首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of low‐water‐input forages would be useful for improving the water‐use efficiency of livestock production in semi‐arid and arid regions. The desiccation‐tolerant (DT) species Sporobolus stapfianus Gandoger and two desiccation‐sensitive (DS) species, Sporobolus pyramidalis and Sporobolus fimbriatus (Trin.) Nees. (Poaceae), were evaluated for aerial biomass production and seed productivity under three different irrigation regimes. Sporobolus stapfianus displayed the least biomass production, whereas S. pyramidalis and S. fimbriatus produced up to 3.8‐ and 11.2‐fold greater dry biomass, respectively, at the highest irrigation rate of 12 334 l (0.01 acre‐feet). Sporobolus fimbriatus and to a lesser extent S. pyramidalis showed significant increases in biomass production in response to increased irrigation rates, whereas S. stapfianus did not. Sporobolus pyramidalis and S. fimbriatus exhibited 3.2‐ and 6.0‐fold greater seed production, respectively, in response to increased irrigation rates, whereas S. stapfianus showed only a 1.4‐fold increase. All Sporobolus species possessed forage quality traits (e.g. crude protein, fibre content) comparable to those of timothy, a forage grass grown widely in the Great Basin in the western United States. Micronutrient content exceeded the minimum requirements of beef cattle, without surpassing tolerable limits, with the exception of zinc, which appeared low in all three Sporobolus species. The low water requirements displayed by these species, combined with their acceptable forage qualities, indicate that these grasses have the potential to serve farmers and ranchers in semi‐arid and arid regions of the western United States where irrigation resources are limited.  相似文献   

2.
Drought stress is an important limitation for potato (Solanum tuberosum L.) production as potato depends on appropriate water availability for high yields of good quality. Therefore, especially in the background of climate change, it is an important goal in potato breeding to improve drought stress tolerance. In this study, 34 European starch potato cultivars were evaluated for drought stress tolerance by growing under well‐watered and long‐term drought stress conditions in rainout shelters in 2 years’ pot trials. Besides yield, six physiological traits, that is free proline content, osmolality, total soluble sugar content, chlorophyll content (SPAD), cell membrane stability and crude protein content, were determined in leaves sampled during vegetative growth and during flowering to investigate their association with drought tolerance. ANOVA revealed significant treatment effects for all physiological traits and increased genotypic effects at flowering. The sensitivity of physiological traits to drought was significantly higher during flowering than during vegetative growth. Drought stress decreased starch yield significantly (< .001), on average by 55%. Starch yield was significantly influenced by genotype and genotype × treatment interactions. Stress tolerance index (STI) calculated from starch yield ranged from 0.26 (sensitive) to 0.76 (tolerant) with significant genotype effects (p ≤ .001). STI correlated positively with cell membrane stability (r = .59) and crude protein content (r = .38) and negatively with osmolality (r = ?.57) and total soluble sugar content (r = ?.71). These contrary correlations suggest a dual adaptation strategy in potato under long‐term drought stress conditions including increased membrane stability combined with an increased osmolality due to an increased soluble sugar content.  相似文献   

