首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sewage sludge is increasingly used as an organic amendment to soil, especially to soil containing little organic matter. However, little is known about the utility of this organic amendment in the reclamation of soil polluted with heavy metals. We studied the effects of adding sewage sludge on enzymatic activities of a semi-arid soil contaminated with Cd or Ni in the laboratory. The activities of urease, phosphatase, β-glucosidase and protease-BAA were measured in soil containing concentrations of Cd or Ni in the range 0–8000 mg kg−1 soil, and their inhibition was compared with those of the enzymatic activities in the same soil amended with sewage sludge and containing similar concentrations of the heavy metals. The inhibition was tested for three different incubation times to determine changes in the effect of the heavy metals on hydrolase activity with the time elapsed after contamination. Ecological dose (ED) values of Cd and Ni were calculated from three mathematical models which described the inhibition of the enzymatic activities with increasing concentrations of heavy metal in the soil. For urease and phosphatase activities, the ED values for Cd and Ni increased after application of sewage sludge to soil, indicating a decrease in Cd and Ni toxicity. The other two enzymes (β-glucosidase and protease-BAA) were less sensitive to Cd or Ni contamination, and it was more difficult to determine whether addition of sewage sludge had affected the inhibition of these enzymes by the heavy metals.  相似文献   

2.

Purpose

Degraded soils, such as those encountered in areas of mine activities, need to be ameliorated by liming to correct soil acidity and by addition of organic inputs to improve soil properties and fertility.

Materials and methods

Non-amended mine soil and soil amended with stabilized sewage sludge were incubated for 45 days. Soil physicochemical and biological indicators were periodically measured along incubation and other enzyme activities at the end of incubation. In improved soils, a study of plant development in 250-g pots was carried out with three vegetal species: tomato, rye grass and ahipa. Germination and mortality rates, biomass production and photosynthetic pigments were measured.

Results and discussion

Soil incubation with sewage sludge slightly increased soil pH and led to an enhancement of soil electrical conductivity, organic carbon and dehydrogenase activity, especially for the higher doses (5 and 10%). However soil respiration was more promoted with the 2% dose, pointing to a possible toxic effect of the sludge. At the end of incubation, physicochemical and biological properties were in general enhanced. Biomass production was improved in tomato and rye grass by sewage sludge addition (more at the 2% dose), whilst ahipa growth was not affected by sewage sludge treatments. Tomato mortality reached 73% with high sludge doses (10%).

Conclusions

According to this set of parameters, amendment with sewage sludge of a limed acid mine soil would be considered as a good strategy for soil amelioration in view of plant establishment and development.  相似文献   

3.
Changes produced in the biological characteristics of an arid soil by the addition of various urban wastes (municipal solid waste, sewage sludge and compost) at different doses, were evaluated during a 360-day incubation experiment. The addition of organic materials to the soil increased the values of biomass carbon, basal respiration, biomass C/total organic C ratio and metabolic quotient (qCO2), indicating the activation of soil microorganisms. These biological parameters showed a decreasing tendency with time. Nevertheless, their values in amended soils were higher than in control soil, which clearly indicates the improvement of soil biological quality brought about by the organic amendment. This favorable effect on soil biological activity was more noticeable with the addition of fresh wastes (municipal solid waste or sewage sludge) than with compost. In turn, this effect was more permanent when the soil was amended with municipal solid waste than when it was amended with sewage sludge. Received: 28 May 1996  相似文献   

4.
Lai  K. M.  Ye  D. Y.  Wong  J. W. C. 《Water, air, and soil pollution》1999,113(1-4):261-272
Previous studies showed that coal fly ash could stabilize sewage sludge by reducing metal availability, but fly ash may cause an adverse effect on soil microbial activities. Therefore, an experiment was performed to evaluate the effects of amendment of soil with anaerobically digested dewatered sewage sludge, stabilised with alkaline coal fly ash, on soil enzyme activity and the implications for soil nutrient cycling. Sewage sludge was amended with 0, 5, 10, 35 and 50% w/w of fly ash, and then the ash-sludge mixtures were incubated with a sandy soil at 1:1 (v/v). Dehydrogenase activity decreased with an increase in fly ash amendment level and the time of incubation. Soil receiving 5% ash-sludge amendment had a higher dehydrogenase activity than other treatments. Soil receiving 10% ash-sludge mixture had the highest urease activity and in general, urease activity decreased with increasing incubation time. Phosphatase activity was the highest at 5% ash-sludge mixture amended soil and no general trend was observed with time. Water-soluble Zn, Mn and Cu contents were suppressed by the addition of fly ash. The present experiment indicated that addition of 10% ash-sludge mixture should have a positive benefit on the activity of soil microorganisms, N and P nutrient cycling, and reduce the availability of heavy metals.  相似文献   

