首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Identification and location of fertility restoring genes facilitates their deployment in a hybrid breeding program involving cytoplasmic male sterility (CMS) system. The study aimed to locate fertility restorer genes of CMSWA system on specific chromosomes of rice using primary trisomics of IR36 (restorer), CMS (IR58025A) and maintainer (IR58025B) lines. Primary trisomic series (Triplo 1 to 12) was crossed as maternal parent with the maintainer line IR58025B. The selected trisomic and disomic F1 plants were testcrossed as male parents with the CMS line IR58025A. Plants in testcross families derived from disomic F1 plants (Group I crosses) were all diploid; however, in the testcross families derived from trisomic F1 plants (Group II crosses), some trisomic plants were observed. Diploid plants in all testcross families were analyzed for pollen fertility using 1% IKI stain. All testeross families from Group I crosses segregated in the ratio of 2 fertile: 1 partially fertile+partially sterile: 1 sterile plants indicating that fertility restoration was controlled by two independent dominant genes: one of the genes was stronger than the other. Testcross families from Group II crosses segregated in 2 fertile: 1 partially fertile+ partially sterile: 1 sterile plants in crosses involving Triplo 1, 4, 5, 6, 8, 9, 11 and 12, but families involving triplo 7 and triplo 10 showed significantly higher X2 values, indicating that the two fertility restorer genes were located on chromosome 7 and 10. Stronger restorer gene (Rf-WA-1) was located on chromosome 7 and weaker restorer gene (Rf-WA-2) was located on chromosome 10. These findings should facilitate tagging of these genes with molecular markers with the ultimate aim to practice marker-aided selection for fertility restoration ability.  相似文献   

2.
Summary The gene df (deformed flower), which is expressed as short anther in sensitive cytoplasm, has been incorporated into the trisomic series of S. chacoense Bitt. The cytoplasmic sensitivity and genotypes for the gene df were tested in the original trisomics and their parents. Two diploid parents were found to be homozygous dominant for Df, while one was homozygous recessive. All the parents and trisomics tested had resistant cytoplasm. Six trisomics were heterozygous for df, segregating with a 1:1 ratio when they were crossed to the homozygous testers ([df s]dfdf). When the F1 trisomics (trisomics x [Df r]dfdf) were crossed to the homozygous testers, nine of the 13 trisomics segregated with a 1:1 ratio, three with a 0:1 ratio (all deformed) and one trisomic (V1682.3) with a 2:1 ratio. All the parents of the trisomic V1682.3 were homozygous dominant for Df. This clone is believed to be trisomic for the gene df.Cooperative investigation of the Agricultural Research Service, U.S. Department of Agriculture and the Wisconsin Experiment Station, Madison.  相似文献   

3.
Fusarium wilt is the main pigeonpea production constraint in Malawi. The purpose of the study was to understand the nature and mechanism of inheritance of F. wilt resistance, yield and secondary traits in pigeonpea. 48 crosses were generated in a 12 lines × 4 testers mating scheme. Some F1 plants were selfed for segregation analysis for inheritance pattern of resistance, while others were evaluated for resistance, yield and secondary traits. There were significant variations among F1 plants for F. wilt, days to 50 % flowering, seed/pod, and number of secondary branches. Specific combining ability (SCA) effects were predominant for F. wilt, days to 50 % flowering and number of secondary branches. The general combining ability (GCA) effects, mainly due to maternal genotypes, were preponderant for yield and other secondary traits. The significance of GCA and SCA effects suggested that variations were due to additive gene action in both the testers and parental lines arising from their interactions, and the dominance effects due to interactions of the parental lines. The χ2 analysis suggested dominant patterns of inheritance for wilt in most of the F2 populations. The segregation ratios of 3:1, 15:1, and 9:7 suggested the involvement of single or two independent/complementary dominant genes in the test donors. Involvement of a few genes governing wilt resistance suggested the ease of breeding for this trait. Pedigree breeding method would be recommended for incorporating various traits in pigeonpea.  相似文献   