3.
Two kinds of barley genotypes with various water‐stress tolerances, tolerant Cam/B1 and sensitive Maresi, were subjected to 10‐day soil‐drought stress in seedling and flag leaf developmental phases. After this time, both genotypes regardless of the growth stage showed a decrease in quantum yield of PSII photochemistry (ΦPSII) upon stress treatment; however, this effect was stronger in the sensitive plants than in the tolerant ones. The drought stress in the flag leaf stage was associated with an increase in superoxide dismutase (SOD) level in both genotypes, whereas in seedlings, this effect was observed only for Maresi. The activity of other enzymes (catalase and peroxidase) was changed only in small degree. An increase in proline levels and activities of Δ1‐pyrroline‐5‐carboxylate synthetase (P5CS) and ornithine delta‐aminotransferase (OAT) were observed independently of genotype and the phase of plant development, whereas the activity pyruvate dehydrogenase (PDH) decreased in tolerant genotype. Moreover, changes in the concentration of monocarbohydrates (glucose and fructose) and dicarbohydrates (saccharose, raffinose and maltose) were found: in seedlings, the amount of all soluble sugars increased, while in flag leaves decreased. The drought treatment resulted in a drop in starch level in the tolerant genotype, but in the sensitive one, the content of this substance increased in both developmental stages. EPR studies allowed the determination of the amount and character of organic radicals present in leaves. In control conditions, the content of these radical species was higher in the sensitive genotype than in tolerant one and decreased upon water stress, with the exception of flag leaves of the sensitive plant. Simulation procedure revealed four types of signals in the EPR spectra. One of them was attributed to a chlorophyll a cation and decreased upon drought. The second, ascribed to semiquinone radicals, reflected the redox balance disturbed by water deficit. The two remaining signals were connected with carbon‐centred radicals situated in the carbohydrate matrix. Their number was correlated with starch concentration.  相似文献   

4.
Methyl jasmonate (MeJA), a plant‐signalling molecule, is involved in an array of plant development and the defence responses. This study was conducted to explore the role of exogenous MeJA application in alleviating the adversities of drought stress in soybean (Glycine max L. Merrill.). Soybean plants were grown under normal conditions until blooming and were then subjected to drought by withholding irrigation followed by foliar application of (50 μm ) MeJA. Drought stress substantially suppressed the yield and yield‐related traits, whereas it accelerated the membrane lipid peroxidation. Nonetheless, substantial increase in activities of enzymatic antioxidants (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), proline, relative water contents (RWC) with simultaneous decrease in membrane lipid peroxidation was observed in MeJA‐treated plants under drought. These beneficial effects led to improvement in biological and grain yield, and harvest index under drought. Interestingly, MeJA application was also useful under well‐watered conditions. These results suggest the involvement of MeJA in improving the drought tolerance of soybean by modulating the membrane lipid peroxidation and antioxidant activities.  相似文献   

5.
Increased demand for food requires us to investigate livestock forage and fodder crops that can be grown over a wide range of locations where their cultivation will not compete with that of the food supply. A large portion of the southwestern United States consists of underutilized semi‐arid land. Crops typically used for livestock fodder or forage have high‐water demands that make them uneconomical or unsustainable for semi‐arid and arid regions. The growth rate and low‐input requirements of prickly pear cactus (Opuntia ficus‐indica) make it an excellent candidate for forage or fodder supplementation or replacement in these regions. Previous reports about forage quality data on Opuntia have been scattered across multiple locations, growing conditions and cultivars. Here, we report on the forage quality and mineral content of Opuntia ficus‐indica grown under both field and greenhouse conditions. Crude protein was 71 and 264 g/kg of dry mass for field and greenhouse conditions, respectively. Field‐grown plants showed higher acid and neutral detergent fibre content than greenhouse‐grown plants reflecting higher cellulose, hemicellulose and lignin accumulation. Nutritional values were also compared to requirements of cattle to determine what deficiencies might need to be addressed through supplementation. These data suggest that Opuntia can be used in combination with other feed sources to reduce the demand of resource‐intensive forage crops for raising livestock in dryland areas.  相似文献   

6.
Concerns regarding the safety of transgenic foods have been raised because of possibility of undesirable effects development during genetic engineering. Analysis of phenotypic traits can increase the likelihoods of identifying those unintended effects in dietary composition of the GM crops. Objective of this study was to compare the transgenic lines with their non‐transgenic counterpart. Different vegetative and reproductive traits as well as antioxidant properties were considered to evaluate the transgenic (HV8 and HV23) lines containing CaMsrB2 gene and their non‐transgenic (Ilmi) parent line. Grain size and weight, seed germination, root length, root and shoot dry weight, length and width of flag leaf, plant height, and ligule, stamen and carpel length were not significantly different. Onset and completion of heading in each line occurred almost during the same period. The antioxidant properties in terms of DPPH (1,1‐diphenyl‐2‐picrylhydrazyl) radical scavenging activity and polyphenol content were not statistically different under same treatment condition. The results suggested that the transgenic rice lines containing CaMsrB2 gene were equivalent to their non‐transgenic counterpart without any visible unintended effects.  相似文献   