5.
Soil properties may affect the decomposition of added organic materials and inorganic nitrogen (N) production in agricultural soils. Three soils, Potu (Pu), Sankengtzu (Sk) and Erhlin (Eh) soils, mixed with sewage sludge compost (SSC) at application rates of 0 (control), 25, 75 and 150 Mg ha−1 were selected from Taiwan for incubation for 112 days. The aim of the present study was to examine the effects of SSC application rates on the carbon decomposition rate, N transformation and pH changes in three soils with different initial soil pH values (4.8–7.7). The results indicated that the highest peaks of the CO2 evolution rate occurred after 3 days of incubation, for all treatments. The Pu soil (pH 4.8) had a relatively low rate of CO2 evolution, total amounts of CO2 evolution and percentage of added organic C loss, all of which resulted from inhibition of microbial activity under low pH. For the Pu and Sk soils, the concentration of NH4+-N reached its peak after 7–14 days of incubation, which indicated that ammonification might have occurred in the two soils with low initial pH values. NO3-N rapidly accumulated in the first 7 days of incubation in the Eh soil (pH 7.7). The direction and extent of the soil pH changes were influenced by the N in the SSC and the initial soil pH. Ammonification of organic N in the SSC caused the soil pH to increase, whereas nitrification of mineralized N caused the soil pH to decline. Consequently, the initial soil pH greatly affected the rate of carbon decomposition, ammonification and nitrification of SSC.  相似文献   

6.
In tropical soils, the high turnover rate and mineralization of organic matter (OM) associated with intensive agricultural use, generally leads to faster soil degradation than that observed in temperate climatic zones. The application of sewage sludge to the soils is one proposed method of maintaining soil organic matter, and is also an alternative method of disposing of this waste product. As well as containing large quantities of OM, sludge is also a significant source of supplementary nitrogen, phosphorus and other essential nutrients for plant growth. However, it is necessary to understand the qualitative and quantitative changes that take place in the OM in soil treated with sewage sludge. The approach of the present study was intended to identify possible structural changes caused by sewage sludge applications on soil humic acids (HAs). The HAs extracted from a Typic Achrortox under sewage sludge applications were characterized by electron paramagnetic resonance (EPR) spectroscopy. The soil samples were collected from a field experiment designed to evaluate the effects of different doses of sewage sludge on corn growth and development in Brazil. The sewage sludge originated from urban waste treated at the sewage sludge treatment station in the city of Franca, state of Sao Paulo, Brazil. The following soil treatments were studied: control (non-cultivated soil under natural vegetation (NC)), control soil amended with NPK (conventional corn fertilization) and four treatments N1, N2, N4 and N8 with applications of 3.5, 7, 14 and 28 Mg ha−1 of sewage sludge (dry matter), respectively. HAs were extracted from the surface layer using the methodology of the International Humic Substance Society (IHSS). Fe3+ and VO2+ ions complexed with HAs, and also semiquinone-type free radical (SFR) at concentrations of approximately 2.0 × 1018 spins g−1 HA were identified in EPR spectra. The levels of SFR were lower for treatments where the applied sewage sludge doses were equivalent to four and eight times the normal doses of N mineral fertilization, reaching values of 1.7 × 1018 and 1.24 × 1018 spins g−1 HA, respectively. The observed decrease in SFR content as sewage sludge dose was increased, was probably associated with the incorporation of less aromatic components into HAs originating from the sewage sludge.  相似文献   

