首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 796 毫秒
1.
利用北方农牧交错带46个气象站1961-2013年气象资料,采用Penman-Monteith公式法计算该地区参考作物蒸散量(ET0)、ET0对气象因子的敏感性系数、气象因子对ET0的贡献率,并通过趋势分析、GIS空间插值方法对这些指标的时空变化进行分析。结果表明:(1)北方农牧交错带年ET0平均值在839~1097mm,近53a来以0.21mm · a-1的速率减小。(2)空间分布上,ET0总体呈现“一高二低”的分布格局:陕北高原为高值区,大兴安岭北部高纬地区、青东农区及陇中片区为两大低值中心区。且陕北高原、陇中及青东农区61%的站点ET0平均以0.85mm·a-1(P<0.05)的趋势递增,而吉林西部、科尔沁沙地、辽西地区则呈明显减小趋势。(3)气象因子对ET0的贡献受ET0对气象因子的敏感性和气象因子的相对变化共同影响,其中北方农牧交错带 ET0对相对湿度最敏感,其次为平均风速;但近53a 来风速呈极显著下降趋势,下降速率达0.0154m·s-1·a-1(P<0.001),因此,综合分析结果表现为风速对ET0的贡献量最大,说明北方农牧交错带ET0下降主要归因于风速的降低。  相似文献   

2.
中国粮食主产区参考作物蒸散量演变特征与成因分析   总被引:3,自引:0,他引:3  
在全球变暖的背景下,参考作物蒸散量(reference crop evapotranspiration,ET0)的改变及其空间分布势必对中国粮食主产区农业水资源规划、农业用水管理等产生重要影响。本文将中国粮食主产区划分为温带湿润半湿润地区(I区)、温带干旱半干旱地区(II区)、暖温带半湿润地区(III区)和亚热带湿润地区(IV区)4个子区域,基于粮食主产区265个站点1961-2013年53a气象数据,采用FAO-56 Penman-Monteith公式计算各站点逐日ET0,利用ArcGIS空间插值、Mann-Kendall趋势检验、敏感性分析和贡献率分析等方法,对该区域ET0的时空分布规律及其成因进行分析。结果表明:(1)近53a来,中国粮食主产区年均ET0为878.9mm,整体呈显著下降趋势,速率为0.47mm·a-1(P<0.05),I、II区和IV区年均ET0分别为741.8、1079.8和924.2mm且均有所减小,但变化趋势并不明显,III区年均ET0为940.2mm,呈极显著下降趋势,速率为1.21mm·a-1(P<0.01)。(2)全区及I-IV区ET0最敏感气象因子均为相对湿度,其敏感系数分别为-1.060、-1.232、-0.784、-1.114和-1.009。(3)全区及I-III区对ET0变化贡献最大的气象因子为风速,IV区为相对湿度。(4)风速的减小是造成粮食主产区全区及I-III区ET0减小的首要原因,风速减小和日照时数缩短是造成IV区ET0减小的主要原因。  相似文献   

3.
利用淮河流域171个站点1971-2010年的气象资料,采用FAO Penman-Monteith公式计算该区近40a的参考作物蒸散量(ET0),并对ET0的时空分布特征和影响因子进行定量分析。结果表明:淮河流域年ET0为898mm,近40a总体以17.5mm/10a的速率减小(P〈0.05);空间分布显示西北部大部站点ET0呈显著下降趋势(P〈0.05),仅东南部个别站点呈显著上升趋势(P〈0.05)。各气象因子对ET0变化的贡献表现为两方面,即ET0对气象因子的敏感性和气象因子的多年相对变化率,在4个主要因子中(平均温度、相对湿度、日照时数和风速),ET0对相对湿度的变化最敏感(敏感系数最大),而风速的多年平均变化率最大。从各因子的贡献率看,对ET0贡献最大的是风速,平均温度的贡献最小,4个因子对ET0变化的总贡献率为-4.96%,总贡献率为负在很大程度上解释了ET0呈下降趋势的原因。  相似文献   

