首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value.  相似文献   

2.
The objectives of this study were to determine the effects of 0, 20, 40, or 60% dietary dried distillers grains with solubles (DDGS) on 1) growing lamb performance, carcass characteristics, and tissue minerals, and 2) nutrient digestibility and retention in growing lambs. In Exp. 1, ninety-six lambs were blocked by sex (ewes, n = 48; wethers, n = 48) and BW, housed in 24 pens (4 lambs per pen), and used in a 92-d feedlot trial (initial BW = 26.4 ± 9.3 kg). Lambs were fed 1 of 4 dietary treatments 1) 0% DDGS, 2) 20% DDGS, 3) 40% DDGS, or 4) 60% DDGS. The DDGS replaced primarily corn, and diets were fed as a complete pellet. There was a quadratic effect of DDGS inclusion on ADG; lambs fed the 20% DDGS diet had the greatest (P = 0.04) gains at 0.358 kg/d. This effect on ADG led to a quadratic (P = 0.03) effect of DDGS on final BW. Increasing dietary DDGS did not affect (P > 0.13) DMI and resulted in a linear (P = 0.02) decrease in G:F. In the liver, S increased linearly (P = 0.05), whereas Cu decreased linearly (P < 0.01) with increasing dietary DDGS; other liver minerals were not affected (P > 0.05). Carcass backfat, yield grade, and marbling score were not affected (P > 0.05) by dietary DDGS. In Exp. 2, twenty-four lambs (initial BW = 43.0 ± 4.4 kg) were used in a metabolism study. Lambs were adapted to the same diets described above for 17 d before a 5-d sampling period during which total feces and urine were collected. Apparent digestibility of dietary DM decreased linearly (P < 0.01) with increasing dietary inclusion of DDGS. Digestibility of fat followed a similar pattern, whereas N, S, and P absorption increased linearly (P < 0.03) with increasing dietary DDGS. The digestibility of NDF was not affected (P > 0.05) by dietary treatment. Apparent retentions (as a percentage of intake) of N, K, Mg, Cu, Fe, and Zn were not affected (P > 0.05) by dietary DDGS inclusion, whereas the retention of S and P decreased (P < 0.04). Daily urine output increased linearly (P < 0.01) and urine pH decreased linearly (P < 0.01) with increasing DDGS (urine pH was 7.46, 5.86, 5.52, and 5.32 for treatments 1 to 4, respectively). These data suggest urine is a major route for excretion of acid when high-S diets containing DDGS are fed. Increases in dietary DDGS resulted in decreased digestion of DM and fat, which may be partially responsible for decreased lamb feedlot performance for 40 and 60% dietary DDGS when compared with 20% DDGS.  相似文献   

3.
The objective of the present study was to investigate the effects of corn dried distiller's grains with solubles (DDGS) and enzyme premix (mannanase + phytase) supplementation on the growth performance, carcass and meat quality parameters in finishing pigs. Sixty hybrid pigs (L × LW × D) with initial weight of 63.92 ± 1.50 kg were used in a 3 × 2 factorial design with main effects of DDGS levels (0, 10 and 20%) and enzyme premix levels (0% vs. 0.14%). Average daily gain (ADG, P < 0.01) and average daily feed intake (ADFI, P < 0.05) were decreased due to an increased level of DDGS additive while the feed conversion ratio was improved (P < 0.05) by adding enzyme premix. The diet cost/gain (won/kg) was saved (P < 0.01) due to an increased level of DDGS additive. There were no significant differences in carcass characteristics and meat quality parameters of Longissimus dorsi muscle by DDGS level and enzyme premix. Palmitoleic acid, oleic acid and monounsaturated fatty acid (MUFA) decreased (P < 0.05) according to DDGS level. The results indicate that DDGS may be used in feeds for finishing pig as a replacement of corn and soybean meal without affecting their carcass characteristics and meat quality.  相似文献   

