首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought severely limits crop yield of peanut. Yet cultivars with enhanced root development enable the exploration of a greater volume of soil for water and nutrients, helping the plant survive. Root distribution patterns of three genotypes (ICGV 98305, ICGV 98324 and Tifton‐8) were compared when grown in well‐watered rhizoboxes and when grown in rhizoboxes where an early‐season drought was imposed using rain‐exclusion shelters. The treatments were arranged in a completely randomized design with three replications, and the experiment was conducted during two seasons at the Field Crop Research Station of Khon Kaen University, in Khon Kaen, Thailand. The root system of ICGV 98305, when grown under drought, had a significantly higher root length in the 30–110 cm deep soil layers and less roots in the 0–30 cm soil layers when under drought than when grown under well‐watered conditions. Roots of Tifton‐8 had the largest reductions in root length in upper soil layer and reduced in most soil layers. Tifton‐8 grown under drought was smaller than under well‐watered control for all root traits, showing negative response to drought. The peanut genotypes with high root traits in deeper soil layer under early‐season drought might contribute to drought avoidance mechanism.  相似文献   

2.
In a field trial involving four tepary lines (Phaseolus acutifolius A. Gray), NE#8A and NE#19 produced higher grain yield than NE#5 and NE#7 under both well watered and drought conditions. However, NE#8A is considered more resistant than NE#19 in terms of drought sensitivity index. Greenhouse investigations on intact plants indicated no differences among the four lines in leaf and stem dry mass, and leaf area. Root depth did not strictly differentiate lower‐yielding from higher‐yielding lines. In contrast to lower‐yielding lines, however, plants of higher‐yielding ones allocated greater dry matter (DM) in roots in response to imposed water stress. Distinctly, NE#19 had the greatest root : shoot (R : S) while NE#8A characterized by high net photosynthesis. Both NE#8A and NE#19 showed reduced leaf area : root dry mass ratio, stomata conductance and transpiration rate. Consequently, these two lines showed no significant changes in leaf relative water content while photosynthetic water‐use‐efficiency increased in response to water stress. Calli derived from leaf and root tissues of higher‐yielding lines exhibited low initial osmotic potential (ψs). These calli did not show alterations in ψs, DM% and relative growth rate (RGR) when subjected to water stress. Although leaf‐ and root‐derived calli of lower‐yielding lines exhibited osmotic adjustment, they suffered water stress in terms of elevated DM and reduced RGR. Overall, results suggest that dehydration‐avoidance mechanisms conditioned by increased root mass and stomata resistance accompanied with low initial cellular ψs sustained high grain yield of tepary under limited water supply.  相似文献   

3.
Maize (Zea mays L.) is an important staple food crop in West and Central Africa (WCA). However, its production is constrained by drought. Knowledge and understanding of the genetics of hybrid performance under drought is invaluable in designing breeding strategies for improving maize yield. One hundred and fifty hybrids obtained by crossing 30 inbreds in sets using the North Carolina Design II plus six checks were evaluated under drought and well‐watered conditions for 2 years at three locations in Nigeria. The objectives of the studies were to (i) determine the mode of gene action controlling grain yield and other important agronomic traits of selected early inbred lines, (ii) examine the relationship between per se performance of inbreds and their hybrids and (iii) identify appropriate testers for maize breeding programmes in WCA. General combining ability (GCA) and specific combining ability (SCA) mean squares were significant (P < 0.01) for grain yield and other traits under the research environments. The GCA accounted for 64.5 % and 62.3 % of the total variation for grain yield under drought and well‐watered conditions, indicating that additive gene action largely controlled the inheritance of grain yield of the hybrids. Narrow‐sense heritability was 67 % for grain yield under drought and 49 % under well‐watered conditions. The correlations between traits of early‐maturing parental lines and their hybrids were significant (P < 0.01) under drought, well‐watered and across environments. Mid‐parent and better‐parent heterosis for grain yield were 45.3 % and 18.4 % under drought stress and 111.9 % and 102.6 % under well‐watered conditions. Inbreds TZEI 31, TZEI 17, TZEI 129 and TZEI 157 were identified as the best testers. Drought‐tolerant hybrids with superior performance under stress and non‐stress conditions could be obtained through the accumulation of favourable alleles for drought tolerance in both parental lines.  相似文献   