7.
Sluszny  C.  Graber  E. R.  Gerstl  Z. 《Water, air, and soil pollution》1999,115(1-4):395-410
Fresh amendment of soil with sewage sludge and composted sewage sludge resulted in increased sorption of three s-triazine herbicides: atrazine, ametryn and terbuthylazine. The extent of increased sorption (as evaluated by sorption coefficients Kd or Kf) was a function of soil type, such that sorption in amended organic carbon-poor soil (0.4% OC) was more enhanced than in amended organic carbon-rich soil (1.55% OC). Despite significant differences between the organic amendments in terms of humic and fulvic acid content, humin content, soluble organic matter content, total organic matter content, and H/C and O/C atomic ratios, organic matter composition had no discernible effect on either sorption distribution coefficients or on isotherm linearity in amended soils. Soils amended with composted sludge had the same sorption potential as did soils amended with the analogous uncomposted sludge. After incubating soil-sludge mixtures for a year at room temperature, organic matter content decreased to original pre-amendment levels. Sorption coefficients for the three compounds similarly decreased to initial pre-amendment values. Organic carbon normalized sorption coefficients (Koc) were essentially identical in the soils, amended soils, and incubated amended soils, indicating that sludge and compost derived organic matter does not have a significantly different sorption capacity as compared with the original soils, despite compositional differences.  相似文献   

8.
Sewage sludge is a valuable source of organic matter, N, P and certain micronutrients that have beneficial effects on plant growth and biomass production. However, sanitary regulations often require the stabilization of sewage materials prior to applying them to soils as biosolids. Environmental regulations also demand appropriate management of biosolid‐N to avoid groundwater contamination. Because stabilization processes usually make sewage sludge less putrescible, we hypothesized that the mineralization rates of organic‐N from stabilized biosolids would be affected. Therefore, this study aimed to evaluate the mineralization of five biosolids in two soils – a sandy Spodosol and a clayey Oxisol. Digested sludge, composted sludge, limed sludge, heat‐dried sludge and solar‐irradiated sludge were mixed with soil samples at a concentration of 32.6 mg N/kg soil (1.0 dry t/ha of digested sludge) and incubated at 25 °C in a humidity chamber for 23 weeks. Results showed that the stabilization processes generally slowed the release of mineral‐N in soils relative to the digested sludge from which the biosolids originated. However, increments in the levels of mineral‐N were more influenced by soil type than by the type of stabilization process applied to the sewage sludge. Mineralization rates were up to 5‐fold higher in the Oxisol than in the Spodosol soil, and as a result, organic‐N in biosolids mineralized 10–24% in Spodosol and 23–52% in Oxisol. Any appropriate plan for the management of biosolid‐N for plant use should consider the interaction between soil type and biosolid type.  相似文献   

9.
The need for solutions to minimize the negative environmental impacts of anthropogenic activities Fhas increased. Sewage sludge is composed of predominantly organic matter and can be used to improve soil characteristics, such as fertility. Therefore, its application in agriculture is an adequate alternative for its final disposal. However, there is a lack of information on its long-term effects on soil changes in tropical areas. Thus, the objectives of this study were to determine (i) the effect of sewage sludge application on heavy metal build-up in soil and maize grains and leaves, and (ii) the effects of soil amendment with sewage sludge on the chemical properties of a Brazilian oxisol. Besides the increasing levels of Zn, Cu, Ni, and Cr, amending soil with sewage sludge also alters the distribution of these metals by increasing the mobile Phases, which correlated significantly with the increase in metal extraction with two single extractants, Mehlich 1 and DTPA (Diethylene triamine pentaacetic acid). The levels of Fe, Mn, Zn, and Cu in maize grains and leaves increased with the type and rate of sewage sludge application. Nevertheless, metal build-up in soil and plants was within the allowed limits. Significant differences were also found in soil characteristics like humic fractionation with the applied sewage doses. The data obtained does not indicate any expressive drawbacks in the use of sewage sludge as a soil amendment, as the heavy metal concentrations observed are unlikely to cause any environmental or health problems, even overestimated loadings, and are in accordance with the Brazilian regulations on farming land biosolid disposal.  相似文献   

