首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A primary driver of the wheat yield gap in Australia and globally is the supply of nitrogen (N) and options to increase N use efficiency (NUE) are fundamental to closure of the yield gap. Co‐application of N with phosphorus (P) is suggested as an avenue to increase fertiliser NUE, and inputs of N and P fertiliser are key variable costs in low rainfall cereal crops. Within field variability in the response to nutrients due to soil and season offers a further opportunity to refine inputs for increased efficiency. The response of wheat to N fertiliser input (0, 10, 20, 40 and 80 kg N ha‐1) under four levels of P fertiliser (0, 5, 10 and 20 kg P ha?1) was measured on three key low rainfall cropping soils (dune, mid‐slope and swale) across a dune‐swale system in a low rainfall semi‐arid environment in South Australia, for three successive cropping seasons. Wheat on sandy soils produced significant and linear yield and protein responses across all three seasons, while wheat on a clay loam only produced a yield response in a high rainfall season. Responses to P fertiliser were measured on the sandy soils but more variable in nature and a consistent effect of increased P nutrition leading to increased NUE was not measured.  相似文献   

2.
Increasing heat and water stress are important threats to wheat growth in rain-fed conditions. Using climate scenario-based projections from the Coupled Model Intercomparison Project phase 5 (CMIP5), we analysed changes in the probability of heat stress around wheat flowering and relative yield loss due to water stress at six locations in eastern Australia. As a consequence of warmer average temperatures, wheat flowering occurred earlier, but the probability of heat stress around flowering still increased by about 3.8%–6.2%. Simulated potential yield across six sites increased on average by about 2.5% regardless of the emission scenario. However, simulated water-limited yield tended to decline at wet and cool locations under future climate while increased at warm and dry locations. Soils with higher plant available water capacity (PAWC) showed a lower response of water-limited yield to rainfall changes except at very dry sites, which means soils with high PAWC were less affected by rainfall changes compared with soils with low PAWC. Our results also indicated that a drought stress index decreased with increasing PAWC and then stagnated at high PAWC. Under high emission scenario RCP8.5, drought stress was expected to decline or stay about the same due to elevated CO2 compensation effect. Therefore, to maintain or increase yield potential in response to the projected climate change, increasing cultivar tolerance to heat stress and improving crop management to reduce impacts of water stress on lower plant available water holding soils should be a priority for the genetic improvement of wheat in eastern Australia.  相似文献   

3.
Drought is a major limitation to crop yields worldwide. Screening for soybean yield under water deficit is often a bottleneck in breeding programmes. We assessed the validity of a standardized drought tolerance screening method to predict water‐limited field performance of soybean in NW Argentina. First, to determine the phenological period when yield of glasshouse‐grown plants was more sensitive to water deficit, we applied treatments during 21 days in V7, R3 or R5 stages, being the period from R5 to R6 the most critical for yield. Afterwards, two glasshouse experiments were carried out to quantify the tolerance of either eight or four genotypes, respectively, by applying a controlled water deficit of constant intensity during the critical period. Finally, yield data obtained in field trials in Argentina across several locations and seasons classified according to rainfall were analysed. Drought Susceptibility Index was calculated for each experiment and for field data, and rankings of tolerance were similar in all cases. This standardized method, which can be automated for high‐throughput phenotyping, could represent a useful tool in breeding programmes for identifying soybean cultivars with improved performance under drought conditions.  相似文献   

4.
Drought‐induced damages in crop plants are ranked at top amid all losses instigated by diverse abiotic stresses. Terminal drought (drought at reproductive phase) has emerged as a severe threat to the productivity of wheat crop. Different seed enhancement techniques, genotypes and distribution of crop plants in different spacings have been explored individually to mitigate these losses; however, their interaction has rarely been tested in improving drought resistance in wheat. This study was conducted to evaluate the potential role of different seed enhancement techniques and row spacings in mitigating the adversities of terminal drought in two wheat cultivars during two consecutive growing seasons of 2010–2011 and 2011–2012. Seeds of wheat cultivars Lasani‐2008 (medium statured) and Triple Dwarf‐1 (dwarf height) soaked in water (hydropriming) or CaCl2 (osmopriming) were sown in 20‐, 25‐ and 30‐cm spaced rows; just before heading, the soil moisture was maintained at 100 % field capacity (well watered) or 50 % field capacity (terminal drought) till maturity. Terminal drought significantly reduced the yield and related traits compared with well‐watered crop; however, osmopriming improved the crop performance under terminal drought. Among different row spacings, wheat sown in 20‐cm spaced rows performed better during both years of study. Wheat cultivar Lasani‐2008 performed better than cultivar Triple Dwarf‐1 under both well‐watered and stress conditions. Maximum net returns and benefit–cost ratio were recorded from osmoprimed seeds of cultivar Lasani‐2008 sown in 20‐cm spaced rows under well‐watered condition. Nonetheless, osmoprimed seeds of cultivar Lasani‐2008 sown in 20‐cm spaced rows were better able to produce good yield under terminal drought.  相似文献   