4.
Sorghum [Sorghum bicolor (L.) Moench] is a drought‐tolerant crop, and its productivity in rain fed environments has increased since the 1950s. This increase is due to changes in agronomic practices and hybrid improvement. The objective of this study was to determine what aspects of grain sorghum morphology, physiology and water use have changed with hybrid improvement and might have contributed to this yield increase. A 2‐year greenhouse experiment was conducted with one hybrid from each of the past five decades. The hybrids were studied in well‐watered and pre‐ and post‐flowering water deficit conditions. Total water use, transpiration, stomatal conductance and photosynthesis were measured during the growing period. Biomass and biomass components were measured at harvest. There was no consistent change in the leaf physiological parameters resulting from hybrid advancement. In contrast, total water use increased in rate of 8.5 cm3 kg soil?1 year?1 from old to new hybrids in the well‐watered treatments. Root biomass also increased in rate of 0.2 g plant?1 year?1. Leaf biomass and panicle length also was greater for the newest compared with the older hybrids. Hybrid advancement was related to increase in panicle length but decrease in peduncle length. Results indicated that hybrid development programmes created hybrids with improved drought avoidance, due to better root density of newly released hybrids, or hybrids with better resource use which ultimately increased yield under rain fed conditions.  相似文献   

5.
To examine the extent to which heat stress during grain filling impacts on the development and yield of winter wheat (Triticum aestivum L.), a 3-year field experiment was conducted on a loess soil with high water holding capacity in the North German Plain. Thirty-two mostly European winter wheat cultivars were exposed to heat stress in a mobile foil tunnel with maximum air temperatures of 45.7, 45.4, and 47.2°C in 2015, 2016, and 2017, respectively. The 14-day post-anthesis heat stress treatment caused an average 57.3% grain yield reduction compared to a close-by non-stressed control. The proportion of green crop area after the heat stress phase varied from 7% to 98% in 2016 and from 37% to 94% in 2017. The green crop area percentage did not significantly correlate with grain yield, indicating that the delayed senescence of stay-green phenotypes offers no yield advantage under terminal heat stress. The water soluble carbohydrate (WSC) concentration of the stems at crop maturity varied between 6 and 92 g/kg dry matter, showing that the genotypes differed in their efficiency at using the stem carbohydrate reserves for grain filling under heat stress. The stem WSC concentration correlated positively with the beginning of anthesis (r = 0.704; p < .001) but negatively with the grain yield (r = −0.431; p < .05). For heat tolerance breeding, the stem reserve strategy, i. e. the rapid and full exhaustion of the temporary carbohydrate storage therefore seems more promising than the stay-green strategy.  相似文献   

6.
Chickpea is a major crop grown for its nutritional value, and it is used for both food and feed. However, terminal drought greatly reduces grain yield in many chickpea producing areas. The impacts of drought could be mitigated by adapting chickpea genotypes with higher water‐use efficiency (WUE). To assess genetic variation for WUE, contrasting genotypes were sown in two moisture regimes (well‐watered and water‐limited) and two tillage regimes (tillage and no‐tillage) in north‐western NSW across two consecutive seasons. The well‐watered and no till treatments were higher yielding than their respective rainfed and tillage treatments. Genotypes did not differ (p < 0.05) in their water use but differed significantly in their WUE, and a significant genotype‐by‐moisture treatment effect was observed. The heritability of WUE was higher under tillage (71.3% for tillage under rainfed conditions and 73.0% for tillage and irrigated conditions) than no‐till (43.3% for no till under rainfed conditions and 36.4% for no‐till and irrigated conditions), and no significant genotype‐by‐tillage interaction was observed.  相似文献   