10.
The use of organic fertilizers in lands with low organic-matter content, such as those found in the Mediterranean region, is an attractive option for enhancing soil quality and fertility status. However, it is difficult to assess the nitrogen (N) mineralization rate and the quantity of the organic amendment to be added. Thus we conducted a 300-day incubation trial, where four commonly found organic amendments (three different animal manures and one sewage sludge) were mixed with two soils. Our aim was to assess the potentially mineralizable N with the use of the first-order exponential model. Our findings indicated that the N-mineralization data fitted well to the model we used and that the active N fraction (eluted available N per total N added) ranged from 28.4% to 50.3%, depending on indigenous organic carbon (C) content, as well as on the organic amendment C/N ratio and total N content.  相似文献   

11.
[目的]揭示污泥堆肥施用后土壤单位有机碳矿化及温度敏感性(Q10)对于市政污泥资源化利用和土壤碳库稳定性的主控因素,并进而为市政污泥处理及土壤有机碳固持提供理论支撑。[方法]以黄土丘陵区退化草地土壤为研究对象,测定了不同污泥堆肥添加比例(0,2.0%,5.0%,10.0%,15.0%,20.0%)和培养温度(15℃,25℃和35℃)下土壤有机碳矿化速率,探讨了污泥堆肥添加对土壤有机碳矿化特征和Q10的影响。[结果](1)与CK相比,不同污泥堆肥添加在培养初期土壤单位有机碳矿化速率显著增加(p<0.01),之后迅速下降直至趋于稳定;而施用污泥处理组的土壤单位累积矿化量是CK的1.6~4.2倍,在施用比例达到10.0%~20.0%时其有机碳矿化速率与累积矿化量均差异不显著。(2)运用一级动力学方程,拟合不同温度不同污泥添加土壤单位有机碳矿化动态均达到较好效果(R2>0.95),潜在矿化势(C0)值在6.92~39.60 mg C/g差异显著(p<0.05),土壤有机碳矿化速率常数(k)...  相似文献   

12.
《Geoderma》2007,137(3-4):497-503
Soil amendment with sewage sludge (SS) from municipal wastewater treatment plants is nowadays a common practice for both increasing soil organic matter and nutrient contents and waste disposal. However, the application of organic amendments that are not sufficiently mature and stable may adversely affect soil properties. Composting and thermal drying are treatments designed to minimize these possible deleterious effects and to facilitate the use of SS as a soil organic amendment. In this work, an arid soil either unamended or amended with composted sewage sludge (CSS) or thermally-dried sewage sludge (TSS) was moistened to an equivalent of 60% soil water holding capacity and incubated for 60 days at 28 °C. The C–CO2 emission from the samples was periodically measured in order to study C mineralization kinetics and evaluate the use of these SS as organic amendments. In all cases, C mineralization decreased after the first day. TSS-amended soil showed significantly higher mineralization rates than unamended and CSS-amended soils during the incubation period. The data of cumulative C–CO2 released from unamended and SS-amended soils were fitted to six different kinetic models. A two simultaneous reactions model, which considers two organic pools with different degree of biodegradability, was found to be the most appropriate to describe C mineralization kinetics for all the soils. The parameters derived from this model suggested a larger presence of easily biodegradable compounds in TSS-amended soil than in CSS-amended soil, which in turn presented a C mineralization pattern very similar to that of the unamended soil. Furthermore, net mineralization coefficient and complementary mineralization coefficient were calculated from C mineralization data. The largest losses of C were measured for TSS-amended soil probably due to an extended microbial activity. The results obtained thus indicated that CSS is more efficient for increasing total organic C in arid soils.  相似文献   