5.
Potassium (K) fertilization is important to maintain adequate concentrations of plant available K in agricultural soils to achieve best yields and improve crop stress tolerance and water‐use efficiency (WUE). Water‐use efficiency (WUE) can be expressed on various spatiotemporal scales, and it is known that responses of WUE to external stress are not uniform across scales. Multiscale evaluations of the impact of varying K fertilization on the WUE of C3 crops under field conditions are missing so far. In the present field study, we evaluated effects of K fertilization on WUE of sugar beet (Beta vulgaris L.) on short‐termed leaf‐ (WUELeaf) and canopy‐scales (WUECanopy) and as the agronomic ratio of white sugar yield (WSY) to in‐season water use (i.e. WUEWSY). In K‐fertilized plots, WUEWSY was enhanced by 15.9%. This effect is attributed to increased beet yield and WSY, as no differences in total in‐season water use between fertilized and unfertilized plots were observed. Potassium (K) fertilization significantly enhanced the leaf area index, resulting in a more efficient depletion of soil moisture by roots in K‐fertilized plots. As a consequence, WUELeaf was increased due to stomatal adjustment. Potassium (K) improved WUECanopy only by tendency. It is concluded that K fertilization improves the WUE of field‐grown sugar beet across scales, but processes that regulate WUE are highly scale dependent.  相似文献   

6.
Wheat yield and protein content are spatially variable because of inherent spatial variability of factors affecting the yield at field scale. In Mediterranean environments, yield variability is often caused by the irregular weather pattern, particularly rainfall and by position on the landscape. The objective of this study was to determine the effects of landscape position and rainfall on spatial variability of wheat yield and protein in a rolling terrain field of Southern Italy, and to propose stable management areas through simulation modelling and georesistivity imaging in rolling landscape. The study was carried out in Southern Italy, during 2 years of wheat monoculture; extensive soil properties and in-season plant measurements were measured. This study showed that soil water content was the main factor affecting spatial variation of yield for both years. The interactions between rainfall, topography and soil attributes increase the chances to observe yield variability among years. The principal component analysis demonstrated that for both years, soil water content explained most of the variability. The crop simulation model provided excellent results when compared with measured data with root mean square error of 0.2 t ha−1. The simulated cumulative probability function showed that the model was able to confirm the yield temporal stability of three different zones.  相似文献   

7.
Long‐term crop rotation trials were designed to assess sustainability of alternatives to traditional fallow and monocropping. The trial described here (6 years) involved wheat (Triticum aestivum L.) in rotation with lentil (Lens culinaris L.), forage vetch (Vicia sativa), pasture medic (Medicago spp.), fallow and watermelon (Citrullus vulgaris). Barley (Hordeum vulgare L.) was compared with wheat for an additional 2 years. Cereal grain and straw yields were highest with fallow and watermelon followed by vetch, lentil and medic; the latter showed no differential effect of variable grazing intensity. Fertilizer N increased yields except in the low‐rainfall years (less than 250 mm). Barley out‐yielded wheat in terms of grain, but not straw. Medic yielded highest in dry matter, whereas lentil produced highest seed yield. Despite the difficulty of assessing crop and animal‐oriented rotations because of non‐commonality of outputs, economic considerations are foremost, but other benefits of rotations (soil quality, water‐use relations) are also relevant to the overall assessment of cereal‐based Mediterranean rotations. The study suggested barley rather than wheat as the desired cereal in rotation with legumes in this marginal‐rainfall (350 mm) environment and provided support for the viability of vetch and lentil in the cropping system. Given the importance of sheep in the region’s farming system, vetch is likely to have a major role in crop rotations.  相似文献   