7.
The biomass allocation pattern of plants to shoots and roots is a key in the cycle of elements such as carbon, water and nutrients with, for instance, the greatest allocations to roots fostering the transfer of atmospheric carbon to soils through photosynthesis. Several studies have investigated the root to shoot ratio (R:S) biomass of existing crops but variation within a crop species constitutes an important information gap for selecting genotypes aiming for increasing soil carbon stocks for climate change mitigation and food security. The objectives of this study were to evaluate agronomic performance and quantify biomass production and allocation between roots and shoots, in response to different soil water levels to select promising genotypes for breeding. Field and greenhouse experiments were carried out using 100 genotypes including wheat and Triticale under drought‐stressed and non‐stressed conditions. The experiments were set‐up using a 10 × 10 alpha lattice design with two replications under water stress and non‐stress conditions. The following phenotypic traits were collected: number of days to heading (DTH), number of productive tillers per plant (NPT), plant height (PH), days to maturity (DTM), spike length (SL), kernels per spike (KPS), thousand kernel weight (TKW), root biomass (RB), shoot biomass (SB), root to shoot ratio (R:S) and grain yield (GY). There was significant (p < 0.05) variation for grain yield and biomass production because of genotypic variation. The highest grain yield of 247.3 g/m2 was recorded in the genotype LM52 and the least was in genotype Sossognon with 30 g/m2. Shoot biomass ranged from 830 g/m2 (genotype Arenza) to 437 g/m2 (LM57), whilst root biomass ranged between 603 g/m2 for Triticale and 140 g/m2 for LM15 across testing sites and water regimes. Triticale also recorded the highest R:S of 1.2, whilst the least was 0.30 for wheat genotype LM18. Overall, drought stress reduced total biomass production by 35% and R:S by 14%. Genotypic variation existed for all measured traits useful for improving drought tolerance, whilst the calculated R:S values can improve accuracy in estimating C sequestration potential of wheat. Wheat genotypes LM26, LM47, BW140, LM70, LM48, BW152, LM75, BW162, LM71 and BW141 were selected for further development based on their high total biomass production, grain yield potential and genetic diversity under drought stress.  相似文献   

8.
Soybean is commonly cultivated under rainfed conditions being water availability the main constraint. We evaluated the performance of different managements under contrasting water availability to test possible trade‐offs among managements, and to determine physiological variables explaining these yield differences. Four treatments were designed through specific combinations of cultivar, row spacing and stand density. They were classified as stress tolerance or yield potential strategies and were evaluated under two contrasting water availability treatments. Treatments ranged from 349 to 954 mm total water availability. Water stress treatments yielded 72% and 59% of the well‐watered treatment each year, similar to frequent soybean water stress levels for our production region. Management treatments showed significant yield differences (p < 0.05), but the management × water availability interaction did not (p = 0.42). No management option helped reduce negative water stress effects. Highest yields were achieved using 0.25 m row spacing, a stand density of 60 pl per m2, and a high yield potential genotype. Yield variations were explained by differences in harvested seeds per unit area (R2 = 0.75; p < 0.001) and total N uptake at maturity (R2 = 0.93; p < 0.001) across environments. Because management strategies specifically tailored to cope with water shortages showed limited value, farmers need to target yield potential management options.  相似文献   

9.
Reduced leaf senescence (stay-green) has been demonstrated to improve tolerance of post-flowering moisture stress in grain sorghum. A number of quantitative trait loci (QTLs) associated with stay-green have been identified in sorghum, to facilitate transfer of this trait into adapted genetic backgrounds. This study reports initial evaluations, in both well watered and post-flowering stress environments, following partial introgression (BC2F3/BC1F4 generations) of four stable stay-green QTLs (StgB, Stg1, Stg3 and Stg4) from donor parent B35 to senescent variety R 16. The majority of the introgression lines had higher leaf chlorophyll levels at flowering (a distinctive trait of the donor parent) and a greater percentage green leaf area during the latter part of grain filling, than did R 16, indicating that the stay-green QTLs were expressed phenotypically in the R 16 background. None of the QTL introgression lines achieved the same level of stay-green as B35, however. Maintenance of a greater relative green leaf area during the latter half of grain filling was related to a greater relative grain yield in two of three post-flowering moisture deficit environments in which the materials were evaluated (r 2 = 0.34 in 2004–2005 and r 2 = 0.76 in 2005–2006), as was a direct measure of leaf chlorophyll in one of the post-flowering stress environments in which this was measured (r 2 = 0.42, P < 0.05). Thus the study provided useful evidence that the marker-assisted backcross transfer of stay-green QTLs from B35 into an adapted, but senescent background has the potential to enhance tolerance of post-flowering drought stress in sorghum.  相似文献   