4.
An experiment was conducted to investigate pig performance, carcass quality, and palatability of pork from pigs fed distillers dried grains with solubles (DDGS), high-protein distillers dried grains (HPDDG), and corn germ. Eighty-four pigs (initial BW, 22 +/- 1.7 kg) were allotted to 7 dietary treatments with 6 replicates per treatment and 2 pigs per pen. Diets were fed for 114 d in a 3-phase program. The control treatment was based on corn and soybean meal. Two treatments were formulated using 10 or 20% DDGS in each phase. Two additional treatments contained HP-DDG in amounts sufficient to substitute for either 50 or 100% of the soybean meal used in the control treatment. An additional 2 treatments contained 5 or 10% corn germ, which was calculated to provide the same amount of fat as 10 or 20% DDGS. Results showed that for the entire experiment, pig performance was not affected by DDGS or HP-DDG, but final BW increased (linear, P < 0.05) as corn germ was included in the diets. Carcass composition and muscle quality were not affected by DDGS, but LM area and LM depth decreased (linear, P < 0.05) as HP-DDG was added to the diets. Lean meat percentage increased and drip loss decreased as corn germ was included in the diets (quadratic, P < 0.05). There was no effect of DDGS on fat quality except that belly firmness decreased (linear, P < 0.05) as dietary DDGS concentration increased. Including HP-DDG or corn germ in the diets did not affect fat quality, except that the iodine value increased (linear, P < 0.05) in pigs fed HP-DDG diets and decreased (linear, P < 0.05) in pigs fed corn germ diets. Cooking loss, shear force, and bacon distortion score were not affected by the inclusion of DDGS, HP-DDG, or corn germ in the diets, and the overall palatability of the bacon and pork chops was not affected by dietary treatment. In conclusion, feeding 20% DDGS or high levels of HP-DDG to growing-finishing pigs did not negatively affect overall pig performance, carcass composition, muscle quality, or palatability but may decrease fat quality. Feeding up to 10% corn germ did not negatively affect pig performance, carcass composition, carcass quality, or pork palatability but increased final BW of the pigs and reduced the iodine value of belly fat.  相似文献   

5.
1材料和方法 1.1试验动物和日粮 在生长期将72头杂交肉牛分成4个组别,日粮中的DDGS含量分别为0、30%、0、30%,进入育成期后,相对应肉牛日粮的DDGS含量分别为0、0、30%、30%,因此将这4组肉牛以DDGS含量不同划分成(0:0,30:0,0:30,30:30)4个组别。  相似文献   

6.
Dried corn distillers grains with solubles (DDGS) fed to swine may adversely affect carcass quality due to the high concentration of unsaturated fat. Feeding CLA enhances pork quality when unsaturated fat is contained in the diet. The effects of CLA on growth and pork quality were evaluated in pigs fed DDGS. Diets containing 0, 20, or 40% DDGS were fed to pigs beginning 30 d before slaughter. At 10 d before slaughter, one-half of each DDGS treatment group was fed 0.6% CLA or 1% choice white grease. Carcass data, liver- and backfat-samples were collected at slaughter. Longissimus muscle area, 10th-rib back-fat depth, last rib midline backfat depth, LM color, marbling, firmness and drip loss, and bacon collagen content were not altered by DDGS or CLA. Outer layer backfat iodine values were increased (P 0.05) for pigs fed DDGS. Feeding CLA decreased (P 相似文献   