8.
Selection for drought tolerance entails prioritizing plant traits that integrate critical physiological processes occurring during crop growth. Discrimination against 13C (?) in leaflets (?leaflet) and tubers (?tuber) was compared under two water regimes in two potato‐improved varieties selected to maintain yield under drought conditions (Unica and Sarnav) and one drought susceptible European cultivar (Désirée). In the control treatment, soil water content was kept at field capacity over the whole growth cycle, while in the drought treatment water supply was restricted after tuber initiation (50 % of field capacity). Gas exchange and N content per unit leaf area (Narea) as well as ? were assessed at different stages. Sarnav showed the highest tuber yield in both water conditions, suggesting that yield in the water restriction treatment was largely driven by yield potential in this genotype. Higher stomatal conductance (gs) and Narea and lower ?leaflet in well‐watered Sarnav suggested higher photosynthetic capacity. Under water restriction, Sarnav maintained higher gs indicating that carbon diffusion was a key factor for biomass accumulation under water restriction. Our results suggest the use of ? determined after tuber initiation as an indirect selection indicator for tuber yield under both well‐watered and restricted soil water availability conditions.  相似文献   

9.
The identification of homogeneous management zones within a field is crucial for variable rate application of agronomic inputs. This study proposed a methodology to identify homogeneous management zones within a 8 ha field, based on the stability of measured and simulated yield patterns in a maize–soybean–wheat crop rotation in north-east Italy. Crop growth and yield were simulated over a 14-year period (1989–2002) using CERES-Maize, CROPGRO-Soybean and CERES-Wheat models to account for weather effects on yield spatial patterns. The overlay of long-term assessments of yield spatial and temporal data allowed for the identification of two stable zones with different yield levels, one with greater yield (called HS for high and stable yield) and one with lower yield (called LS for low and stable yield). The size of the HS zone identified using 14 years of simulated yield was smaller than the one obtained when considering only yield monitor data taken during the 5-year crop rotation. The LS zone was larger when using simulated data, confirming that the consistency of temporal stability increased by increasing the years considered. The models were able to closely simulate yield across the field when site-specific inputs were used, showing potential for use in yield map interpretation in the context of precision agriculture. Results showed that a combination of GIS tools and crop growth simulation models can be used to identify temporally stable zones, which is a fundamental prerequisite for adopting variable rate technologies.  相似文献   

10.
To assess the scope for enhancing productivity of groundnut (Arachis hypogaea L.) in India, well‐calibrated and validated CROPGRO‐Peanut model was used to assess potential yields (water non‐limiting and water limiting) and yield gaps of groundnut for 18 locations representing major groundnut growing regions of India. The average simulated water non‐limiting pod yield of groundnut for the locations was 5440 kg ha?1, whereas the water limiting yield was 2750 kg ha?1 indicating a 49 % reduction in yield because of deficit soil moisture conditions. As against this, the actual pod yields of the locations averaged 1020 kg ha?1, which was 4420 and 1730 kg ha?1 less than the simulated water non‐limiting and water limiting yields, respectively. Across locations, the simulated water non‐limiting yields were less variable than water limited and actual yields, and strongly correlated with solar radiation during the crop season (R2 = 0.62, P ≤ 0.01). Simulated water limiting yield showed a significant positive, but curvilinear relationship (R2 = 0.73, P ≤ 0.01) with mean crop season rainfall across locations. The relationship between actual yield and the mean crop season rainfall across locations was not significant, whereas across seasons for some of the locations, the association was found to be significant. Total yield gap (water non‐limiting minus actual yields) ranged from 3100 to 5570 kg ha?1, and remained more or less unaffected by the quantity of rainfall received across locations. The gap between simulated water non‐limiting and water limiting yields, which ranged from 710 to 5430 kg ha?1, was large at locations with low crop season rainfall, and narrowed down at locations with increasing quantum of crop season rainfall. On the other hand, the gap between simulated water limiting yield and actual farmers yield ranged from 0 to 3150 kg ha?1. It was narrow at locations with low crop season rainfall and increased considerably at locations with increasing amounts of rainfall indicating that type of interventions to abridge the yield gap will vary with the rainfall regimes. It is suggested that improved agronomic management (such as high yielding cultivars, balance crop nutrition and control of pest and diseases) in high rainfall regimes and rainfall conservation and supplemental irrigations in low rainfall regimes will be essential components of the improved technologies aimed at abridging the yield gaps of groundnut.  相似文献   

