linseed (bringing a lipid proportion of 5% of dry matter). The phospholipid and sphingolipid composition of the MFGM was determined using HPLC/ELSD. The fatty acid (FA) composition of total lipids and phospholipids was determined using GC. As expected, the linseed-supplemented diet decreased the saturated FA and increased the unsaturated FA content in milk fat. MFGM in milk from cows fed the diet rich in polyunsaturated FA resulted in (i) a higher amount of phospholipids (+ 18%), which was related to a smaller size of milk fat globules (ii) an increase of 30% (w/w) of the concentration in sphingomyelin, (iii) a higher content in stearic acid (1.7-fold), unsaturated FA (1.36-fold), and C18:1 trans FA: 7.2 +/- 0.5% (3.7-fold). The MFGM contained a higher concentration of unsaturated FA (C18:1, C18:2, and C18:3) and very long-chain FA (C22:0, C23:0, C24:0, EPA, DHA) compared with total lipids extracted from milk. The technological, sensorial, and nutritional consequences of these changes in the lipid composition of the MFGM induced by dietary manipulation remain to be elucidated.  相似文献   

2.
A straightforward method for the separation of milk fat globule membrane (MFGM) and production of fat-free whey protein concentrate/isolate from cheese whey has been developed. Lowering of the conductivity of the whey from its initial value of about 5600 μS cm(-1) to about 2000-500 μS cm(-1) via diafiltration with water caused selective precipitation of MFGM when incubated for 30 min at pH 4.2 and 35 °C. The whey proteins remained soluble in the supernatant under these conditions. Experimental evidence suggested that precipitation of MFGM at pH 4.2 was not due to a nonspecific effect of lowering of the conductivity of the whey but due to the specific effect of removal of Ca2+ from the whey. The lipid content of whey protein isolate obtained by this process was <0.2%, and the protein loss was <14%. The method provides an industrially feasible process for the production of fat-free whey protein concentrate/isolate. The MFGM, which is reported to contain bioactive/nutraceutical lipids and proteins, is a valuable byproduct of the process.  相似文献   

3.
Salidroside liposomes were prepared by using five different methods: thin film evaporation, sonication, reverse phase evaporation, melting, and freezing-thawing. The effect of different preparation methods and salidroside loading capacity on the formation of liposomes and their physicochemical properties were evaluated by means of encapsulating efficiency, particle size, morphology, and zeta potential. Results showed that the encapsulating efficiency of liposomes was highest when prepared by freezing-thawing, followed by thin film evaporation, then reverse phase evaporation and the lowest with melting and sonication. Loading capacity of salidroside had a significant effect on encapsulating efficiency, average diameter, and zeta potential of liposomes. Liposomal systems prepared by sonication, melting, and reverse phase evaporation displayed better dispersivity. Determination of leakage of salidroside from different liposomal systems revealed that the melting method had the lowest leakage of 10% and 15%, at 4 and 30 degrees C after 1 month of storage, respectively. In all cases, a straight-line leakage behavior of salidroside was found. This revealed that the leakage of salidroside was a diffusion process from the membrane of liposomes. Furthermore, the storage stability of different liposomal systems showed that salidroside liposomes prepared by melting had a better physicochemical stability. Instability in the systems was exacerbated when temperature increased. Salidroside liposomes showed the slower increase in particle size than liposomes without salidroside. This could indicate that salidroside played an important role in preventing the aggregation and fusion of liposomes.  相似文献   

4.
Free radical scavenging reactions of green tea polyphenols (GTP) were investigated with electron spin resonance (ESR) spectroscopy in the phospholipid bilayer of liposomes, using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical as a model. The results showed that (1) GTP reacts with DPPH radicals in the bilayer of liposomes of both 1-hexadecanoyl-2-[(cis,cis,cis,cis,cis,cis)-4,7,10, 13,16,19-docosahexaenoyl]-sn-glycero-3-phosphocholine (DHAPC) and 1, 2-di[cis-9-hexadecenoyl]-sn-glycero-3-phosphocholine) (DPPC); and (2) GTP protects DHAPC liposomes effectively from the oxidation initiated by DPPH radicals. These results provide direct evidence that GTP reacts with free radicals in the model membrane and support the hypothesis that GTP protects unsaturated phospholipids from oxidation by reacting directly with the radicals.  相似文献   