7.
共轭亚油酸可缓解玉米DDGS对猪肉品质带来的不利影响   总被引:1,自引:0,他引:1  
对猪饲喂玉米DDGS可使猪肉脂肪增加从而影响猪肉品质.当在猪日粮中添加一定量的共轭亚油酸(CLA)可以提高猪肉中多不饱和脂肪酸的含量.从而可以提高猪肉的品质。本试验在猪屠宰30d前给其饲喂含0、20%、40%的玉米DDGS,在屠宰10d前将每个处理组的一半猪只饲喂含0.6%的CLA日粮。屠宰时采集胴体、猪内脏和背最长肌等样本。数据显示.DDGS组和CLA组猪肉的背最长肌面积、第10肋骨处背膘厚度、最后肋之间的膘部中线、背最长肌肉颜色、大理石花纹、剪切力和滴水损失以及培根胶原蛋白含量均没有显著差异。其中0、20%和40%DDGS组的猪肉外层背碘值(IV)分别为65.07、69.75和74125,都较添加CLA组的要高(P≤0.05)。另外。0.6%CLA组和空白对照组猪肉外层背脂的脂肪酸IV分别为68.31和71.11,两者差异显著(P≤0.05),40%含量DDGS组的猪肉培根瘦肉率(38%)较CLA组(48%)低(P≤0.05)。DDGS组的猪脂肪或肝脏中的脂肪酸合成酶的丰度、肉毒碱棕榈酰基转移酶1A、乙酰辅酶A-羧化酶、硬脂酰辅酶A脱氢酶、甘油醛3-磷酸脱氢酶mRNA的表达的没有显著差异(P〉0.05).CLA组猪肉脂肪中的A9去饱和酶指数有所下降(P≤0.05)。这些数据说明,猪日粮中饲喂DDGS可以降低猪肉的品质。对育成猪饲喂20%或者更高含量的DDGS可以降低猪肉培根瘦肉率.但通过添加0.6%的CLA可以部分缓解这些不利的影响。  相似文献   

8.
Two studies were conducted to assess the energy content of low-solubles distillers dried grains (LS-DDG) and their effects on growth performance, carcass characteristics, and pork fat quality in grow-finish pigs. In Exp. 1, 24 barrows (Yorkshire-Landrace × Duroc; 80 to 90 d of age) in 2 successive periods were assigned to 1 of 6 dietary treatments. In individual metabolism stalls, pigs were fed a corn-soybean meal diet (control); control replaced by 30, 40, or 50% LS-DDG; or control replaced by 30 or 40% distillers dried grains with solubles (DDGS) at 3% of their initial BW for 12 d. All diets contained 0.25% CrO(2). During the 5-d collection period, feces and urine were collected from each pig. Feed, feces, and urine were analyzed for DM, GE, and N concentrations, and feed and feces were analyzed for Cr content. The ME content of LS-DDG (2,959 ± 100 kcal/kg of DM) was similar to that determined for DDGS (2,964 ± 81 kcal/kg of DM). In Exp. 2, 216 Yorkshire-Landrace × Duroc pigs were blocked by initial BW (18.8 ± 0.76 kg) and assigned to 1 of 24 pens (9 pigs/pen). Pens within block were allotted to 1 of 3 dietary treatments (8 pens/treatment) in a 4-phase feeding program: a corn-soybean meal control (control), control containing 20% LS-DDG, or control containing 20% DDGS. Treatment had no effect on final BW, ADG, ADFI, or HCW. Pigs fed LS-DDG had similar G:F (0.367) compared with pigs fed DDGS (0.370), but tended (P = 0.09) to have decreased G:F compared with pigs fed the control (0.380; pooled SEM = 0.004). Dressing percent was less (P < 0.01) for pigs fed LS-DDG (72.8%) and DDGS (72.8%) compared with the control (73.8%; pooled SEM = 0.22). Pigs fed LS-DDG (54.8%) had greater (P = 0.02) carcass lean compared with pigs fed DDGS (53.4%), but were similar to pigs fed control (54.1%; pooled SEM = 0.33). Bellies from pigs fed DDGS (12.9°) were softer (P < 0.01) than those from pigs fed control (17.7°; pooled SEM = 1.07) as determined by the belly flop angle test. Feeding LS-DDG (14.1°) tended (P < 0.10) to create softer bellies compared with control-fed pigs. The PUFA content of belly fat was reduced (P < 0.01) by LS-DDG (14.0%) compared with DDGS (15.4%), but was increased (P < 0.05) compared with pigs fed the control (9.4%; pooled SEM = 0.34). In conclusion, LS-DDG and DDGS had similar ME values and inclusion of 20% LS-DDG in diets for growing-finishing pigs supports ADG and ADFI similar to that of diets containing 20% DDGS, and may reduce negative effects on pork fat compared with DDGS.  相似文献   