10.
Water scarcity is threatening the sustainability of global food grain production systems. Devising management strategies and identification of crop species and genotypes are direly required to meet the global food demands with limited supply. This study, consisted of two independent experiments, was conducted to compare faba bean (Vicia faba L.) genotypes Giza Blanka, Goff‐1, Hassawi‐1, Hassawi‐2 and Gazira‐2 in terms of physiological attributes and yield under water‐limited environments. In first experiment, conducted in a growth chamber, osmotic stress of ?0.78, ?0.96, ?1.19 and ?1.65 MPa was induced using polyethylene glycol for 4 weeks. In second experiment, conducted in open field for two consecutive growing seasons, water deficit treatments were applied 3 weeks after sowing. In this experiment, irrigation was applied when an amount of evaporated water from the ‘class A pan’ evaporation reached 50 mm (well watered), 100 mm (moderate drought) and 150 mm (severe drought). Water deficit, applied in terms of osmotic stress or drought, reduced the root and shoot length, related leaf water contents, total chlorophyll contents and efficiency of photosystem‐II, plant height, grain yield and related attributes in faba bean; increased the leaf free proline, leaf soluble proteins and malondialdehyde contents, and triggered the maturity in tested faba bean genotypes. However, substantial genetic variation was observed in the tested genotypes in this regard. For instance, root length of genotypes Giza Blanka and Hassawi‐2 decreased gradually, whereas it was increased in genotypes Goff‐1, Hassawi‐1 and Gazira‐2 with increase in the level of osmotic stress. Genotypes Gazira‐2 and Hassawi‐2 had better relative leaf water contents, leaf free proline and soluble proteins under water deficit conditions; however, these were minimum in genotype Giza Blanka. Better accumulation of leaf free proline, soluble proteins, and maintenance of chlorophyll contents, tissue water, efficiency of photosystem‐II and grain weight in water‐limited conditions helped some genotypes like Hassawi‐2 to yield better. Future breeding programs for developing new faba bean genotypes for water‐limited environments may consider these traits.  相似文献   

11.
Temporal and seasonal water deficit is one of the major factors limiting crop yield on the Canadian prairie. Selection for low carbon isotope discrimination (Δ13C) or high water‐use efficiency (WUE) can lead to improved yield in some environments. To understand better the physiology and WUE of barley under drought conditions on the Canadian prairie, 12 barley (Hordeum vulgare L.) genotypes with contrasting levels of leaf Δ13C were investigated for performance stability across locations and years in Alberta, Canada. Four of those genotypes (‘CDC Cowboy’, ‘Niobe’, ‘170011’ and ‘Kasota’) were also grown in the greenhouse under well‐watered and water‐deficit conditions to examine genotypic variations in leaf Δ13C, WUE, gas exchange parameters and specific leaf area (SLA). The water‐deficit treatment was imposed at the jointing stage for 10 days followed by re‐watering to pre‐deficit level. Genotypic ranking in leaf Δ13C was highly consistent, with ‘170011’, ‘CDC Cowboy’ and ‘W89001002003’ being the lowest and ‘Kasota’‘160049’ and ‘H93174006’ being the highest leaf Δ13C. Under field and greenhouse (well‐watered) conditions, leaf Δ13C was significantly correlated with stomatal conductance (gs). Water deficit significantly increased WUE, with ‘CDC Cowboy’– a low leaf Δ13C genotype with significantly higher WUE and lower percentage decline in assimilation rate (A) and gs than the other three genotypes (‘Niobe’, ‘170011’ and ‘Kasota’). We conclude that leaf Δ13C is a stable trait in the genotypes evaluated. Low leaf Δ13C of ‘CDC Cowboy’ was achieved by maintaining a high A and a low gs, with comparable biomass and grain yield to genotypes showing a high gs under field conditions; hence, selection for a low leaf Δ13C genotype such as ‘CDC Cowboy’ maybe important for maintaining productivity and yield stability under water‐limited conditions on the Canadian prairie.  相似文献   