5.
The physicochemical properties of human milk fat globules (MFG) at different lactation stages from Danish mothers and the microstructure changes of MFG membrane (MFGM) at varied temperatures were investigated, and the relationship between chemical composition and the microstructure of MFGM was elucidated. The fat content in MFG was found to be significantly increased as lactation progressed, and colostrum MFG had the largest mean diameter of 5.75 ± 0.81 μm and the lowest ζ potential of -5.60 ± 0.12 mV. Chemical composition analyses of MFG revealed the following: (i) Colostrum milk fat constituted higher content in PUFAs (ω-6, and long-chain ω-6 and ω-3) than transitional and mature milk fats, with the corresponding lower content of SFA in its sn-2 position. (ii) The content of polar lipids among total lipids varied during lactation course (maximized at transitional stage); however, in terms of subclasses of polar lipids, no significant change of the relative content of sphingomyelin was observed, while the content of phosphatidycholine in mature milk was higher than that in colostrum and transitional milk. (iii) Inspection of fatty acid composition in phospholipids from different lactation milk revealed no remarkable and regular changes could be generalized; and no obvious difference of the morphologies of MFGM at different lactation stages can be visualized. An investigation of the microstructure change of MFGM vs temperature demonstrated that the segregated domains became larger as temperature decreased to 4 °C, while it became smaller when increased to 37 °C. This phenomenon indicated that, in addition to sphingimyelin and cholesterol, phospholipids might also contribute to increasing the segregated domains at lower temperature, while, at elevated temperature, these domains could be diminished, most likely due to a restructuring or distributing of sphingimyelin and cholesterol.  相似文献   

6.
The regulation of plasma membrane ATPase activity by salt stress was investigated in barley roots. The plasma membrane fractions were prepared from the roots treated with or without 200 mM sodium chloride (NaCl) for one day. After salt treatment, ATPase activity reduced by 20 to 30% as compared with that of control roots. No significant changes in the content of total phospholipid and sterol were detected in the plasma membrane fraction by salt stress. After extraction of most of the phospholipids in the plasma membrane vesicles with a solution containing 1% (W/V) octylglucoside and 1% (W/V) Triton X‐100, the ATPase activity in salt‐stressed roots was lower than that of control roots. After reconstitution of detergent‐extracted protein into liposome, the reduction of ATPase activity by salt stress did not recover. Based on immunoblott analysis, the relative amount of H+‐ATPase in plasma membrane fraction prepared, from NaCl‐stressed roots was smaller than that of control roots. These results indicate that the reduction of H+‐ATPase activity by salt stress was caused by the decrease in the amount of H+‐ATPase rather than the modification of ATPase.  相似文献   

7.
Treatment with Ca2+ and citric acid improved membrane removal from muscle homogenates solubilized at pH 10.5 by centrifugation at 4000 g for 15 min. The percentage of phospholipid removed from muscle homogenates increased with increasing Ca2+ concentrations at 1 mM citric acid. More than 85% phospholipid and 45% protein in the muscle homogenates were removed at Ca2+ concentrations of >20 mM in the presence of 1 mM citric acid. At 8 mM Ca2+, addition of citric acid at 5 mM improved phospholipid removal to approximately 78% from 58% in its absence. Because treatment with 8 mM Ca2+ alone can remove significant amounts of phospholipid, it is likely that Ca2+ played the major role in membrane removal in muscle homogenates solubilized at pH 10.5.  相似文献   