9.
Three experiments were conducted to determine the optimal level of dried distiller grains with solubles (DDGS) from a common ethanol manufacturing facility and to determine the potential interactions between dietary DDGS and added fat on performance and carcass characteristics of growing and finishing pigs. All experiments were conducted at the same commercial facility and used DDGS from the same ethanol manufacturing facility. In Exp. 1, a total of 1,050 pigs (average initial BW 47.6 kg), with 24 to 26 pigs per pen and 7 pens per treatment, were fed diets containing 0 or 15% DDGS and 0, 3, or 6% added choice white grease in a 2 x 3 factorial arrangement in a 28-d growth study. Overall, there were no DDGS x added fat interactions (P >/= 0.14). There was an improvement (linear, P < 0.01) in ADG and G:F as the percentage of added fat increased. There was no difference (P = 0.74) in growth performance between pigs fed 0 or 15% DDGS. In Exp. 2, a total of 1,038 pigs (average initial BW 46.3 kg), with 24 to 26 pigs per pen and 10 pens per treatment, were fed diets containing 0, 10, 20, or 30% DDGS in a 56-d growth study. Pigs fed diets containing DDGS had a tendency for decreased ADG and ADFI (both linear, P = 0.09 and 0.05, respectively), but the greatest reduction seemed to occur between pigs fed 10 and 20% DDGS. In Exp. 3, a total of 1,112 pigs (average initial BW 49.7 kg), with 25 to 28 pigs per pen and 9 pens per treatment, were used in a 78-d growth study to evaluate the effects of increasing DDGS (0, 5, 10, 15, or 20%) in the diet on pig growth performance and carcass characteristics. From d 0 to 78, ADG and ADFI decreased linearly (P 相似文献   

10.
文章综述了玉米DDGS对生长育肥猪的营养价值,不同添加量对生长育肥猪生产性能的影响,以及玉米DDGS中高含量多不饱和脂肪酸对猪胴体脂肪酸组成以及碘值的影响。  相似文献   

11.
Two experiments were conducted to evaluate effects of corn distillers dried grains with solubles (DDGS) on growth performance and health status of weanling pigs. Experiment 1 evaluated effects of increasing concentrations of DDGS on growth performance and health of weanling pigs. Dietary treatments included 1) control (CTL), 2) 0% DDGS (0% DDGS in phase 2 and 30% DDGS in phase 3), 3) 5% DDGS (5% DDGS in phase 2 and 30% DDGS in phase 3), and 4) 30% DDGS (phases 2 and 3). Overall, pigs fed 30% DDGS during phases 2 and 3 had decreased (22.1 vs. 25.1 and 24.0 kg; P = 0.003) BW compared with CTL pigs and pigs that only received DDGS during phase 3. In addition, pigs fed 5 or 30% DDGS in phase 2 had decreased (422.7 or 390.0 vs. 468.2 g; P = 0.003) ADG compared with CTL pigs. However, pigs fed 0% DDGS during phase 2 had similar BW, ADG, and ADFI compared with CTL pigs. Experiment 2 was conducted to evaluate effects of DDGS, lactose, and their interaction on growth performance and health of weanling pigs. Dietary treatments included 1) CTL, 2) lactose (20%), 3) DDGS (15%), and 4) lactose + DDGS. Diets of interest were fed during phase 1 (d 0 to 14), and a common diet was fed during phase 2 (d 14 to 28). Pigs receiving DDGS in phase 1 had greater ADG (576.2 vs. 534.6 g; P = 0.01) and ADFI (814.9 vs. 751.6 g; P = 0.01) during phase 2 compared with non-DDGS-fed pigs. Pigs receiving lactose during phase 1 had greater ADG (214.7 vs. 177.2 g; P = 0.01) and G:F (741.0 vs. 660.3 g/kg; P = 0.01) and tended to have greater ADFI (289.3 vs. 267.6 g; P = 0.07) during phase 1 but decreased (537.7 vs. 573.1 g; P = 0.09) ADG during phase 2. Serum immunoglobulin analyses and fecal microbial profiling were conducted in both experiments as indicators of health status. No effects of dietary treatment were observed for serum immunoglobulin in either experiment. Fecal microbial profiling resulted in statistically significant effects of dietary treatment with respect to microbial similarity and diversity indices (Exp. 1) and lactic acid-producing bacteria (Exp. 2), where main effects of both lactose and DDGS were observed with respect to putative Lactobacillus reuteri (P < 0.05). Results from Exp. 1 indicate that decreased concentrations of DDGS early in the nursery phase may negatively affect growth performance; however, growth performance may be maintained when inclusion of high concentrations (30%) of DDGS is delayed until the late nursery period. Results from Exp. 2 indicate that lactose may be incorporated in nursery diets containing DDGS to help maintain growth performance, and DDGS and lactose may affect fecal microbial profiles.  相似文献   