12.
The aim of the study was to investigate source‐sink relations of wheat under continuous heat stress and to identify bottle necks of yield formation. A pot experiment was conducted in two climatic chambers exposing wheat plants (Triticum aestivum L. cv. Thasos) either to day/night temperatures of 20/20°C (control conditions) or of 30/25°C (heat stress) during the whole vegetation period in the absence of plant water deficit. Plants were harvested at four phenological stages: three‐node stage (DC 33), start of flowering (DC 61), grain filling (DC 75) and maturity (DC 94). Heat stress shortened the development phases of the plants and caused a significant decrease in total above‐ground biomass between 19% and 41%. At grain filling and at maturity, the reductions in total shoot biomass mainly resulted from grain yield depressions by 77% and 58%, respectively. The ear number per plant was significantly higher under heat stress in comparison with the control, at maturity it was more than doubled. On the contrary, under heat stress, the kernel number per ear was strongly decreased by 83% and 75% during grain filling and at maturity, respectively. The decrease in individual kernel weight was 23% at maturity. Thus, the heat‐stressed plants were able to strongly increase the number of ear‐bearing tillers which were able to set only a small number of kernels, yet these kernels showed good grain filling. The harvest index (HI) of heat‐stressed plants was significantly reduced by 36% (control: HI = 50.1% ± 0.4, heat: HI = 32.2% ± 0.9***). The plants in the stress treatment adapted to the adverse conditions by less biomass production which presumably allowed a higher transpiration without an increase in total water consumption. Nevertheless, under heat stress, the water use efficiency (WUEgrain) was strongly decreased by 62% as a result of a small grain yield. In ears and grains, the sucrose, glucose and fructose concentrations were not significantly different between control and heat stress at start of flowering and during grain filling. Thus, the supply of assimilates was not restricted (no source limitation). Sink capacity was reduced by heat stress, as lesser and smaller kernels were produced than in the control. Concerning sink activity, the sink‐limiting step during kernel set is probably the active transport of hexoses across the plasma membrane into the developing kernels, which could also affect grain filling. This needs to be investigated in more detail in further studies.  相似文献   

13.
Brazil is the world's largest producer of common beans (Phaseolus vulgaris L.). Drought stress harms the morphological and agronomic traits of beans. This study evaluates the reaction to water deficit in five genotypes of black beans. The experiment was conducted in the IDR-IAPAR-EMATER in Londrina-PR, Brazil. A split-plot design was used, with three replications. The genotypes were included in the subplots and the treatments with or without water deficit in the plots. Water deficit was induced on the pre-flowering stage and maintained for 20 days in the plots submitted to drought stress. For the growth analysis, plants were collected at 35, 54 and 70 days after emergence. At the stage of physiological ripeness, several morphological and yield traits were evaluated. The genotypes IPR Uirapuru and BRS Esplendor can be considered tolerant and used as a tolerant source to water deficit in common bean germplasm banks. The line LP 08-90 has morphological and agronomic adaptations efficient to overcome water deficit's effects, presenting a higher grain yield in both crop conditions, which indicates the success of black beans breeding to deal with water deficit.  相似文献   