4.
基于塔里木盆地19个气象站2000−2019年生长季逐日气象数据,采用FAO−56PM公式计算各站逐日ET0,运用敏感系数、ArcGIS反距离权重插值、气候倾向率和Mann-Kendall非参数检验等方法,对该地区ET0的时空变化规律及ET0对关键气象因子的敏感性进行分析。结果表明:(1)近20a来,塔里木盆地生长季ET0日均值在空间上呈北低南高的趋势,多年ET0日均值从大到小依次为6、7、5、8、4、9和10月,其值分别为5.84、5.73、5.29、4.95、4.23、3.65和2.17mm⋅d−1,气候倾向率分别为−0.09、0.24、0.11、−0.07、0.16、0.07和0.08mm⋅10a−1,ET0日均值在盆地中、西部以负倾向率为主,盆地东部则以正倾向率为主。(2)整个生长季,塔里木盆地的相对湿度逐月增加,2m处风速逐月减小,日照时数则呈先增加后降低的趋势,最低气温和最高气温均呈倒U形分布,且均在7月达到最大值。相对湿度的变化以负倾向率为主,2m处风速和最低气温的变化以正倾向率为主,日照时数和最高气温变化的倾向率无明显规律。(3)在生长季(4−10月),塔里木盆地ET0对关键气象因子的敏感性表现为最高气温>相对湿度>日照时数>2m处风速>最低气温,ET0对最低气温的敏感性以较低敏感性为主,对其余气象因子均以高敏感性为主。ET0对最低气温和最高气温最敏感的月份是7月,而对相对湿度、2m处风速和日照时数最敏感的月份分别是10月、4月和8月。ET0对相对湿度的敏感系数绝对值的空间分布呈由北向南递减的趋势,对2m处风速和最高气温的敏感系数均以塔克拉玛干沙漠为高值中心,对日照时数无明显规律,对最低气温则呈由西向东递减的趋势。  相似文献   

5.
基于1980-2014年鲁中地区气象资料,采用Penman-Monteith模型计算该区域近35a的参考作物蒸散量(ET0),分析不同时间尺度ET0及主要气象因子的时空变化规律,并利用基于敏感系数的贡献率法探讨主要气象因子对不同时间尺度ET0变化的贡献。结果表明:鲁中平原地区近35a年ET0平均值为1165.8mm,山区为1144.6mm,均呈减少趋势,且平原减少趋势极显著,其气候倾向率为-22.2mm·10a-1(P<0.01);季节ET0平均值由多到少依次为夏季、春季、秋季和冬季,春季呈增加趋势,其它季节呈减少趋势;6月是ET0最大的月份,1月为最小的月份,其年内分布呈抛物线状;各时间尺度ET0变化主要空间分布基本同步。年、季ET0对相对湿度的变化最敏感,且呈增加趋势,月ET0对主要气象因子变化的敏感性随月份呈现不同规律,3-6月、9-10月的最敏感气象因子为相对湿度,1-2月、11-12月为风速,7-8月为日照百分率。从主要贡献率看,年ET0变化的主要贡献因子为风速,各季、月ET0变化的主要贡献因子不一,但平原和山区两种地形同一时段主要贡献因子基本一致,4个主要气象因子的总贡献率基本能解释各时间尺度ET0变化的原因。  相似文献   

6.
为了解我国南方农牧交错带内生态系统生产能力的变化程度,以2005—2014年MOD17A3H数据为数据源,利用简单差值法和一元线性回归分析法,对区内的植被年均NPP空间分布及变化趋势进行了分析。结果表明:(1)2005—2014年南方农牧交错带内植被NPP分布差异较大,整体呈南部高北部低。(2)年均植被NPP为389 gC/(m2·a),平均植被NPP变化范围在344~426 gC/(m2·a)之间。(3)2014年较2005年相比,南方农牧交错带植被NPP增加了106 gC/(m2·a)。但10年间植被NPP总体变化呈略微减少趋势,减少的地区面积占南方农牧交错区总面积的57%。(4)不同生态系统平均植被NPP均值表现为:森林生态系统 > 农田生态系统 > 灌丛生态系统 > 湿地生态系统 > 草地生态系统;不同生态系统植被NPP变化相似,呈波动略微减少变化。说明区域内生态系统变化波动较为明显,应对该区域生态系统给予更多的保护。  相似文献   