12.
A total of 120 pigs (60 barrows and 60 gilts; TR4 × PIC 1050; 54.4 kg initial BW) were used in an 83-d study to evaluate the effects of added fat in corn- and sorghum-based diets on growth performance, carcass characteristics, and carcass fat quality. Treatments were arranged in a 2 × 3 factorial with grain source (corn or sorghum) and added fat (0, 2.5, or 5% choice white grease; CWG) as factors. There were 2 pigs (1 barrow and 1 gilt) per pen and 10 replicate pens per treatment. Pigs and feeders were weighed on d 14, 22, 39, 53, 67, and 83 to calculate ADG, ADFI, and G:F. At the end of the trial, pigs were slaughtered and jowl fat and backfat samples were collected and analyzed for fatty acid profile. No interactions were observed for growth performance. Pigs fed sorghum-based diets had greater (P < 0.01) ADG than pigs fed corn-based diets. Adding CWG improved (linear, P < 0.01) ADG. Pigs fed corn-based diets tended to have greater (P < 0.09) carcass yield, 10th-rib backfat, and percentage lean than pigs fed sorghum-based diets. Adding CWG increased (linear, P = 0.02) 10th-rib backfat, tended to increase (linear, P = 0.08) HCW, and tended to decrease (linear, P = 0.07) percentage lean. There was no grain source × fat level interaction for iodine value (IV) in backfat, but an interaction (P = 0.03) was observed for IV in jowl fat. Adding CWG increased (P < 0.01) IV in jowl fat for pigs fed sorghum- and corn-based diets; however, the greatest increase was between 0 and 2.5% CWG in sorghum-based diets and between 2.5 and 5% CWG in corn-based diets. Pigs fed corn-based diets had less (P = 0.01) C18:1 cis-9 and MUFA but greater (P = 0.01) C18:2n-6, PUFA, and backfat IV than pigs fed sorghum-based diets. Increasing CWG in the diet increased (linear, P = 0.01) backfat IV. Of the 2 fat depots, backfat generally had a reduced IV than jowl fat. In summary, feeding sorghum-based diets reduced carcass fat IV and unsaturated fats compared with corn-based diets. As expected, adding CWG increased carcass fat IV regardless of the cereal grain in the diet.  相似文献   