8.
为了制备栀子黄脂质体,以栀子黄色素为研究对象,采用乙醇注入法制备栀子黄脂质体,以栀子黄包封率(EE)为指标,通过响应面法优化制备栀子黄脂质体的反应参数,并通过Zeta电位与平均粒径、傅里叶红外光谱(FT-IR)和透射电子显微镜(TEM)等技术对其结构与形态进行表征。采用壳聚糖对栀子黄脂质体进行表面修饰,通过分析经紫外光照射、加热和体外模拟消化等处理后脂质体中的Zeta电位、平均粒径及释放率等指标的变化,研究壳聚糖修饰栀子黄脂质体的稳定性。结果表明,最优反应条件为:搅拌温度51.5℃,卵磷脂与胆固醇质量比5.2∶1,缓冲液体积为32.4 mL,所得栀子黄脂质体EE为78.36%。根据Zeta电位与平均粒径、FT-IR及TEM分析结果可知,已成功制备未修饰栀子黄脂质体与壳聚糖修饰栀子黄脂质体,其平均粒径从203.77 nm增加至282.17 nm。紫外光照射、加热和体外模拟消化试验结果表明,壳聚糖修饰脂质体的稳定性明显高于未修饰脂质体。本研究可为水溶性类胡萝卜素脂质体的制备及应用提供一定的理论依据。  相似文献   

9.
We showed in our previous study that docosahexaenoic acid-rich phosphatidylethanolamine in the external layer of small-size liposomes, as a model for biomembranes, protected its docosahexaenoic acid from 2,2'-azobis(2-amidinopropane)dihydrochloride- (AAPH-) mediated lipid peroxidation in vitro. Besides phosphatidylethanolamine, both phosphatidylserine and an alkenyl-acyl analogue of phosphatidylethanolamine, phosphatidylethanolamine plasmalogen, are reported to possess characteristic antioxidant activities. However, there are few reports about the relationship between the protective activity of phosphatidylethanolamine plasmalogen and/or phosphatidylserine against lipid peroxidation and their distribution in a phospholipid bilayer. Furthermore, it is unclear whether phosphatidylethanolamine plasmalogen and/or phosphatidylserine protect their component polyunsaturated fatty acids (PUFAs) from lipid peroxidation. In the present study, we examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine rich in arachidonic acid, phosphatidylethanolamine plasmalogen, and phosphatidylserine, and the oxidative stability of their component PUFAs. The transbilayer distribution of these aminophospholipids in liposomes was modulated by coexisting phosphatidylcholine bearing two types of acyl chain: dipalmitoyl or dioleoyl. The amounts of these primary aminophospholipids in the external layer became significantly higher in liposomes containing dioleoylphosphatidylcholine than in those containing dipalmitoylphosphatidylcholine. Phosphatidylethanolamine rich in arachidonic acid, phosphatidylethanolamine plasmalogen or phosphatidylserine in the external layer of liposomes, as well as external docosahexaenoic acid-rich phosphatidylethanolamine, were able to protect their component PUFAs from AAPH-mediated lipid peroxidation.  相似文献   

10.
During repeated deep-fat frying of potato slices at 163 degrees C in yellow or red palm olein of comparable fatty acid profiles, the oxidative stability (peroxide value and anisidine value) of the palm oleins was similar, and in yellow palm olein, the rate of antioxidant depletion decreased in the order gamma-T3 > alpha-T3 > delta-T3 (T3, tocotrienol). In red palm olein, which had a total tocopherol/tocotrienol content of 1260 vs 940 ppm in yellow palm olein and a corresponding longer induction period in the Rancimat stability test at 120 degrees C, only depletion of gamma-T3 was significant among the phenols during frying and slower as compared to that in yellow palm olein. The carotenes in the red palm olein were depleted linearly with the number of fryings, apparently yielding an overall protection of the phenols. In antioxidant-depleted palm olein and in phospholipid liposomes with added increasing concentrations of phenols, gamma-T3 was found to be a better antioxidant than alpha-T3. alpha-T3 and alpha-T (T, tocopherol) had a similar antioxidant effect in antioxidant-depleted palm olein in the Rancimat stability test, while in the liposomes the ordering as determined by induction period for the formation of conjugated dienes was gamma-T3 > alpha-T3 > alpha-T. The addition of 100-1000 ppm beta-carotene to antioxidant-depleted palm olein or liposomes (lycopene also tested) did not provide any protection against oxidation. In the liposomes, synergistic interactions were observed between beta-carotene or lycopene and alpha-T, alpha-T3, or gamma-T3 for carotene/phenol ratios of 1:10 and 1:2 but not for 1:1. In chloroform, carotenes were regenerated by tocopherols/tocotrienols from carotene radicals generated by laser flash photolysis as shown by transient absorption spectroscopy, suggesting that carotenes rather than phenols are the primary substrate for lipid-derived radicals in red palm olein, in effect depleting carotenes prior to phenols during frying. Regeneration of carotenes by the phenols also explains the synergism in liposomes. In the laser flash photolysis experiments, gamma-T3 was also found to be faster in regenerating carotenes than alpha-T3 and alpha-T.  相似文献   