7.
This study aimed to evaluate the ability of Piriformospora indica to colonize the root of Chenopodium quinoa and to verify whether this endosymbiont can improve the growth, performance and drought resistance of this species. The study delivered, for the first time, evidence for successful colonization of P. indica in quinoa. Hence, pot experiment was conducted in the greenhouse, where inoculated and non‐inoculated plants were subjected to ample (40%–50% WHC) and deficit (15%–20%WHC) irrigation treatments. Drought adversely influenced the plant growth, leading to decline the total plant biomass by 74%. This was linked to an impaired photosynthetic activity (caused by lower gs and Ci/Ca ratio; stomatal limitation of photosynthesis) and a higher risk of ROS production (enhanced ETR/Agross ratio). P. indica colonization improved quinoa plant growth, with total biomass increased by 8% (controls) and 76% (drought‐stressed plants), confirming the growth‐promoting activity of P. indica. Fungal colonization seems to diminish drought‐induced growth hindrance, likely, through an improved water balance, reflected by the higher leaf ψw and gs. Additionally, stomatal limitation of photosynthesis was alleviated (indicated by enhanced Ci/Ca ratio and Anet), so that the threat of oxidative stress was minimized (decreased ETR/Agross). These results infer that symbiosis with P. indica could negate some of the detrimental effects of drought on quinoa growth, a highly desired feature, in particular at low water availability.  相似文献   

8.
Cultivation of the same varieties of mungbean and blackgram across different seasons and locations is constrained by their photo‐ and thermo‐sensitive behaviour. Developing insensitive genotypes, which can fit well across all seasons, requires robust donors which would provide genes imparting this trait. This study was undertaken to identify such donors in the Vigna species. Forty‐eight accessions belonging to 13 Vigna species and eight released cultivars were evaluated under natural field conditions. Among these, two accessions, viz. V. umbellata (IC251442) and V. glabrescens (IC251372) were found photo‐ and thermo‐insensitive as these were able to flower and set pods at temperatures as high as 43.9°C and as low as 2.7°C. Pollen viability studies indicated viable pollen (>75% at 2.7°C and >85% at 41.9°C) and normal pollen tube growth at both the extremes of temperature. The identified V. glabrescens accession has long, constricted pods and dark green, mottled seeds while V. umbellata has smooth, curved pods and shining, oval, large seeds. Both these accessions can be utilized in developing photo–thermo insensitive genotypes in cultivated Vigna species.  相似文献   

9.
Full‐grown Artemisia annua plants were subjected to chemical and physical stress conditions, and the effect of these on the concentration and chemical composition of essential oil components (EOC) in the leaves was studied. The chemical stress treatments were performed by foliar application of NaCl, H2O2, salicylic acid and chitosan oligosaccharide (COS). The EOC of the leaves were extracted with n‐hexane and identified and quantified by GC–MS and GC–FID, respectively. Approximately 96 % of EOC in the extracts were identified and quantified of which β‐pinene, camphene, germacrene D, camphor, coumarin and dihydro‐epi‐deoxyarteannuin B were the major EOC accounting for about 75 % of the total content of EOC in the extracts. The physical stress treatment, sandblasting of the plants resulted in a significant enhancement in the content of α‐pinene, camphene, coumarin and dihydro‐epi‐deoxyarteannuin B. The total yield of identified EOC in non‐treated plants (control) was 86.2 ± 13.8 μg g?1 fresh weight (FW) compared with 104.0 ± 9.1 μg g?1 FW in sandblasted plants. The chemical stress treatments did not affect the composition of EOC significantly. The results indicate that chemical stress treatments do not affect the concentration and composition of EOC in full‐grown A. annua plants to the same extent as physical stress treatment by sandblasting.  相似文献   