4.
The interaction between the Se1 and the Ef1 loci, which chiefly control the photoperiod sensitivity (PS) and the basic vegetative growth (BVG) period of rice (Oryza sativa L.) respectively, was investigated using four tester lines different in genotype for the two heading time loci from each other. The four tester lines were grown under 10, 13, 14, 15, and16h day lengths to estimate their BVG period and PS. The Taiwanese cultivar Taichung 65(T65), one of the tester lines, has an extremely long BVG period that has been considered to be conferred by a late heading-time allele ef1 at the Ef1 locus. Experimental results, however, showed that the extremely long BVG of T65was conferred not by a single effect ofef1 but by a complementary effect ofef1 and Se1-e, a photoperiod insensitivity allele, at theSe1 locus. It was also found that a complementary effect of a PS allele Se1-n at the Se1 locus and ef1stimulates the PS of rice. Gene analysis for heading time under an optimum daylength (10 h) as well as under natural day length confirmed the presence of the complementary effect of the two nonallelic genes on BVG, which was found only with homozygosity of both the genes. Based on these results and earlier reports on the Se1 locus, the roles of the Se1 andEf1 loci on the durations of pre-flowering developmental phases in rice were discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Growth of full-sib families of an F1 interspecific hybrid between Trifolium ambiguum M.Bieb and T. repens L, and two generations of backcross hybrids (BC1F2 and BC2F1) with T. repens as the recurrent parent, were compared to their parental species. Plants were grown in a N-free medium and inoculated with Rhizobium leguminosarum biovar trifolii rhizobia effective on T. ambiguum or T. repens. Hybridisation produced progeny that nodulated with rhizobia from either T. ambiguum or T. repens, but plant growth varied. Mean weights of T. repens and hybrids, particularly F1 and BC1F2, were higher when inoculated with a mixture of strains isolated from field grown T. repens than with the New Zealand inoculant strain for T. repens. When inoculated with the mix of rhizobia from T. repens, mean weights were 242, 189, 132, 125, and 100 mg/plant for T. repens, BC2F1, BC1F2, F1 and T. ambiguum, respectively. However, although the mean weight of BC2F1 lines was significantly less than T. repens, there was considerable variation in individual full-sib families indicating the potential to select within BC2F1 hybrids for high plant growth/symbiotic nitrogen fixation. The weight of T. ambiguumplants inoculated with the New Zealand inoculant strain for hexaploid T. ambiguum was similar to T. repens inoculated with the mix of rhizobia from T. repens (253 and 242 mg/plant, respectively). Mean fresh weights of F1 hybrid plants were similar when inoculated with rhizobia for T. ambiguum or T. repens (125 and 130 mg/plant, respectively). However, weight of T. repens, BC1F2 and BC2F1 hybrids inoculated with rhizobia for T. ambiguum were all less than 90 mg/plant. There was a significant relationship between plant fresh weight and ethylene production. The results indicate that measuring weights of inoculated plants growing in N-free media is a rapid initial method of screening a range of plant germplasm for plant growth/symbiotic nitrogen fixation rates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
To determine and utilize RAPD markers linked to resistance to downymildew incited by Peronospora manshurica in soybean, a resistantcultivar `AGS129' was crossed to a susceptible cultivar `Nakhon Sawan 1'(NS1). F2 and BC1 populations were advanced from the F1 and evaluatedfor resistance to the disease. 2-test demonstrated that the resistancewas controlled by a single dominant gene (Rpmx). Near-isogenic lines(NILs) and bulked segregant analysis (BSA) were used to identify RAPDmarkers linked to the gene. Six DNA bulks namely F5(R), F5(S),BC6F3(R), BC6F3(S), F2(R) and F2(S) were set up by pooling equalamount of DNA from 8 randomly selected plants of each disease responsetype. A total of 180 random sequence decamer oligonucleotide primerswere used for RAPD analysis. Primer OPH-02 (5 TCGGACGTGA 3 andOPP-10 (5 TCCCGCCTAC 3) generated OPH-021250 and OPP-10831fragments in donor parent and resistant bulks, but not in the recurrentparent and susceptible ones. Co-segregation analysis using 102 segregatingF2 progenies confirmed that both markers were linked to the Rpmxgene controlling downy mildew disease resistance with a genetic distance of4.9 cm and 23.1 cm, respectively. Marker OPH-021250 was presentin 13 of 16 resistant soybean cultivars and absent in susceptible cultivars,thus confirming a potential for MAS outside the mapping population.  相似文献   