13.
An incubation experiment was carried out to investigate whether salinity at high pH has negative effects on microbial substrate use, i.e. the mineralization of the amendment to CO2 and inorganic N and the incorporation of amendment C into microbial biomass C. In order to exploit natural differences in the 13C/12C ratio, substrate from two C4 plants, i.e. highly decomposed and N-rich sugarcane filter cake and less decomposed N-poor maize leaf straw, were added to two alkaline Pakistani soils differing in salinity, which had previously been cultivated with C3 plants. In soil 1, the additional CO2 evolution was equivalent to 65% of the added amount in the maize straw treatment and to 35% in the filter cake treatment. In the more saline soil 2, the respective figures were 56% and 32%. The maize straw amendment led to an identical immobilization of approximately 48 μg N g−1 soil over the 56-day incubation in both soils compared with the control soils. In the filter cake treatment, the amount of inorganic N immobilized was 8.5 μg N g−1 higher in soil 1 than in soil 2 compared with the control soils. In the control treatment, the content of microbial biomass C3-C in soil 1 was twice that in soil 2 throughout the incubation. This fraction declined by about 30% during the incubation in both soils. The two amendments replaced initially similar absolute amounts of the autochthonous microbial biomass C, i.e. 50% of the original microbial biomass C in soil 1 and almost 90% in soil 2. The highest contents of microbial biomass C4-C were equivalent to 7% (filter cake) and 11% (maize straw) of the added C. In soil 2, the corresponding values were 14% lower. Increasing salinity had no direct negative effects on microbial substrate use in the present two soils. Consequently, the differences in soil microbial biomass contents are most likely caused indirectly by salinity-induced reduction in plant growth rather than directly by negative effects of salinity on soil microorganisms.  相似文献   

14.
Soil enzymatic response to addition of heavy metals with organic residues   总被引:14,自引:0,他引:14  
Changes in organic C, available P, available heavy metal contents and enzymatic activities induced by addition of two heavy metal rich organic residues [a municipal solid waste compost (MWC) and a non-composted paper sludge (PS)] were determined in two different soils during a 280-day incubation experiment. The addition of the organic materials caused a rapid and significant increase in the organic C and enzymatic activities in both soils, this increase was specially noticeable in soils treated with MWC. In general, enzymatic activities in amended soils tended to decrease with the time. Organic materials also increased heavy metal contents in soil. However, the presence of available soil heavy metals due to the addition of the organic materials at doses of 50,000 kg ha-1 did not negatively affect dehydrogenase, #-glucosidase or urease activities in the soils. There were significant and negative correlations between heavy metals and phosphatase activity in the soils at the beginning of the incubation. This negative correlation was probably due to the decrease in the enzyme activity in soils treated with PS in which high levels of available P were also found. It is difficult, therefore, to attribute an inhibition of the enzyme activity to the presence of these heavy metals because a high available P concentration in soils also depresses phosphatase activity.  相似文献   

15.
There is a need to improve the way in which wastes, such as sewage sludges, are managed and a potential way to proceed would be to transform them into biochar. On the other hand, there is a growing interest in the use of soil biochemical properties as indicators of soil quality because they are sensitive to alterations in soil management. Thus, we have studied the effect of a biochar obtained from sewage sludge on soil biochemical properties in an organic soil using two doses of biochar and comparing these results with the control soil and with soils amended with the same two doses of unpyrolyzed sewage sludge. Microbial biomass C, soil respiration, net N mineralization and several enzyme activities (dehydrogenase, β-glucosidase, phosphomoesterase and arylsulphatase) were monitored. The geometric mean of enzyme activities (GMea) was used as a soil quality index. Individual biochemical properties showed a different response to the treatments, while GMea showed an increase in the quality of soils amended with the high biochar dose and a decrease in those amended with a high sewage sludge dose. The geometric mean of enzyme activities was a suitable index to condense the whole set of soil enzyme values in a single numerical value, which was sensitive to management practices.  相似文献   

16.
The aim of this study was to investigate factors regulating phosphatase activities in Mediterranean soils subjected to sewage sludge applications. Soils originating from calcareous and siliceous mineral parent materials were amended with aerobically digested sewage sludge, with or without physico-chemical treatment by ferric chloride. Sludge amendments, ranging from 6.2 to 10 g kg−1 soil, were carried out in order to provide soil with a P total quantity equivalent to 0.5 g P2O5 per kg of soil. Bacterial density, phosphatase activities (i.e. acid and alkaline phosphomonoesterases and phosphodiesterases) and available P (i.e. P Olsen and P water) were measured after 25 and 87 days of incubation. Results showed significant effects of sewage sludge application and incubation period. Sewage sludge effect resulted in an increase in phosphatase activities, microbial density and available P. Incubation period increased available P while decreasing phosphatase activities. This study also revealed that the origin of sludge and its chemical characteristics may show different effects on certain variables such as phosphodiesterases or bacterial density, whereas mineral parent materials of soils did not show any significant effects.  相似文献   