7.
潜在蒸散量(ET0)是区域能量平衡和水分平衡的重要组成部分,通过探讨其历史演化规律及成因对优化调整农业生产结构及水资源合理配置至关重要。基于河北省及周边地区1968—2018年24个典型气象站点逐日气象数据,利用Penman-Monteith模型、敏感性分析、M-K检验法及空间插值方法分析了河北省ET0时空分布特征及其影响因素。结果表明:(1)从时间分布来看,51年间,河北省春季ET0多年均值为353.20 mm,呈下降趋势,下降幅度为-1.679 mm/10 a,其周期变化存在35年主周期及20年次周期;空间上呈现由西北向东南半环状递减趋势。(2)从影响因素来看,春季ET0变化对平均气温、最高气温、最低气温、日照时数和平均风速均表现正敏感;对相对湿度表现为负敏感,对各个气象因子敏感程度依次为相对湿度 > 最高气温 > 日照时数 > 平均风速 > 平均气温 > 最低气温。(3)从成因的空间分布上看,河北省北部地区ET0变化的主导气候影响因子为平均气温,中部及西部地区为相对湿度,南部及偏东部地区则转变为平均风速。研究成果可为研究区水资源综合评价及农业生产工作提供一定参考。  相似文献   

8.
基于1981-2020年内蒙古自治区农业气象灾害灾情及该地区粮食作物播种面积和产量数据,构建灾情-粮食作物产量评估模型,并对该模型进行验证,以此估算该地区粮食作物因灾减产量。结果表明:(1)1981-2020年内蒙古自治区粮食作物播种面积、总产和单产均呈显著上升趋势,增速分别为74.48×103hm2·a-1、78.85×104t·a-1和100.97kg·hm-2·a-1。(2)1981-2020年内蒙古农业气象灾害受灾、成灾面积均呈先上升后下降趋势,同期全国农业气象灾害成灾和受灾面积亦呈先上升后下降趋势。(3)干旱是该地区最主要的农业气象灾害,其受灾和成灾面积分别占历年各灾种的总受灾和成灾面积的64.10%和62.45%。灰色关联度分析表明,在受灾率和成灾率水平上干旱是与粮食单产关联度最高的农业气象灾害,在绝收率水平上风雹与粮食单产关联度最高。(4)构建的灾情-粮食作物产量评估模型模拟准确率较高,其模拟粮食产量与实际粮食产量呈极显...  相似文献   

9.
在我国北方干旱半干旱地区,农业灌溉是水资源消耗的主要途径,农业水资源利用效率的高低,直接决定着区域可利用水资源量。为探究我国北方农牧交错带农业用水水平,以内蒙古农牧交错带农业灌溉用水为研究对象,在综合分析用水现状的基础上,通过层次分析—熵权法和模糊综合评价相结合的方法,选取体现农牧交错带农业用水特征的代表性指标,构建农牧交错的农业用水水平综合评价体系,对2020年内蒙古农牧交错带农业用水进行综合评价。结果表明:内蒙古农牧交错带各旗县间农业灌溉用水量相差较大,整体呈现东高西低趋势,灌溉水量为582.41~4 905.86 m3/hm2,灌溉水利用效率为51%~84%;各旗县农业用水综合评价得分为2.26~3.67,农业用水水平整体处于中等偏上,29个旗县中较高水平占比44.80%,中等水平占比55.20%;与作物水分利用效率(WUE)对比,构建的综合评价体系可以更真实地反映出农牧交错带农业用水实际情况,对于农牧交错带中农业用水水平处于中等偏下水平的旗县地区,需加大力度发展农业节水措施,提升农业水资源利用效率。  相似文献   

10.
近40年来,山西省的气候条件发生重大变化。为了评估参考作物蒸散量(ET0)在气候变化条件下的时空变化趋势及原因,利用彭曼公式计算了晋北、晋中和晋南地区的ET0,用t检验法分析了不同区域气候因子及ET0演变趋势,利用偏相关分析法研究了各气候因子与ET0的相关关系及对ET0影响的贡献度。主要结论:晋北、晋中和晋南地区年均日照时数、年均最高气温、年均最低气温、年均风速和年均相对湿度等气象因子发生明显的上升或下降趋势,但ET0变化趋势不明显,仅呈缓慢下降趋势;ET0与年均日照时数、年均最高气温和年均风速均呈显著正相关关系,与年均相对湿度呈显著负相关关系。晋北地区年均最低气温和年均最高气温引起ET0显著上升,贡献度之和为31.36%;年均日照时数和年均风速导致ET0显著下降,贡献度之和为41%。晋中地区上升因子的贡献度之和为46.34%,下降因子为53.66%。晋南地区上升因子贡献度之和为27.78%,下降因子为50.15%。  相似文献   