7.
Summary Crossability and cytology were examined in F1, F2, B1 and hybridsplants of F1 hybrids of Brassica campestris and three wild relatives of B. oleracea, B. bourgeaui, B. cretica and B. montana, respectively. The F2 plants were obtained after self-and open pollination of the F1 hybrids. The B1 and hybrid plants were produced after the F1 hybrids backcrosses with B. campestris and crossed with B. napus, respectively. After crossing the F1 hybrids, many seeds of the F2, B1 and hybrid plants were harvested. Multivalent formation was high in the chromsome configuration for the PMCs of F2, B1 and hybrid plants, suggesting that crossing over might occur between them. Many different types of aneuploids were obtained in the progenies of the F2, B1 and hybrid plants. It is suggested that different types of normal egg cells may be produced by one-by-one or little-by-little chromosome addition. The possibility is discussed of gene transfer from B. bourgeaui, B. cretica and B. montana, to cultivated plants, B. campestris and B. napus.  相似文献   

8.
Narrow-leafed lupin (Lupinus angustifolius L.) is a grain legume well-adapted to sandy acid soils in a Mediterranean climate. Improved metribuzin tolerance in lupin cultivars is considered essential to protect crops from herbicide damage in Australia. This paper reports on the inheritance of metribuzin tolerance in two induced mutants Tanjil-AZ-33 and Tanjil-AZ-55 over the susceptible wild type cv. Tanjil. Both mutants were highly tolerant to 800 g/ha metribuzin with no foliage damage, but cv. Tanjil died and reciprocal F1 hybrids had intermediate tolerance with foliage damage. The F2 populations of both crosses, Tanjil-AZ-33 × Tanjil and Tanjil-AZ-55 × Tanjil, had a segregation ratio of 1:2:1 for highly tolerant: damaged:dead plants. Progeny tests (F3) of selected F2 single plants confirmed that highly tolerant F2 plants were homozygous and damaged F2 plants were heterozygous. Clearly a single semi-dominant gene conferred metribuzin tolerance in both mutants. An allelism test revealed that the two mutants had two non-allelic tolerance genes with F2 plants segregating in a 15:1 ratio for survival and death at 800 g/ha metribuzin. The tolerance gene in Tanjil-AZ-33 was designated as Mt3 and the gene in Tanjil-AZ-55 as Mt5. At 4,000 g/ha metribuzin, 1/16 of F2 plants from the cross between the two mutants had no herbicide damage, suggesting the additive effects of the two tolerance genes, whilst the rest were damaged or dead. Combining these two tolerance genes, Mt3 and Mt5, increased tolerance further by approximately five-fold.  相似文献   

9.
Development of wheat–alien translocation lines has facilitated practical utilization of alien species in wheat improvement. The production of a compensating Triticum aestivumThinopyrum bessarabicum whole‐arm Robertsonian translocation (RobT) involving chromosomes 6D of wheat and 6Eb of Th. bessarabicum (2n = 2x = 14, EbEb) through the mechanism of centric breakage–fusion is reported here. An F2 population was derived from plants double‐monosomic for chromosome 6D and 6Eb from crosses between a DS6Eb(6D) substitution line and bread wheat cultivar ‘Roushan’ (2n = 6x = 42, AABBDD) as female parent. Eighty F2 genotypes (L1–L80) were screened for chromosome composition. Three PCR‐based Landmark Unique Gene (PLUG) markers specific to chromosomes 6D and 6Eb were used for screening the F2 plants. One plant with a T6EbS.6DL centric fusion (RobT) was identified. A homozygous translocation line with full fertility was recovered among F3 families and verified with genomic in situ hybridization (GISH). Grain micronutrient analysis showed that the DS6Eb(6D) substitution line and T6EbS.6DL stock have higher Fe and Zn contents than the recipient wheat cultivar ‘Roushan’.  相似文献   

10.
Digenic nature of male sterility in pepper (Capsicum annuum L.)   总被引:1,自引:0,他引:1  
Summary A cross was made between two nearly isogenic lines differing for male sterility genes, viz. ms1ms1Ms2Ms2 s Ms1Ms1Ms2ms2. F1 plants yielded F2 populations which segregated either in 3:1 or 9:7 ratios of fertile vs male sterile individuals. Test crosses between male sterile and male fertile sibs in the 9:7 segregating populations provided a few lines in which most of the progenies were male sterile. A 3:1 ratio model of male steriles vs fertiles is suggested and the value of the system is discussed.Contribution A.R.O. Agricultural Research Organization, The Volcani Center, Bet Dagan 50 250, Israel No. 3703-E, 1992 series.  相似文献   