11.
Effect of Changing Temperature on the Deterioration of Soya Beans   总被引:1,自引:0,他引:1  
Deterioration rates as indicated by carbon dioxide evolution for soya bean (Glycine max L. Merr.) stored under changing temperature conditions were quantified and compared with those predicted using equations. Experiments included soya bean moisture contents of 18, 22, and 26% (wet basis), constant storage temperatures of 15, 20, 25, and 30°C, and cyclical storage temperatures that changed between 15 and 25°C and between 20 and 30°C on a 24 h basis. Also, the growth of micro-organisms was identified after 10 days from the treatments by using the pour plate method.The results indicated an increase in deterioration by increasing storage temperature and moisture content of soya bean. Equations of carbon dioxide weight versus time for each moisture content and storage temperature were fitted. The longest allowable storage time to reach 0·5% dry matter loss (1132 h) occurred at lower moisture content and lower constant storage temperature, while the shortest allowable storage time (170 h) occurred at higher moisture content and higher constant storage temperature. The allowable storage times for soya bean stored under cyclical temperatures were close to the allowable storage time for soya bean stored at a constant temperature equal to the average cyclical temperature. Microbial infection levels increased with increasing storage temperature and moisture content. The increasing rate of micro-organism growth decreased by increasing the storage temperature over 25°C. However, this increasing rate of micro-organism growth for soya bean exposed to a cyclical storage temperature was usually lower than that for soya bean held at constant storage temperatures of about 20°C (the average of 15 and 25°C) and 25°C (the average of 20 and 30°C).  相似文献   

12.
The different interactions of p-hydroxybenzoic acid (1), a simple biophenol (BP) found in olives and their food products, and its substitute analogues, benzoic (2), anisic (3), and toluic (4) acids, with a model membrane represented by dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV) was studied by differential scanning calorimetry (DSC). The influence of their different lipophilic character on transfer and absorption processes through an aqueous medium into a lipid bilayer was also investigated. DSC experiments allowed monitoring of the interaction of BP with biomembranes by considering the effects exerted on the thermotropic behavior of DMPC multilamellar and unilamellar vesicles at different pHs (4 and 7.4). The examined compounds affect the transition temperature (T(m)) of phospholipid vesicles, causing a shift toward lower values, which is modulated by the molecular fraction entering into the lipid bilayer, as well as by their molecular interaction with the lipids. Kinetic calorimetric measurements were performed on suspensions of blank liposomes immediately after being added to fixed weighed amounts of powdered compounds and after increasing incubation periods at 37 degrees C. T(m) shifts, due to molecular dissolution and transfer of the compounds into the membrane surface occurring during the incubation time, were compared with those determined by a fixed molar fraction of free compounds directly dispersed in the membrane. The results show that the kinetic process, involved in molecular release, transfer through aqueous medium, and uptake by the model membrane surface, is influenced by lipophilicity as well as by pH, acting on the acid solubility and membrane disorder, allowing us to gather useful information on the BP intake process of olive derived foodstuffs.  相似文献   