11.
利用辽宁省凌河流域10个气象站1965-2006年的逐日气象资料,采用FAO推荐的P-M公式计算各站逐日参考作物腾发量(ET0),在分析生长季(4-9月)各气象要素及ET0变化趋势的基础上,用基于敏感系数的贡献值法探讨各气象要素变化对ET0变化的贡献。结果表明:近42a来,凌河流域生长季ET0以21.46mm·10a-1的速率极显著降低(P<0.01),平均值为706.73mm,其中最大值发生在5月,最小值发生在9月;ET0高值区集中在朝阳和北票等地,低值区位于义县一带。研究区生长季太阳辐射以0.293MJ·m-2·d-1·10a-1的速率递减;除阜新外其余各站风速均呈极显著下降趋势(P<0.01);在全球气候变暖的背景下,过去42a凌河流域生长季平均气温以0.289℃·10a-1的速度上升,其中4月和9月变化显著(P<0.05),7月相对稳定。研究区生长季相对湿度变化不大。敏感性分析结果表明,流域内生长季平均ET0对各气象要素变化的敏感性大小依次为太阳辐射>相对湿度>风速>温度,但在研究时段内,显著变化的风速对ET0变化贡献最大,其次为太阳辐射,温度对ET0变化的贡献最小。太阳辐射和风速变化对ET0变化的贡献在流域西部较大,而在东部较小;温度变化对ET0变化的贡献总体上表现为由流域中部向东西两端递减;相对湿度变化对ET0变化的贡献在空间分布上较分散。  相似文献   

12.
京津冀地区潜在蒸散量时空演变特征及归因分析   总被引:5,自引:5,他引:0  
为了深入认识京津冀地区潜在蒸散量的时空变化特征及其对气候变化的响应,该研究基于京津冀地区23个气象站57 a逐日气象观测资料,应用Penman-Monteith公式计算各站点日潜在蒸散量(ET0),剖析ET0的时空变化特征,运用敏感性分析法定量研究ET0对各气象要素的敏感性及其时空变化特征,定量识别各气象要素变化对ET0变化的贡献。研究结果表明:1)京津冀地区ET0空间分布整体呈由南向北递减趋势(除中部地区的塘沽站、黄烨站与保定站点ET0较高外)。ET0整体呈下降趋势,线性趋势率为-0.92 mm/a。ET0变化趋势空间分布由西北向东南递减,以春季减幅最为明显。2)京津冀地区ET0对相对湿度的最为敏感(-0.44),其次为风速(0.31)、日照时数(0.28)与平均气温(0.26)。随时间推移,ET0对平均风速与相对湿度敏感性整体呈下降趋势,而ET0对平均气温与日照时数的敏感性逐渐增强。敏感性系数空间分布从西北到东南:风速与平均气温敏感性系数逐渐递增,而日照时数与相对湿度敏感性系数逐渐递减。3)风速变化对京津冀地区ET0变化的贡献最大,平均气温次之。风速为主导因素的站点个数随时间呈下降趋势,平均气温与日照时数为主导的站点个数随时间呈上升趋势,说明近年来平均气温与日照时数对潜在蒸散量变化的影响愈加明显,这可能是由于近年来京津冀地区雾霾尤其是冬季雾霾对日照时数、气温与风速的产生一定影响,进而影响ET0。  相似文献   