11.
Wheat streak mosaic (WSM) caused by wheat streak mosaic virus (WSMV) is a serious disease of wheat and many plants in the grass family. In previous studies genotypes collected from different parts of Iran, were screened for WSM resistance. Two resistant genotypes, “Adl Cross” and “4004” were crossed to one susceptible genotype “Marvdasht.” Reciprocal crosses were also made. Seedlings of parents, F1, F2, backcrosses to susceptible (BCS) and resistant (BCR) were evaluated for WSMV reaction based on scales 0–7, by artificial infection under greenhouse conditions. Allelism was studied by evaluating the F1 and F2 seedlings of the resistant × resistant cross. Inheritance of resistance to WSMV in Adl Cross and 4004 was controlled by one dominant gene. No allelism was observed between resistance genes. Among the F2 seedlings of the resistant × resistant cross relatively more resistant genotypes with a zero score were observed. These two genes, therefore, can be incorporated into an adapted wheat cultivar to produce a more durable resistance.  相似文献   

12.
Snap bean (Phaseolus vulgaris L.) cultivar, Widusa, was crossed to Michigan Dark Red Kidney (MDRK), Michelite, BAT 93, Mexico 222, Cornell 49–242, and TO cultivars to study the inheritance of resistance to anthracnose in Widusa. The segregation patterns observed in six F2 populations supported an expected 3R:1S ratio suggesting that Widusa carries a single dominant gene conditioning resistance to races 7, 65, 73, and 453 of Colletotrichum lindemuthianum, the causal organism of bean anthracnose. Allelism tests conducted with F2 populations derived from crosses between Widusa and Cornell 49–242 (Co-2), Mexico 222 (Co-3), TO (Co-4), TU (Co-5), AB 136 (Co-6), BAT 93 (Co-9), and Ouro Negro (Co-10), inoculated with races 7, 9, 65 and 73, showed a segregation ratio of 15R:1S. These results suggest that the anthracnose resistance gene in Widusa is independent from the Co-2, Co-3, Co-4,Co-5, Co-6, Co-9, and Co-10 genes. A lack of segregation was observed among 200 F2 individuals from the cross Widusa/MDRK, and among 138 F2 individuals from the cross Widusa/Kaboon inoculated with race 65, suggesting that Widusa carries an allele at the Co-1 locus. We propose that the anthracnose resistance allele in Widusa be named Co-1 5 as Widusa exhibits a unique reaction to race 89 compared to other alleles at the Co-1 locus. RAPD marker A181500 co-segregated in repulsion-phase linkage with the Co-1 5 gene at a distance of 1.2 cM and will provide bean breeders with a ready tool to enhance the use of the Co-1 5 gene in future bean cultivars.  相似文献   

13.
Bacterial blight (BB) of rice caused by X. oryzae pv. oryzae is a major production constraint in commercial hybrid rice production in the Philippines because most of the parental lines used in hybrid production do not carry resistance genes against the pathogen. In this study, three bacterial blight resistance genes, Xa4, Xa7 and Xa21, were introgressed to a temperature-sensitive genetic male sterile (TGMS1) line. A three-way cross of AR32-19-3-3/TGMS1//IRBB4/7 (PR36944) was made to produce 1,364 F2 plants carrying various combinations of Xa4, Xa7 and Xa21. Individual plants were characterized for reaction to bacterial blight PXO61 (race 1), PXO86 (race 2), PXO99 (race 6) and pollen sterility. Of 144 F2 plants demonstrating resistance against PXO61, PXO86 and PXO99, 22 exhibited highly resistant phenotypes with mean lesion lengths ranging from 0.37–2.97 cm. Analysis of disease reaction identified 20 potential TGMS F2 plants containing Xa4, Xa7 and Xa21 while 78 plants with Xa4 + Xa7. Phenotypic and polymerase chain reaction (PCR) analyses confirmed PR36944-450, PR36944-473 and PR36944-700 as homozygous for Xa7 and Xa21 and highly resistant to all three Xoo races. Fertility of PR36944-450 and PR36944-700 was restored at permissive temperature in a growth chamber. BB-resistant TGMS lines should facilitate breeding two-line hybrids in the tropics.  相似文献   