10.
Research has indicated osmotic adjustment as a mechanism by which leaves and roots of cotton plants overcome a drought period. However, the relevance of this mechanism in reproductive tissues of modern cultivars under drought has not been fully investigated. The objectives of this study were to measure osmoregulation and carbohydrate balance in reproductive tissues and their subtending leaves grown under water‐deficit conditions. Two cotton cultivars were grown under controlled environment and field conditions. Plants were exposed to water‐deficit stress at peak flowering, approximately 70 days after planting. Measurements included stomatal conductance, proline concentration, soluble carbohydrates and starch concentration, and water potential components. Stomatal conductance of drought‐stressed plants was significantly lower compared to control, while osmotic adjustment occurred in reproductive tissues and their subtending leaves by different primary mechanisms. Pistils accumulated higher sucrose levels, maintaining cell turgor in plants exposed to drought at similar levels to those in well‐watered plants. However, subtending leaves lowered osmotic potential and maintained cell turgor by accumulating more proline. Soluble carbohydrates and starch concentration in leaves were more affected by drought than those of floral tissues, with corresponding reduction in dry matter, suggesting that flowers are more buffered from water‐deficit conditions than the adjacent leaves.  相似文献   

11.
In pepper (Capsicum annuum), the major genes (R‐genes) Me1 and Me3 confer resistance against root‐knot nematodes (Meloidogyne spp.). The combination of R‐genes and quantitative resistance factors in the same genotype is considered a good breeding strategy for increasing the durability of R‐genes. To ascertain this hypothesis, five pepper inbred lines, differing in their quantitative resistance level, were combined with Me1 or Me3 genes in F1 hybrids. The resistance of inbred lines and F1 hybrids was evaluated in a greenhouse with soil naturally infected by M. incognita in two successive growing years. In both years, lines carrying Me3 were less infected by the nematode when combined with quantitative resistance. An increase in nematode infection was observed in the second growing year in lines carrying Me1 or Me3, independently of quantitative resistance. The infection level recorded in inbred lines without R‐genes was similar in both years. The effectiveness of quantitative resistance controlling M. incognita is confirmed in greenhouse conditions, although the durability of Me1 and Me3 when combined with quantitative resistance factors was not seen to increase.  相似文献   

12.
Water is the primary regulator of yield formation in cereals. The effect of water limitation and its timing on development of yield components were studied in detail at spike and spikelet level in spring barley (Hordeum vulgare L.). An experiment with three watering treatments (control watering, CONT; drought prior to pollination, DR1 and terminal drought, DR2) was set up in a large greenhouse (20 × 30 m). In addition to watering treatments, two NPK fertilizer application rates (0 and 120 kg N ha?1) were used to investigate the fertilizer effect. The drought effect exceeded the effect of fertilizer application for grain number and single grain weight (SGW). DR1 reduced the number of grains, whereas DR2 reduced both SGW and the number of grains. Resuming the watering at pollination (DR1) restored photosynthesis and enhanced grain filling, resulting in almost similar SGW in DR1 and CONT plants. Spikelets in the upper mid‐section of the spike dominated yield formation in all treatments. This was particularly emphasised in DR1 plants as 58 % of the grain yield was produced in spikelets 3–5, whereas in DR2 and CONT plants it was 39 % and 36 %, respectively. Hence, drought prior pollination strongly reduced yielding capacity (=grain number) in apical and basal spikelets. DR1 and DR2 reduced substantially grain yield and grain N yield resulting in low nitrogen use efficiency.  相似文献   