17.
The present study was conducted to assess the suitability of sewage sludge amendment in soil for Beta vulgaris var. saccharifera (sugar beet) and Triticum aestivum (wheat) by evaluating the arsenic and selenium accumulation and physiological responses of plants grown at 10%, 25%, and 50% sewage sludge amendment rate. Sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently with higher accumulation in plant parts. The chlorophyll contents increased after the sewage sludge treatments except for 50%. The sewage sludge amendment led to a significant increase in arsenic and selenium concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency. The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake in the leaves and root concentrations of arsenic and selenium in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots and leaves for most of the heavy metals. Concentrations of arsenic and selenium were more than the permissible limits of national standards in the edible portion of sugar beet and wheat grown on different sewage sludge amendments ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet and wheat may not be a good option due to risk of contamination of arsenic and selenium.  相似文献   

18.
A valuable feature of sewage sludge used for restoring degraded soils is its supplying capacity for C, N and P. A series of laboratory incubation experiments to quantify the release of N and P from raw (dried) and co-composted urban sewage sludges applied to mine dump soil were conducted. The effect of application dose (0–100 g kg−1) and incubation time (0–30 day) on N and P mineralization as well as the process modelling were carried out by Response Surface Methodology. Models fitted revealed significant interaction effects between factors involved in soil-sludge dynamics, which accounted for 26% total variance in N-mineralization. The response models were used to predict nutrient releases required in properly formulating sludge management guidelines, viz. maximum simultaneous value for extractable inorganic forms of N and P achieved 11 and 18 days after applying 100 g kg−1 of co-compost and dried sludge, respectively. Addition of sludges resulted into mineralization of 18% total N and up to 15% total P, while chemical and biochemical properties of the amended soil were improved paralleling organic matter mineralization. Compared to dried sludge, co-composting sludge lead to a decline of up to 30% and 65% in the availability in soil of N and P, respectively, but at expenses of C losses of only 7%, illustrating that co-composting was superior in turning sludge into an environmentally safe soil amendment.  相似文献   

19.
The aim of this study was to determine the effects of mineral and organic-P-fertilizers on soil P availability, bacteria densities and phosphatase activities, in a degraded Mediterranean soil characterized by low level in soil organic matter and nutrients. A typical degraded Mediterranean soil, originating from a siliceous mineral parent material, was amended with different organic or mineral P-sources: aerobically digested sewage sludge (SS), with or without physico-chemical treatment by ferric chloride; sewage sludge compost (SSC); Na or K mineral P-salts (Pi-salts). All the amendments were carried out in order to provide soil with a P total quantity equivalent to 0.5 g P2O5/kg of soil. Bacterial density, phosphatase activities (i.e. acid (APH) and alkaline (BPH) phosphomonoesterases and phosphodiesterases), BPH/APH ratio, and available P (P Olsen) were measured after 25 and 87 days of incubation. Results showed that all the P-sources used to fertilize soil during this study resulted in significant increase in P concentration. However, different responses in phosphatase activities and bacterial densities were obtained with regards to the amendment applied to soil. Indeed, it appeared clearly that sewage sludge (SS) considerably stimulated soil biological activity, and more especially the different kinds of phosphatases involved in P mineralization and P turn-over. On the contrary, sewage sludge compost (SSC) as well as P-salts amendments did not affected these parameters in most cases. Results showed also that the incubation time influenced almost all the biological and chemical parameters investigated during this study. As a consequence, P availability was considerably improved in the amended soils between the two sampling dates.  相似文献   

20.
The present study was conducted to assess the suitability of sewage-sludge amendment in soil for Triticum aestivum (wheat) by evaluating the heavy-metal accumulation and physiological responses of plants grown at 10, 25, and 50% sewage sludge amendment rate. Sewage sludge amendment modified the physicochemical properties of soil, thus increasing the availability of heavy metals in soil and consequently greater accumulation in plant parts. The chlorophyll contents generally increased after the sewage sludge treatments. Heavy-metal accumulation in the soil after the treatments did not exceed the limits for land application of sewage sludge recommended by the U.S. Environmental Protection Agency. Recycling sewage sludge as fertilizer will generate economical profits. However, the use of sewage sludge amendment in the soil for growing wheat may not be a good option due to risk of contamination of some heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号