11.
Cropping fields often have poor-performing patches. In an attempt to increase production on poor patches, farmers may apply additional fertiliser or ameliorants without economic or scientific justification. Improved understanding of the extent and causes of poor performance, management options, potential crop yield and economic benefits can give farmers the tools to consider management change. This paper presents an approach to integrating farmer knowledge, precision agriculture tools and crop simulation modelling to evaluate management options for poor-performing patches.We surveyed nine cropping fields in Western Australia and showed that (1) farmers have good understanding of the spatial extent and rank performance of poor-performing areas, when compared to NDVI or yield maps, (2) there is a wide range of physical and chemical soil constraints to crop yield in such patches, some of which can be ameliorated to raise yield potential, and others where crop inputs such as fertiliser can be better matched to low yield potential.Management options for poor-performing patches were evaluated through simulation analysis by removal of constraints to rooting to varying extents, and hence plant available water capacity. These examples show that if the constraint is mis-diagnosed then the potential benefits from amelioration can be overstated. In many cases constraints, often associated with physical limitations such as shallow available rooting depth or light-texture cannot be ameliorated or are uneconomic to ameliorate. In such cases the best intervention may be to lower crop inputs to better match the water-limited yield potential of such poor-performing areas.This research integrated farmer knowledge and spatial data to define yield zones in which targeted soil sampling and crop simulation were then used to determine yield potential and particular constraints to that potential. The economic costs and benefits of differential zone management were examined under a range of husbandry scenarios and, importantly, the sensitivity of economic gain to mis-diagnosis or errors in defining the zones was tested. This approach provided farmers with a robust and credible method for making decisions about spatial management of their fields.  相似文献   

12.
Wheat is one of the major food crops in the world. It is Australia’s largest crop and most important agricultural commodity. In Australia the crop is grown under rainfed conditions with inherently important regional environmental differences; wheat growing areas are characterized by winter dominant rainfall in southern and western Australia and summer rainfall in northern Australia. Maximizing yield potential across these diverse regions is dependent upon managing, either genetically or agronomically, those factors in the environment that limit yield. The potential of synthetic backcross lines (SBLs) to increase yield in the diverse agroecological zones of Australia was investigated. Significant yield advantages were found for many of the SBLs across diverse environments. Depending on the environment, the yield of the SBLs ranged from 8% to 30% higher than the best local check in Australia. Apart from adaptation to semiarid water stressed conditions, some SBLs were also found to be significantly higher yielding under more optimal (irrigated) conditions. The four testing environments were classified into two groups, with the northern and southern environments being in separate groups. An elite group of SBLs was identified that exhibited broad adaptation across all diverse Australian environments included in this study. Other SBLs showed specific adaptation to either northern or southern Australia. This study showed that SBLs are likely to provide breeders with the opportunity to significantly improve wheat yield beyond what was previously possible in a number of diverse production environments.  相似文献   

13.
The cup plant (Silphium perfoliatum L.) is discussed as an alternative energy crop for biogas production in Germany due to its ecological benefits over continuously grown maize. Moreover, a certain drought tolerance is assumed because of its intensive root growth and the dew water collection by the leaf cups, formed by fused leaf pairs. Therefore, the aim of this study was to estimate evapotranspiration (ET ), water‐use efficiency (WUE ) and the relevance of the leaf cups for the cup plant's water balance in a 2‐year field experiment. Parallel investigations were conducted for the two reference crops maize (high WUE ) and lucerne‐grass (deep and intensive rooting) under rainfed and irrigated conditions. Root system performance was assessed by measuring water depletion at various soil depths. Transpiration‐use efficiency (TUE ) was estimated using a model approach. Averaged over the 2 years, drought‐related above‐ground dry matter reduction was higher for the cup plant (33 %) than for the maize (18 %) and lucerne‐grass (14 %). The WUE of the cup plant (33 kg ha?1 mm?1) was significantly lower than for maize (50 kg ha?1 mm?1). The cup plant had a lower water uptake capacity than lucerne‐grass. Cup plant dry matter yields as high as those of maize will only be attainable at sites that are well supplied with water, be it through a large soil water reserve, groundwater connection, high rainfall or supplemental irrigation.  相似文献   