13.
This study followed the progression of lipolysis in Emmental cheese by quantifying the concentrations of individual free fatty acids (FFA) released during ripening in each of the different rooms: 12 days at 12 degrees C, 28 days at 21 degrees C, and 8 days at 4 degrees C. Lipolysis, which corresponded to 1.56% of fat, mainly occurred in the 21 and 4 degrees C rooms, with 68 and 16.5% of total FFA, respectively. The nonselectivity of lipolytic enzymes was evidenced: all fatty acids were released with level of > or =1%. Differential scanning calorimetry experiments showed that the thermal properties of cheese were affected by (i) lipolysis of fat, that is, the monoacylglycerols, diacylglycerols, and FFA that may be localized at the fat/whey interface, and/or by (ii) hydrolysis of high-melting-point triacylglycerols constituted mainly by long-chain saturated fatty acids (e.g., palmitic acid). Analysis of the cheese microstructure was performed using confocal laser scanning microscopy. Fat globules were mainly disrupted after pressing of curd grains, leading to the release of the milk fat globule membrane (MFGM); fat inclusions were surrounded by pockets of whey, delimited by casein strands. Moreover, colonies of bacteria were preferentially localized in situ at the fat/protein interface. This study showed that both the localization of bacteria and the supramolecular organization of fat which was not protected by the MFGM can help the accessibility of milk fat to lipolytic enzymes and then contribute to the quality of cheese.  相似文献   

14.
The impact of lipid oxidation on yellow pigment formation in squid lipids and proteins was studied. When the squid microsomes were oxidized with iron and ascorbate, thiobarbituric acid reactive substance were observed to increase simultaneously with b values (yellowness) and pyrrole compounds concomitantly with a decrease in free amines. Oxidized microsomes were not able to change the solubility, sulfhydryl content, or color of salt-soluble squid myofibrillar proteins. Aldehydic lipid oxidation products were able to decrease solubility and sulfhydryl content of salt-soluble squid myofibrillar proteins but had no impact on color. Aldehydic lipid oxidation products increased b values (yellowness) and pyrrole compounds and decreased free amines in both squid phospholipid and egg yolk lecithin liposomes. The ability of aldehydic lipid oxidation products to change the physical and chemical properties of egg yolk lecithin liposomes increased with increasing level of unsaturation and when the carbon number was increased from 6 to 7. These data suggest that off-color formation in squid muscle could be due to nonenzymatic browning reactions occurring between aldehydic lipid oxidation products and the amines on phospholipids headgroups.  相似文献   

15.
The antioxidant and membrane effects of dimer (Dim) and trimer (Trim) procyanidins isolated from cocoa (Theobroma cacao) (B- and C-bonded) and peanut (Arachis hypogea L.) skin (A-bonded) were evaluated in phosphatidyl choline liposomes. When liposomes were oxidized with a steady source of oxidants, the above dimers and trimers inhibited to a similar extent lipid oxidation in a concentration (0.33-5 microM)-dependent manner. With respect to membrane effects, Dim A1, Dim B, Trim A, and Trim C increased (Dim A1 = Dim B and Trim A = Trim C), while Dim A2 decreased, membrane surface potential. All of the procyanidins tested decreased membrane fluidity as determined by fluorescent probes at the water-lipid interface, an effect that extended into the hydrophobic region of the bilayer. Both dimers and trimers protected the lipid bilayer from disruption by Triton X-100. The magnitude of the protection was Dim A1 > Dim A2 > Dim B and Trim C > Trim A. Thus, dimers and trimers can interact with membrane phospholipids, presumably with their polar headgroup. As a consequence of this interaction, they can provide protection against the attack of oxidants and other molecules that challenge the integrity of the bilayer.  相似文献   