14.
Drought stress is an important limitation for potato (Solanum tuberosum L.) production as potato depends on appropriate water availability for high yields of good quality. Therefore, especially in the background of climate change, it is an important goal in potato breeding to improve drought stress tolerance. In this study, 34 European starch potato cultivars were evaluated for drought stress tolerance by growing under well‐watered and long‐term drought stress conditions in rainout shelters in 2 years’ pot trials. Besides yield, six physiological traits, that is free proline content, osmolality, total soluble sugar content, chlorophyll content (SPAD), cell membrane stability and crude protein content, were determined in leaves sampled during vegetative growth and during flowering to investigate their association with drought tolerance. ANOVA revealed significant treatment effects for all physiological traits and increased genotypic effects at flowering. The sensitivity of physiological traits to drought was significantly higher during flowering than during vegetative growth. Drought stress decreased starch yield significantly (< .001), on average by 55%. Starch yield was significantly influenced by genotype and genotype × treatment interactions. Stress tolerance index (STI) calculated from starch yield ranged from 0.26 (sensitive) to 0.76 (tolerant) with significant genotype effects (p ≤ .001). STI correlated positively with cell membrane stability (r = .59) and crude protein content (r = .38) and negatively with osmolality (r = ?.57) and total soluble sugar content (r = ?.71). These contrary correlations suggest a dual adaptation strategy in potato under long‐term drought stress conditions including increased membrane stability combined with an increased osmolality due to an increased soluble sugar content.  相似文献   

15.
This study aimed to reduce the gap of knowledge on white lupin drought tolerance variation, by assessing the grain yield of 21 landraces from major historical cropping regions, one variety and two breeding lines in a large phenotyping platform that imposed controlled severely stressed or moisture‐favourable conditions after an initial stage of favourable growth. Drought stress reduced grain yield by 79%. Genetic correlation coefficients indicated moderate consistency of genotype responses across conditions for grain yield (rg = 0.76), fairly high consistency for straw yield (rg = 0.85) and harvest index (rg = 0.91), and high consistency for flowering time (rg = 0.99). However, low genetic correlation for yield (rg = 0.31) occurred among a subset of genotypes with early phenology. Specific adaptation to either condition implied significant (= 0.05) genotype × condition interaction of crossover type between well‐performing genotypes. Early flowering was an important stress escape mechanism, but intrinsic drought tolerance could be inferred from responses of a few genotypes. Various landraces out‐yielded the improved germplasm under stressed or favourable conditions.  相似文献   

16.
Maize production in Thailand is increasingly suffering from drought periods along the cropping season. This creates the need for rapid and accurate methods to detect crop water stress to prevent yield loss. The study was, therefore, conducted to improve the efficacy of thermal imaging for assessing maize water stress and yield prediction. The experiment was carried out under controlled and field conditions in Phitsanulok, Thailand. Five treatments were applied, including (T1) fully irrigated treatment with 100% of crop water requirement (CWR) as control; (T2) early stress with 50% of CWR from 20 days after sowing (DAS) until anthesis and subsequent rewatering; (T3) sustained deficit at 50% of CWR from 20 DAS until harvest; (T4) late stress with 100% of CWR until anthesis and 50% of CWR after anthesis until harvest; (T5) late stress with 100% of CWR until anthesis and no irrigation after anthesis. Canopy temperature (FLIR), crop growth and soil moisture were measured at 5-day-intervals. Under controlled conditions, early water stress significantly reduced maize growth and yield. Water deficit after anthesis had no significant effect. A new combination of wet/dry sponge type reference surfaces was used for the determination of the Crop Water Stress Index (CWSI). There was a strong relationship between CWSI and stomatal conductance (R² = 0.90), with a CWSI of 0.35 being correlated to a 64%-yield loss. Assessing CWSI at 55 DAS, that is, at tasseling, under greenhouse conditions corresponded best to the final maize yield. This linear regression model validated well in both maize lowland (R² = 0.94) and maize upland fields (R² = 0.97) under the prevailing variety, soil and climate conditions. The results demonstrate that, using improved standardized references and data acquisition protocols, thermal imaging CWSI monitoring according to critical phenological stages enables yield prediction under drought stress.  相似文献   