14.
旨在探明间作模式对作物产量的影响,为间作措施的合理应用和推广提供理论依据。该研究以单作为对照,利用Meta分析方法定量分析间作对作物产量的影响及其影响因素。结果表明,间作较单作显著降低了作物产量,尤其在温带地区。此外,在地面覆盖和豆科作物条件下,间作也降低了作物产量。然而,当降雨量超过600 mm时,间作较单作的作物产量显著增加了29.6%。而当降雨量小于600 mm时,间作较单作的作物产量降低了18.7%。年均气温也显著影响间作的产量效应,当年均气温高于20℃时,间作较单作的作物产量降低了55.1%,长期间作(>5年)有利于提高产量,然而当年数少于3年时,间作较单作却降低了作物产量。高有机质含量(>20 g/kg)和低有机质含量(1 g/kg)条件下,间作均不利于作物产量提高。与此类似,当土壤全氮高于1.5 g/kg时,间作较单作的作物产量降低48.6%。间作对作物产量的降低幅度在pH 6.5~7.5时是最大的。当土壤有效磷、氮和钾含量分别为>30 mg/kg、 <50 mg/kg和50~100 mg/kg时间作较单作降低作物产量。因此,间作的产量效应受气候、试验年限和土壤性状等多种因素的影响。  相似文献   

15.
Through field studies, cotton responses to dual stresses – waterlogging and low light (shade) were investigated. The hypothesis was that shade would amplify yield losses in waterlogged (WL) cotton. Either early or late in the reproductive phase, the crop was WL (96 h and 120 h, in 2012–2013 and 2013–2014, respectively) and/or shaded (6 days or 9 days in 2012–2013 and 2013–2014, respectively). Waterlogging at early reproductive phase significantly reduced lint yield (17 % averaged across both years) of cotton, although shade‐induced yield losses (18 %) were only significant in 2013–2014. Shade significantly exacerbated yield losses only when the impact of waterlogging damage was modest (2013–2014). More intense waterlogging impaired lint yield independently of the light levels. Yield reductions in these experiments were the consequence of both accelerated fruit abscission and fewer fruiting nodes produced. Plants had lower leaf nitrogen levels and photosynthetic rates after waterlogging and/or shade treatments and produced fewer fruiting nodes. Although long‐term shade increased specific leaf area (30 %) and leaf N (20 %) immediately following 5 days of waterlogging, it did not restore shoot growth, node formation or lint yield because of suppressed photosynthetic performance (area basis) and carbohydrate supply.  相似文献   

16.
The effect inter‐row polyethylene mulch on the water use efficiency and crop productivity of furrow‐ and drip‐irrigated maize (Zea mays L.) was evaluated in a field study. In contrast to the traditional ‘on ridge’ mulching, the inter‐row polyethylene mulch was placed in such a way that it could be easily removed for reuse since the row of plants itself was not covered but the furrows were completely covered. Irrigation needs were computed by multiplying the cumulative Class A Pan evaporation between irrigations by a crop coefficient that changed through the growing season. Our results indicate that inter‐row mulching induced earliness under both irrigation treatments. Seventy five percent of canopy density was attained in the mulched treatments contrasting with 45–61 % in the non‐mulched treatments at 34 days after sowing. Throughout the growing period, shoot biomass was significantly higher for the mulched treatments that had as well higher root biomasses. The overall estimated evaporative losses from the non‐mulched treatments were between 37 % and 39 % of the total water applied. The whole gross canopy water use efficiency in the furrow and drip mulched treatments was 64 % and 45 % higher than in the respective non‐mulched treatments. These results indicate that inter‐row polyethylene mulch is an efficient technique by which soil evaporation is reduced and plant productivity increased.  相似文献   

17.
Modifying plant architecture is considered a promising breeding option to enhance crop productivity. Modern chickpea (Cicer arietinum L.) cultivars with either compound (wild‐type) or simple leaf shapes are commercially grown but the relationships between leaf shape and yield are not well understood. In this study, a random sample of ‘Kabuli’ type progeny lines of both leaf types, derived from two crosses between modern American simple leaf cultivars and early‐flowering wild‐type breeding lines, were planted at different sowing densities. Leaf area development and final grain yield in genotypes of the two leaf types responded differently to changes in sowing densities. Compound leaf lines attained higher leaf area indices and higher grain yields at both low and high sowing densities. Yield responses of the simple leaf lines to increasing sowing density were significantly higher compared to compound leaf genotypes in two of three field experiments. The prospects for utilizing the simple leaf trait as a breeding target for short‐season growing areas are discussed.  相似文献   