13.
14.
The rise of atmospheric CO2 concentration ([CO2]) affects stomatal conductance and thus transpiration and leaf temperature. We evaluated the effect of elevated [CO2] levels under different water supply on daily sap flow and canopy microclimate (air temperature (Tc) and vapour pressure deficit (VPD)) of maize. The crop was cultivated in circular field plots under ambient (AMB, 378 μmol mol?1) and elevated [CO2] (FACE, 550 μmol mol?1) using free‐air CO2 enrichment with sufficient water in 2007, while in 2008 a DRY semicircle received only half as much water as compared to the WET semicircle from mid of July. In 2007, sap flow was measured in WET simultaneously under AMB and FACE conditions and was significantly decreased by elevated [CO2]. In 2008, sap flow was measured in all four treatments but not simultaneously. Therefore, data were correlated with potential evaporation and the slopes were used to determine treatment effects. Drought reduced whole‐plant transpiration by 50 % and 37 % as compared to WET conditions under AMB and FACE, respectively. Moreover, CO2 enrichment did not affect sap flow under drought but decreased it under WET by 20 % averaged over both years. The saving of water in the period before the drought treatment resulted in a displacement of dry soil conditions under FACE as compared to AMB. Under WET, CO2 enrichment always increased Tc and VPD during the day. Under DRY, FACE plots were warmer and drier most of the time in August, but cooler and damper short after the start of drought in July and from the end of August onwards. Thus, the CO2 effect on transpiration under drought was variable and detectable rather easy by measuring canopy microclimate.  相似文献   

15.
Wheat, among all cereal grains, possesses unique characteristics conferred by gluten; in particular, high molecular weight glutenin subunits (HMW‐GS) are of considerable interest as they strictly relate to bread‐making quality and contribute to strengthening and stabilizing dough. Thus, the identification of allelic composition, in particular at the Glu‐B1 locus, is very important to wheat quality improvement. Several PCR‐based molecular markers to tag‐specific HMW glutenin genes encoding Bx and By subunits have been developed in recent years. This study provides a survey of the molecular markers developed for the HMW‐GS at the Glu‐B1 locus. In addition, a selection of molecular markers was tested on 31 durum and bread wheat cultivars containing the By8, By16, By9, Bx17, Bx6, Bx14 and Bx17 Glu‐B1 alleles, and a new assignation was defined for the ZSBy9_aF1/R3 molecular marker that was specific for the By20 allele. We believe the results constitute a practical guide for results that might be achieved by these molecular markers on populations and cultivars with high variability at the Glu‐B1 locus.  相似文献   

16.
In the low‐rainfall region of south‐eastern Australia, distinctive soil types reflecting the typical landscape of higher elevated dunes and swale zones at the bottom can be found within one field. Different soil characteristics cause consequently large variability in cropping productivity between soils and across seasons. To assess the possibilities for zone‐specific management, five farmer fields were zoned into a dune, mid‐slope and swale zone. For each site, zone yields were mapped over 2 years and soil properties were surveyed. This information was used to parameterize and validate the APSIM model for each zone. Field‐measured PAWC increased from the dune to the swale zone. On‐farm results and simulation analysis showed distinctive yield performance of the three designed zones. However, yield is not related to PAWC, it is rather a complex relationship between soil type, fertility and rainfall. While in high‐rainfall years, the swale zones yielded higher due to higher soil organic carbon content and less drainage losses, the dune zones performed better in the low‐rainfall years due to lower evaporation losses. This study emphasizes that in this specific environment where soil variation in texture and subsoil constraints strongly influence crop performance, mechanistic crop models and long‐term field observations are necessary for better understanding of zone‐specific performance, and simple linear relationships across years or sites are not useful.  相似文献   