17.
Drought can drastically reduce cowpea [Vigna unguiculata (L.) Walp.] biomass and grain yield. The application of plant growth‐promoting rhizobacteria and arbuscular mycorrhizal fungi can confer resistance to plants and reduce the effects of environmental stresses, including drought. Seed coating is a technique which allows the application of minor amounts of microbial inocula. Main effects of the factors inoculation and water regime showed that: severe or moderate water deficit had a general negative impact on cowpea plants; total biomass production, seed weight and seed yield were enhanced in plants inoculated with P. putida; inoculation of R. irregularis significantly increased nitrogen (N) and phosphorus (P) shoot concentrations; and R. irregularis enhanced both chlorophyll b and carotenoids contents, particularly under severe water deficit. Plants inoculated with P. putida + R. irregularis had an increase in shoot P concentration of 85% and 57%, under moderate and severe water deficit, respectively. Singly inoculated P. putida improved potassium shoot concentration by 25% under moderate water deficit. Overall, in terms of agricultural productivity the inoculation of P. putida under water deficit might be promising. Seed coating has the potential to be used as a large‐scale delivery system of beneficial microbial inoculants.  相似文献   

18.
The impact of mild drought stress (3 weeks at 40 % field water capacity) on yield, physiological processes, accumulation of proline and phenolic compounds and forage quality parameters in forage grasses was evaluated in pot experiments. During four different growing periods, the effects of water deficit were assessed in nine varieties from five species (Lolium perenne, Lolium multiflorum, Festuca pratensis, Festuca arundinacea and Festulolium braunii). All measured parameters were affected by drought stress in the different cuts. Photosynthesis, transpiration rate, stomatal conductance and dry matter yield were significantly lower in drought stress than under well‐watered conditions in all varieties. Higher water‐use efficiency was only observed during the first and fourth drought period, while this was not the case in the second and third. Mild drought stress significantly increased the content of proline, phenolic acid, flavonoids, water‐soluble carbohydrates and protein. All tested grasses showed also an increase of organic matter digestibility and cell wall digestibility under drought stress conditions.  相似文献   

19.
Water deficit is perhaps the most severe threat to sustainable crop production in the conditions of changing climate. Researchers are striving hard to develop resistance against water deficit in crop plants to ensure food security for the coming generations. This study was conducted to establish the role of fulvic acid (FA) application in improving the performance of hybrid maize (Zea mays L.) under drought. Maize plants were grown under normal conditions till tasselling and were then subjected to drought by cessation of water followed by foliar application of FA (1.5 mg l?1). Drought stress disrupted the photosynthetic pigments and reduced the gas exchange leading to reduction in plant growth and productivity. Nonetheless, exogenous FA application substantially ameliorated the adversities of drought by sustaining the chlorophyll contents and gas exchange possibly by enhanced levels of antioxidant enzyme (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) activities and proline. These beneficial effects yielded in terms of plant growth and allometry, and grain yield. It is interesting to note that FA application also improved the crop performance under well‐watered conditions. Hence, FA may be applied to improve the crop performance under drought and well‐watered conditions.  相似文献   

20.
Drought is a major limitation to crop yields worldwide. Screening for soybean yield under water deficit is often a bottleneck in breeding programmes. We assessed the validity of a standardized drought tolerance screening method to predict water‐limited field performance of soybean in NW Argentina. First, to determine the phenological period when yield of glasshouse‐grown plants was more sensitive to water deficit, we applied treatments during 21 days in V7, R3 or R5 stages, being the period from R5 to R6 the most critical for yield. Afterwards, two glasshouse experiments were carried out to quantify the tolerance of either eight or four genotypes, respectively, by applying a controlled water deficit of constant intensity during the critical period. Finally, yield data obtained in field trials in Argentina across several locations and seasons classified according to rainfall were analysed. Drought Susceptibility Index was calculated for each experiment and for field data, and rankings of tolerance were similar in all cases. This standardized method, which can be automated for high‐throughput phenotyping, could represent a useful tool in breeding programmes for identifying soybean cultivars with improved performance under drought conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号