13.
14.
15.
16.
17.
Two hundred sixty-four crossbred heifers (initial BW = 354 kg ± 0.5) were used to determine effects of corn processing method and wet distillers grains plus solubles (WDGS) inclusion in finishing diets on animal performance, carcass characteristics, and manure characteristics. The study was conducted as a randomized complete block with a 2 × 2 factorial arrangement of treatments. Dietary treatments included steam-flaked corn (SFC)- and dry-rolled corn (DRC)-based finishing diets containing 0 or 20% WDGS (0SFC, 20SFC, 0DRC, and 20DRC, respectively). Heifers averaged 154 d on feed and were marketed in 3 groups. There were no interactions between corn processing method and WDGS detected (P ≥ 0.29) for any performance or carcass response variables. Heifers fed diets containing WDGS tended to have greater final BW (P = 0.10) and increased G:F (P = 0.08) compared with heifers fed diets without WDGS. Heifers fed SFC-based diets consumed 7% less feed (P < 0.01) and were 9% more efficient (P < 0.01) than heifers fed DRC-based diets. Carcass characteristics were not affected by corn processing method or WDGS inclusion (P ≥ 0.16). Intakes of OM, N, P, and K were greater (P ≤ 0.05) for heifers fed DRC-based diets than those fed SFC-based diets, which resulted in greater net accumulation of the nutrients in the manure (P ≤ 0.04). Heifers fed diets containing WDGS had greater (P < 0.01) intakes of N, P, and K than heifers fed diets without WDGS. As a result, a greater net accumulation of P and K (P ≤ 0.03) and N (P = 0.10) were present in the manure from cattle fed diets containing WDGS compared with those fed diets without WDGS. There was no interaction (P ≥ 0.16) between corn processing and WDGS on N volatilization losses. Nitrogen volatilization losses from manure (expressed as a percentage of intake and g·heifer(-1)·d(-1)) were greater (P < 0.01) for heifers fed SFC-based diets than heifers fed DRC-based diets. Feeding DRC-based finishing diets to heifers resulted in increased manure production and nutrient excretion and decreased N volatilization. Both corn processing method and WDGS inclusion affected animal performance and manure characteristics.  相似文献   

18.
Supplementation of vitamin E has indications for improving cattle health, performance, and retail characteristics when included in grain-based diets. This experiment was conducted to determine performance and carcass characteristics of steers fed diets containing wet distillers grains with solubles (WDGS) and supplemented with vitamin E. Steers of mixed Bos indicus and Bos taurus breeding (n = 199; BW = 363 ± 32 kg) were blocked by BW and assigned to 1 of 4 supplemental vitamin E (VITE) treatments [0 (control), 125, 250, and 500 IU·steer(-1)·d(-1)], which were fed for the last 97 d of the feeding period. Two blocks were on feed 129 d, and 3 blocks were fed for 150 d. Steers were fed a dry-rolled corn-based finishing diet with 35% WDGS (DM basis). Individual BW were measured initially, the initial day of vitamin E supplementation, and the day of slaughter. Carcass weights were collected at slaughter, and carcass data were collected after a 36-h chill. Body weight and ADG were not affected by VITE (P ≥ 0.34). There was a tendency for a linear (P = 0.08) increase in carcass-adjusted BW with increasing VITE. Use of carcass-adjusted final BW resulted in a linear increase (P = 0.04) in ADG with increasing VITE. Pre-vitamin E and vitamin E feeding period DMI were not affected (P ≥ 0.24) by VITE, but there was a tendency (P = 0.08) for a linear increase in overall DMI with increasing VITE. No difference (P ≥ 0.29) occurred in G:F measures using BW gains, but G:F using carcass-adjusted BW gains resulted in a trend (P = 0.11) for G:F to increase linearly with increasing VITE. Hot carcass weights tended (P = 0.08) to increase linearly with increasing dietary vitamin E. Vitamin E supplementation resulted in no effects (P ≥ 0.13) on measured carcass characteristics. Calculated yield grades (YG) were also not affected (P ≥ 0.37). However, the distribution of calculated YG resulted in a quadratic effect (P = 0.02) for YG 3 with the control and 500 VITE being greater than the 2 intermediate amounts. However, the percentage of carcasses grading YG 3 or less were not affected by vitamin E supplementation (P = 0.64). No differences were observed in the distribution of quality grades based on marbling scores (P ≥ 0.57). Data from this study suggest that vitamin E supplemented above basal requirements during the last 97 d of the feeding period in finishing diets containing 35% WDGS results in slight to no effect on animal performance or carcass characteristics.  相似文献   