17.
Rice blast, caused by fungus Magnaporthe grisea, is a serious disease causing considerable economic damage worldwide. Best way to overcome disease is to breed for disease‐resistant cultivars/parental lines of hybrids. Pusa RH10, first aromatic, fine‐grain rice hybrid released and cultivated extensively in India. Hybrid and its parental lines, Pusa 6A and PRR78, are highly susceptible to blast. CO39 pyramid carrying two dominant, broad‐spectrum blast‐resistance genes, viz. Pi‐1 and Piz‐5, used as a donor parent to introgress these genes into PRR78 using marker‐assisted backcrossing (MABC). Microsatellite markers RM5926 and AP5659‐5 tightly linked to Pi‐1 and Piz‐5 genes, respectively, were used for foreground selection to derive introgression lines. Further, these lines were evaluated for agronomic performance, disease reaction and cooking quality traits along with PRR78. Most of the improved lines were on par with PRR78 for all traits evaluated except gelatinization temperature. Recurrent parent genome percentage (RPG) study also revealed similarity of these lines with PRR78. Hybrids derived using improved PRR78 lines were superior over Pusa RH10 in terms of yield.  相似文献   

18.
Antioxidants play an important role in adapting plants to abiotic stress by detoxifying reactive oxygen species (ROS). Involvement of antioxidant enzymes in abiotic stress tolerance of highly stress‐tolerant quinoa was studied in a climatic chamber at 6 mOsm (milliosmolar) ionic (300 mm NaCl) and non‐ionic (600 mm mannitol) salts combined with increasing levels of potassium K1 and K2 (6, 12 mm ), respectively. Fifteen days of salt treatment (both ionic and non‐ionic) decreased plant growth (shoot and root fresh weight), stomatal conductance and chlorophyll content index. Furthermore, both forms of salt stress increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase up to 2.33‐, 3.98‐, 4.78‐ and 5.55‐folds, respectively, compared to no salt treatment, whereas membrane stability index decreased corresponding to increase in lipid peroxidation (malondialdehyde), with salt treatments compared to non‐stressed plants. However, no significant effect of potassium and salt treatments has been noticed on the maximal photochemical efficiency of PSII. The results suggested that enhanced antioxidant enzymes activity under salt stress could be one of the factors responsible for abiotic stress tolerance in quinoa.  相似文献   

19.
With world population expected to reach 9.2 billion people by 2050, improved irrigation methods will be needed to increase the productivity of agricultural land and improve food supply worldwide. The objective of this work was to examine the effect of regulated deficit irrigation (RDI) and alternate furrow irrigation (AFI) on the yield and yield components of two legume species (common bean and mungbean) produced as a second crop following winter wheat in Uzbekistan, Central Asia. Water relations and crop development were also examined. The research was conducted during two successive growing seasons in the Fergana valley. Production of mungbean using the severe stress RDI treatment in combination with AFI resulted in the highest yields with the lowest quantity of applied water in 2004. In addition, yields of common bean in the moderate stress treatment were not different from the recommended schedule, although irrigation events were decreased from 4 to 2. AFI did not reduce yields, and it did not interact with RDI to reduce yields further. In general, mungbean yields were higher than those of common bean. The combination of AFI and RDI can allow legume production with reduced water inputs.  相似文献   

20.
We investigated changes in concentrations of abscisic (ABA) and salicylic acid (SA), phenolic compounds and phenylalanine ammonia-lyase (PAL) activity in relation to cold-induced tolerance of four androgenic genotypes of Festulolium ( Festuca  ×  Lolium hybrids ) to frost and to the snow mould fungus Microdochium nivale . Cold acclimation increased frost tolerance and resistance to snow mould. Resistant genotypes were characterized by higher ABA concentrations during the first 54 h of cold acclimation and lower concentrations of SA than susceptible genotypes. After cold acclimation, the content of phenolics was significantly lower in genotypes tolerant to frost and M. nivale infection than in susceptible genotypes, while PAL activity was significantly higher. Signalling networks controlling cold acclimation to frost (abiotic) and mould infection (biotic) appears to involve increases in foliar concentrations of ABA and decreases in the SA level during successful cold acclimation. Higher PAL activity and lower concentrations of phenolic compounds also appear to be associated with enhanced tolerance to frost and fungal attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号