14.
Hybrids between indica and japonica rice varieties usually show partial sterility, and are a major limiting factor in the utilization of heterosis at subspecific level. When studying male-gamete (pollen) abortion, a possibly important cause for sterility, six loci (S-a, S-b, S-c, S-d, S-e and S-f) for F1 pollen sterility were identified. Here we report genetic and linkage analysis of S-c locus using molecular markers in a cross between Taichung 65, a japonica variety carrying allele S-c j, and its isogenic line TISL5, carrying alleleS-c j. Our results show that pollen sterility occurring in the hybrids is controlled by one locus. We used 208 RFLP markers, as well as 500 RAPD primers, to survey the polymorphism between Taichung 65 and TISL5. Six RFLP markers located on a small region of chromosome 3, detected different RFLP patterns. Co-segregation analysis of fertility and RFLP patterns with 123 F2 plants confirmed that the markers RG227, RG391, R1420 were completely linked with the S-c locus. The genetic distances between the markers C730, RG166 and RG369 and the S-c locus were 0.5 cM, 3.4 cM, and 3.4 cM respectively. Distorted F2 ratios were also observed for these 4 RFLP markers in the cross. This result suggests that the `one locus sporo-gametophytic' model could explain F1 hybrid pollen sterility in cultivated rice. RG227, the completely linked marker, has been converted to STS marker for marker-assisted selection. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Triticum monococcum L. (2n = 2x = 14, AmAm genome) is one of the most ancient of the domesticated crops in the Middle East, but it is not the ancestor of the A genome of durum wheat (T. durum Desf. 2n = 4x = 28, genomes BBAA) and bread wheat (T. aestivum L., 2n = 6x = 42, genomes BBAADD). It has been suggested that some differentiation has occurred between the Am and A genomes. The chlorina mutants at the cn-A1 locus located on chromosome 7AL have been described in T. aestivum L. and T. durum, and a chlorina mutant has been found in T. monococcum. The aims of our study were to establish linkage maps for chlorina mutant genes on chromosome 7A of T. aestivum and T. durum and chromosome 7Am of T. monococcum and to discuss the differentiation that has occurred between the A and Am genomes. The chlorina mutant gene was found to be linked with Xhbg234 (8.0 cM) and Xgwm282 (4.3 cM) in F2 plants of T. aestivum ANK-32A/T. petropavlovskyi k54716, and with Xbarc192 (19.5 cM) and Xgwm282 (12.0 cM) in F2 plants of T. durum ANW5A-7A/T. carthlicum #521. Both the hexaploid and tetraploid wheats contained a common marker, Xgwm282. In F2 lines of T. monococcum KT 3-21/T. sinskajae, the cn-A1 locus was bracketed by Xgwm748 (25.7 cM) and Xhbg412 (30.8 cM) on chromosome 7AmL. The distal markers, Xhbg412, Xgwm282, and Xgwm332, were tightly linked in T. aestivum and T. durum. The common marker Xhbg412 indicated that the chlorina mutant genes are located on chromosome 7AL and that they are homoeologous mutations.  相似文献   

16.
Cross-incompatibility caused by endosperm abortion was found in advanced generations of backcrossing between the Asian wild (W593) and cultivated (T65wx) rice strains. The near isogenic line, T65WxS 6 (W593), carrying a segment of chromosome 6 from W593 showed a low seed setting when pollinated with pollen grains of T65wx in spite of the fact that the reciprocal cross gave a high seed setting. The unidirectional or asymmetric crossing barrier was previously explained by an interaction between Cif and cim, both of which acted sporophytically, resulting in the cross-incompatibility reactions in the female (CIF) and male (CIM), respectively. In the genetic model, endosperm abortion is induced only when CIF gametes are fertilized with CIM gametes. This predicted that the double homozygote for Cif and cim might be self-incompatible since the plant expresses both CIF and CIM simultaneously. However, we failed to obtain such a self-incompatible plant by transferring Cif into a cim plant. The present results showed that CIF is controlled not only by Cif but also by an additional gene(s) loosely linked with it. We propose here that Cif 1 (formerly named as Cif) and Cif 2 determine CIF. In addition, Cif 2 and Cim were not separated due to restriction of recombination, which might explain why it is difficult to obtain a self-incompatible rice plant expressing both CIF and CIM.  相似文献   