16.
Soya bean (Glycine max (L.) Merr.) monoculture can lead to a decrease in labile fractions of soil organic carbon (SOC). This study sought to evaluate the effects of cover crops (CC), application of fertilizer, and crop rotation on SOC, particulate organic carbon (POC), and soil carbon input in soya bean-based crop sequences under a no-till cropping system in the Argentinean Humid Pampas. Five crop sequences at two sites differing in initial SOC were evaluated: continuous soya bean (Sb), continuous soya bean fertilized with phosphorus (P) and sulphur (S) (Sbf), grass CC / PS-fertilized soya bean (CC/Sbf), nitrogen (N)-fertilized CC / PS-fertilized soya bean (CCf/Sbf) and NPS-fertilized crop rotation with high intensification sequence index (ISI) (Rot). At 0–5 cm, SOC and POC were higher (p < .05) in the sequences with higher residue-C supply (CC/Sbf; CCf/Sbf and Rot) at both sites. Changes in SOC at 0–20 cm simulated by AMG model closely tracked measured results at 0–20 cm. Findings from this study suggest that the inclusion of CC or crop rotation with high ISI improved C balance in soils under crop sequences with soya bean predominance.  相似文献   

17.
本文用脂质体包裹质粒DNA,研究了不同制备方法,不同磷脂成分对包裹率的影响,以及超声处理对脂质体内质粒DNA稳定性的影响。用改进的脱水再加水法制备质粒脂质体,使包襄率由10—20%提高到60—70%。黄瓜悬浮细胞原生质体与包裹pUC12—CAT质粒的脂质体经PEG诱导融合,培养3天和6天后均测得较强的CAT活性,说明脂质体介导的外源基因己在黄瓜细胞中成功地表达。  相似文献   

18.
Three porphyran preparations with high emulsifying ability and varying molecular mass, 3,6-anhydrogalactose content, and sulfate content without any protenaceous component were prepared from dried nori processed from Porphyra yezoensis, a red alga. Each of these preparations was applied to demonstrate adsorption or binding to the surface of oil droplets. The decrease in porphyran concentration of the aqueous phase of O/W emulsions prepared with porphyran and with toluidine blue (TB)-porphyran complex formed by adding TB to the O/W emulsions indicated ready adsorption to the surface of oil droplets. The decrease in zeta-potential of the O/W emulsions suggested that the sulfate groups of the adsorbed porphyran were oriented toward the external aqueous phase. A biomolecular interaction analysis exhibited rapid binding of porphyran to C16-alkane, probably through 3,6-anhydrogalactose. Porphyran-coated liposomes were tolerant to digestion with phospholipase D. The increased molecular weight of the porphyran preparations had an increased effect on these characteristics. The results of this study demonstrate that the emulsifying ability of porphyran is derived from the adequate adsorption to the surface of oil droplets and that porphyran could be effectively applied to stabilize liposomes.  相似文献   

19.
The design of experiments (DOE) was used in the development of a laboratory procedure for the extraction of tannins from three infant food types comprising different ingredients of vegetable origin and meat. The diversity of vegetables included in the product formulas required the use of DOE to establish parameters that maximize the recovery of tannins using a central composite rotatable design. Once the experimental results from the DOE were obtained, response surface methodology was used to find the best analytical conditions for samples comprising different ingredients. Sample weight was found to be a critical factor in tannin extraction from foods. Different optimal conditions were obtained for samples including soya in the formula.  相似文献   

20.
Calcium chloride, and to a lesser extent MgCl2, aided in the separation of membranes by centrifugation from cod (Gadus morhua) muscle homogenates solubilized at pH 3 in the presence of citric acid or malic acid but not lactic acid. Adding citric acid and Ca2+ before solubilizing the cod muscle homogenates was needed for the effect. At 1 mM citric acid, 70-80% of the phospholipid and 25-30% of the protein were removed at 10 mM Ca2+. At 8 mM Ca2+, citric acid showed an optimal effect on phospholipid removal at 5 mM with 90% of the phospholipid and 35% of the protein removed. The treatment with citric acid and Ca2+ was also effective in separating the membrane from solubilized herring (Clupea harengus) muscle homogenate. Ca2+ and citric acid might exert their influence by disconnecting linkages between membranes and cytoskeletal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号