18.
Maize (Zea mays L.) is an important staple food crop in West and Central Africa (WCA). However, its production is constrained by drought. Knowledge and understanding of the genetics of hybrid performance under drought is invaluable in designing breeding strategies for improving maize yield. One hundred and fifty hybrids obtained by crossing 30 inbreds in sets using the North Carolina Design II plus six checks were evaluated under drought and well‐watered conditions for 2 years at three locations in Nigeria. The objectives of the studies were to (i) determine the mode of gene action controlling grain yield and other important agronomic traits of selected early inbred lines, (ii) examine the relationship between per se performance of inbreds and their hybrids and (iii) identify appropriate testers for maize breeding programmes in WCA. General combining ability (GCA) and specific combining ability (SCA) mean squares were significant (P < 0.01) for grain yield and other traits under the research environments. The GCA accounted for 64.5 % and 62.3 % of the total variation for grain yield under drought and well‐watered conditions, indicating that additive gene action largely controlled the inheritance of grain yield of the hybrids. Narrow‐sense heritability was 67 % for grain yield under drought and 49 % under well‐watered conditions. The correlations between traits of early‐maturing parental lines and their hybrids were significant (P < 0.01) under drought, well‐watered and across environments. Mid‐parent and better‐parent heterosis for grain yield were 45.3 % and 18.4 % under drought stress and 111.9 % and 102.6 % under well‐watered conditions. Inbreds TZEI 31, TZEI 17, TZEI 129 and TZEI 157 were identified as the best testers. Drought‐tolerant hybrids with superior performance under stress and non‐stress conditions could be obtained through the accumulation of favourable alleles for drought tolerance in both parental lines.  相似文献   

19.
Crops often face severe and damaging local drought events, and in some regions, these episodes are predicted to become more frequent due to climate change. Some micro‐organisms have been shown to improve drought tolerance and improve yield in crop plants. Here, we show that fungal root endophytes isolated from a wild barley species (Hordeum murinum subsp. murinum) induced significant improvements in agronomic traits for a severely drought‐stressed barley cultivar grown in a controlled environment, including number of tillers, grain yield and shoot biomass. Five endophyte strains were tested, and the trait that showed the greatest significant difference in the drought‐stressed plants was the number of tillers, where all of the endophyte treatments induced a greater number of tillers per plant. However, except in one case, the mean dry root weight for all plants was greater in the control plants, indicating preferential allocation of resources to aboveground parts in the endophyte treatments. Results were not consistent across all endophyte treatments, with some endophytes performing much better than others. As these growth studies were conducted using soil‐based compost, the results may translate to the field and suggest that some of these endophytes have potential as barley inoculants in arid growing conditions.  相似文献   

20.
Wheat reduced height (Rht) genes encode modified DELLA proteins, which are gibberellin insensitive, accumulate under stress, restrain growth and affect plant stress response. The seedling reaction to soil water deficit regarding leaf gas exchange and chlorophyll fluorescence was compared in near‐isogenic lines carrying the alleles Rht‐B1a (tall), Rht‐B1b (semi‐dwarfing) and Rht‐B1c (dwarfing) and was related to leaf water content and anatomy. Under drought, Rht‐B1c line was characterized by less decreased CO2 assimilation, delayed non‐stomatal limitation of photosynthesis and higher instantaneous water use efficiency. The functional state of its photosynthetic apparatus was better preserved as evidenced by the less decreased actual quantum yield (ΦPSII) and potential maximum quantum yield (Fv/Fm) of PSII, and the less increased quantum yield of non‐regulated energy dissipation (ΦNO). Rht‐B1b line also tended to perform better than Rht‐B1a, but differences were less pronounced. Although the leaves of both dwarf lines were smaller, thicker and more pubescent, their water content was not higher in comparison with the tall line. Nevertheless, in Rht‐B1c, leaf thickness was less decreased and mesophyll cells were less shrunk under drought. The more effective performance of the photosynthetic machinery of dwarf lines under water deficit could be explained by a combination of morpho‐anatomical and metabolic characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号