17.
Genetics of thermosensitive genic male sterility in rice   总被引:4,自引:0,他引:4  
Summary Inheritance of thermosensitive genic male sterility (TGMS) in Norin PL12 and IR32364TGMS and their allelic relationship were studied from F1, F2 testcross (TC) and F3 generations of the crosses made with the two mutants and several fertile tester parents. F2, TC and F3 segregation behavior for pollen and spikelet fertility indicated that the TGMS trait in the two mutants was controlled by a single recessive gene. Allelic relationship studies indicated that TGMS genes of the two mutants were different. Since TGMS gene in Norin PL12 has been designated as tms 2 , the TGMS gene present in IR32364TGMS is tentatively designated as tms 3 (t) until allelic test is done with another TGMS gene (tms 1 ) reported from China in a line 5460S seeds of which were not available.  相似文献   

18.
Genetic control of somatic embryogenesis in cotton petiole callus cultures   总被引:8,自引:0,他引:8  
Summary Three commercial varieties (Acala SJ-5, Coker 312 and Paymaster 303) and three exotic accessions (T1, T25 and T169) of cotton (Gossypium hirsutum L.) were tested for ability to undergo somatic embryogenesis. Sections of split petiole were cultured on 3 media and evaluated for embryogenesis after 180 days. Embryogenic T25 and Coker 312 plants were selected and crossed in a diallel with non-embryogenic Acala SJ-5, Paymaster 303, T1 and T169 plants. F1, F2 and BC1 populations were generated and tested for embryogenesis on a medium of MS salts and vitamins (1962) plus (per liter) 4.0 mg NAA, 1.0 mg Kn, 30 g glucose, 100 mg myo-inositol, 2.0 g Gelrite and 0.75 g MgCl2. Segregation for both occurrence and magnitude of embryogenesis was observed, suggesting the action of more than one gene.  相似文献   

19.
Interspecific hybrids and backcross generations between the wild perennial species Helianthus resinosus, Helianthus paucifiorus, Helianthus laevigatus, Helianthus nuttallii ssp. nuttallii T. & G. and Helianthus giganteus, resistant to broomrape (Orobanche cernua) and susceptible inbred lines were obtained to study crossability to cultivated sunflower and the transmission and expression of resistance to this parasitic weed. Conventional crosses with all the species tested were successful except for the crosses with diploid H. giganteus, for which embryo rescue techniques were needed to overcome hybrid incompatibility. Pollen viability and seed set were highest for F1 hybrids with hexaploid species and lowest for those with the diploid H. giganteus. We evaluated F1, BC1F1, some BC2F1 plants and the wild and cultivated parents. The wild species and interspecific hybrids were resistant to broomrape infection except for H. nuttallii, which showed segregation, indicating that the resistance is dominant. The crossability and resistance of F1, and back-cross generations of species with different ploidy levels indicate that the transfer of broomrape resistance to cultivated sunflower is feasible.  相似文献   

20.
Mark J. Bassett 《Euphytica》2005,141(1-2):139-145
The inheritance of the virgata pattern of partly colored seed coats found in common bean (Phaseolus vulgaris L.) Early Giant (EG) was studied by a series of test crosses with line 5-593 and genetic stocks developed by backcrossing selected genes into the recurrent parent 5-593, a Florida dry bean breeding line with a self-colored, black seed coat with genotype T Z Bip P [C r] J G B V Rk. Analysis of the F2 from the cross EG × 5-593 led to the hypothesis that the virgata pattern of EG has genotype t z bipvgt, where vgt stands for virgata. The test cross EG × t z virgarcus BC3 5-593 confirmed the hypothesis that EG carries t z from data recorded in F1, F2, and 27 F3 progenies from randomly selected F2 plants. The F3 segregation was also consistent with the hypothesis that a single recessive gene converts virgarcus into virgata. The test cross EG × t z bip bipunctata BC3 5-593 failed to show genetic complementation in F1 progeny, and the F2 segregated 3:1 for the parental phenotypes virgata and bipunctata, respectively. Including previously published data, all possible crosses were made among bipunctata, virgata, and virgarcus parents, supporting a multiple allelic series at Bip. We propose the gene symbol bipvgt for the new allele at Bip, where the allelic series has the order of gene dominance Bip > bipvgt > bip. Based on test crosses, the complete seed-coat color and pattern genotype of EG is tz bipvgt P [C r] J G B vlae rkd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号