19.
A total of 120 barrows (initial BW = 47.9 ± 3.6 kg; PIC 1050) were used in an 83-d study to determine the effects of dietary iodine value (IV) product (IVP) on growth performance and fat quality. Pigs were blocked by BW and randomly allotted to 1 of 6 treatments with 2 pigs per pen and 10 pens per treatment. Dietary treatments were fed in 3 phases and formulated to 3 IVP concentrations (low, medium, and high) in each phase. Treatments were 1) corn-soybean meal control diet with no added fat (low IVP), 2) corn-extruded expelled soybean meal (EESM) diet with no added fat (medium IVP), 3) corn-soybean meal diet with 15% distillers dried grains with solubles and choice white grease (DDGS + CWG; medium IVP), 4) corn-soybean meal diet with low CWG (medium IVP), 5) corn-EESM diet with 15% DDGS (high IVP), and 6) corn-soybean meal diet with high CWG (high IVP). On d 83, pigs were slaughtered and backfat and jowl fat samples were collected and analyzed. The calculated and analyzed dietary IVP values were highly correlated (r(2) = 0.86, P < 0.01). Pigs fed the control diet, EESM, or high CWG had greater (P < 0.05) ADG than pigs fed EESM + DDGS. Pigs fed the control diet had greater (P < 0.05) ADFI than pigs fed all other diets. Pigs fed EESM + DDGS and high CWG had improved (P < 0.05) G:F compared with pigs fed the control diet or DDGS + CWG. Pigs fed diets with DDGS had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA and less SFA than pigs fed all other treatments. Pigs fed EESM had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA than pigs fed the control diet, low CWG, or high CWG. Pigs fed low CWG or high CWG had greater (P < 0.05) jowl fat IV than control pigs. Feeding ingredients high in unsaturated fatty acids, such as DDGS and EESM, had a greater impact on fat IV than CWG, even when diet IVP was similar. Therefore, IVP was a poor predictor of carcass fat IV in pigs fed diets with different fat sources and amounts of unsaturated fats formulated with similar IVP. Dietary C18:2n-6 content was a better predictor of carcass fat IV than diet IVP.  相似文献   

20.
随机设置2个处理组(对照组和添加8%DDGS的试验组,n=144)来评估在肉鸡日粮中添加DDGS对鸡胸肉和鸡腿肉质量的影响。首先利用电击瞬间致昏动物,然后作放血、浸烫、打毛等处理。肉鸡死亡4h之后将胸肉和腿肉从鸡胴体上在低温条件下剥离。右侧鸡胸肉用来测定肉色、pH值、蒸煮损失、剪切力值,左侧胸肉用于感官评定;腿肉用于评估总胆汁酸(TBA)和脂肪酸组成。结果显示:添加了DDGS的试验组在肉色、pH值、蒸煮损失、剪切力值上与对照组差异不显著(P0.05)。另外,对照组和试验组在鸡肉质地上没有显著差异(P0.05),但对照组的鸡肉风味更容易被多数人所接受。一般喜欢和非常喜欢鸡肉的消费者不在这两个处理组之内,两组的试验成员属于一般可接受鸡肉的消费者。另外在感官评定的试验中,消费者对添加DDGS和对照组的鸡肉评价没有明显差异(P0.5),各组间的脂肪酸结构变化不大(P0.05),但添加DDGS处理组的鸡肉在亚油酸、多不饱和脂肪酸含量上和对照组有很大差异(P0.05),这表明试验组的鸡肉更容易被氧化。总的来说,这两种喂养方式都可以生产出高质量的鸡胸肉和鸡腿肉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号