13.
四川省潜在蒸散量变化及其气候影响因素分析   总被引:1,自引:0,他引:1  
潜在蒸散(ET_0)是评价某一地区干旱程度的重要指标,在全球气候变暖趋势下,估计ET_0的变化对科学估算作物需水量,提高水分利用率具有重大意义。本文利用四川省1961-2014年151个气象站的气象资料,采用Penman-Monteith公式分3个区域(四川盆地、攀西地区和川西高原)计算ET_0,并对主要气象因子平均气温、相对湿度、日照时数、平均风速的相对变化率、敏感系数及其对ET_0贡献率的时空变化进行分析。结果表明:四川盆地和川西高原ET_0呈现微弱减少,而攀西地区则呈现一定的增加,其空间分布表现为:攀西地区和川西高原南部年ET_0为高值区,多在1000~1350mm,四川盆地的西南部年ET_0为低值区,多在651~900mm,从西南向东北呈现"高-低-高"趋势。各气象因子对ET_0的影响(对ET_0变化的贡献率)主要取决于敏感性和相对变化率两方面。3个区域ET_0对相对湿度的变化均表现最敏感,其敏感系数分别为-1.13、-1.40、-1.53。在主要气象因子中,在四川盆地和攀西地区,平均风速的多年相对变化率最大(-29.7%、-16.3%),川西高原则为平均温度(40.4%)。进一步分析得出,平均风速在四川盆地和川西高原对ET_0变化的贡献率最大,是主导影响因素,而在攀西地区则为相对湿度。  相似文献   

14.
1961-2014年中国干湿气候时空变化特征及成因分析   总被引:8,自引:2,他引:8  
利用全国701个气象站点1961-2014年逐日地面观测资料,基于降水量和参考作物蒸散量(ET0)计算的湿润指数研究了近54a中国干湿气候时空变化特征,并利用敏感性和贡献率法分析了气候变化背景下主要气象因子对ET0的影响,对干湿气候变化的成因进行了探讨.结果表明:全国气候在3个时间段(时段1:1961-1980;时段2:1981-2000;时段3:2001-2014)中经历了变湿到变干的过程;不同地区干湿状况变化差异很大,干旱趋势主要发生在中国的半干旱半湿润气候区;1961-2014年降水量变化趋势不显著,ET0呈显著下降的趋势,61.6%的站点出现"蒸发悖论"现象.南方大部分地区和新疆的西北部由于降水量增加和ET0减少,气候变湿;西北和西南大部分地区由于年降水量减少和ET0增加,气候呈显著变干的趋势.ET0对相对湿度的变化最敏感,风速的负贡献率是引起ET0变化的主导因子.研究时段内风速和日照时数的减少对ET0的负效应超过温度上升对ET0的增大作用,导致全国ET0总体呈下降趋势.  相似文献   

15.
近48年新疆夏半年参考作物蒸散量时空变化   总被引:5,自引:0,他引:5  
利用新疆101个气象站1961-2008年夏半年(4-9月)逐月气候资料,在采用FAO推荐的Penman-Monteith公式计算出各站逐月参考作物蒸散量的基础上,使用气候倾向率、累积距平、t检验、Morlet小波、相关分析和Kriging插值技术等方法,对新疆近48a夏半年参考作物蒸散量时空变化特征及其气候成因进行了探讨。结果表明:(1)新疆夏半年平均参考作物蒸散量为942.5mm,在空间分布上呈现"南疆大于北疆、东部大于西部、平原和盆(谷)地大于山区"的格局。其空间分布与各地气温、日照时数、降水量、平均风速和空气相对湿度具有较好的对应关系,表现为,气温高、风速大、日照充足、降水少、空气干燥的区域,夏半年参考作物蒸散量较大,反之,蒸散量较小。(2)1961-2008年新疆夏半年参考作物蒸散量与同期日照时数、平均风速呈显著的正相关,与降水量、空气相对湿度为显著的负相关,与平均气温的相关关系虽不显著,但两者的年际间波动趋势基本一致。近48a,受气温上升、风速减小、降水量增多、相对湿度增大的综合影响,新疆夏半年参考作物蒸散量总体以20.09mm.10a-1的倾向率呈极显著的减小趋势。(3)突变检测表明,新疆夏半年参考作物蒸散量于1986年发生了突变性的减小,突变后的平均参考作物蒸散量较突变前减少了65mm,减少6.6%。(4)新疆夏半年参考作物蒸散量存在4~5a、12a和准22a的周期性变化,预计未来数年参考作物蒸散量将有增大的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号