首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of a site-specific DNA-binding peptide   总被引:14,自引:0,他引:14  
The Hin recombinase binds to specific sites on DNA and mediates a recombination event that results in DNA inversion. In order to define the DNA-binding domain of the Hin protein two peptides 31 and 52 amino acids long were synthesized. Even though the 31mer encompassed the sequence encoding the putative helix-coil-helix-binding domain, it was not sufficient for binding to the 26-base pair DNA crossover site. However, the 52mer specifically interacted with the site and also effectively inhibited the Hin-mediated recombination reaction. The 52mer bound effectively to both the 26-base pair complete site and to a 14-base pair "half site." Nuclease and chemical protection studies with the 52mer helped to define the DNA base pairs that contributed to the specificity of binding. The synthetic peptide provides opportunities for new approaches to the study of the nature of protein-DNA interaction.  相似文献   

2.
Synthesis of a sequence-specific DNA-cleaving peptide   总被引:19,自引:0,他引:19  
A synthetic 52-residue peptide based on the sequence-specific DNA-binding domain of Hin recombinase (139-190) has been equipped with ethylenediaminetetraacetic acid (EDTA) at the amino terminus. In the presence of Fe(II), this synthetic EDTA-peptide cleaves DNA at Hin recombination sites. The cleavage data reveal that the amino terminus of Hin(139-190) is bound in the minor groove of DNA near the symmetry axis of Hin recombination sites. This work demonstrates the construction of a hybrid peptide combining two functional domains: sequence-specific DNA binding and DNA cleavage.  相似文献   

3.
4.
5.
Multiple DNA-protein interactions governing high-precision DNA transactions   总被引:70,自引:0,他引:70  
H Echols 《Science (New York, N.Y.)》1986,233(4768):1050-1056
  相似文献   

6.
The multiprotein-DNA complexes that participate in bacteriophage lambda site-specific recombination were used to study the combined effect of protein-induced bending and protein-mediated looping of DNA. The protein integrase (Int) is a monomer with two autonomous DNA binding domains of different sequence specificity. Stimulation of Int binding and cleavage at the low affinity core-type DNA sites required interactions with the high affinity arm-type sites and depended on simultaneous binding of the sequence-specific DNA bending protein IHF (integration host factor). The bivalent DNA binding protein is positioned at high affinity sites and directed, by a DNA bending protein, to interactions with distant lower affinity sites. Assembly of this complex is independent of protein-protein interactions.  相似文献   

7.
8.
The structure of a synaptic intermediate of the site-specific recombinase gammadelta resolvase covalently linked through Ser10 to two cleaved duplex DNAs has been determined at 3.4 angstrom resolution. This resolvase, activated for recombination by mutations, forms a tetramer whose structure is substantially changed from that of a presynaptic complex between dimeric resolvase and the cleavage site DNA. Because the two cleaved DNA duplexes that are to be recombined lie on opposite sides of the core tetramer, large movements of both protein and DNA are required to achieve strand exchange. The two dimers linked to the DNAs that are to be recombined are held together by a flat interface. This may allow a 180 degrees rotation of one dimer relative to the other in order to reposition the DNA duplexes for strand exchange.  相似文献   

9.
Control of directionality in lambda site specific recombination   总被引:37,自引:0,他引:37  
The simple relation between the substrates and products of site-specific recombination raises questions about the control of directionality often observed in this class of DNA transactions. For bacteriophage lambda, viral integration and excision proceed by discrete pathways, and DNA substrates with the intrinsic property of recombining in only one direction can be constructed. These pathways display an asymmetric reliance on a complex array of protein binding sites, and they respond differently to changes in the concentrations of the relevant proteins. The Escherichia coli protein integration host factor (IHF) differentially affects integrative and excisive recombination, thereby influencing directionality. A four- to eightfold increase in intracellular IHF coincides with the transition from exponential to stationary phase; this provides a mechanism for growth phase-dependent regulation of recombination that makes the cellular physiology an intrinsic part of the recombination reaction.  相似文献   

10.
NAC蛋白是植物特有的转录因子,在植物发育和各种非生物逆境应答中发挥着重要作用。为更好地揭示玉米SNAC(stress-responsive NAM,ATAF1/2,CUC2)家族的耐逆境胁迫功能,对其基因的结构特征及可能的调控机理进行了预测。利用生物信息学方法,鉴定了玉米16个SNAC家族基因,并对该基因家族各编码蛋白的理化性质、基因结构、潜在的磷酸化位点、蛋白质二级结构、基因进化关系、基因组序列结构和启动子结合元件等信息进行分析。分析结果表明:玉米16个SNACs不具有跨膜结构,且均具有N-末端保守结构域和高度可变的C-末端结构域。系统发育分析表明,同一亚群中密切相关的成员具有相似的基因结构,推测在不同植物中会具有类似的耐逆功能。磷酸化位点分析表明,玉米SNAC家族存在着大量的磷酸化位点。二级结构预测表明,玉米SNAC的转录调控区具有高度的内在灵活性。启动子分析表明,玉米SNAC家族基因启动子区域均含有大量的逆境胁迫应答顺式作用元件。这些结果为玉米耐逆境研究提供了候选基因,对促进玉米SNAC家族功能分析的进展具有重要意义。  相似文献   

11.
12.
13.
【目的】 研究库尔勒香梨萼片脱落、宿存与kfpSPL基因之间存在的关系,并克隆该基因及其启动子。【方法】以库尔勒香梨花器官作为材料,库尔勒香梨kfpSPL基因的cDNA序列以及梨基因组信息为模板设计引物,通过PCR获得该基因及其启动子,进行上游调控序列顺式作用元件的预测分析(PLACE数据库和PlantCare数据库)。【结果】克隆获得kfpSPL基因的基因组DNA序列长度为3 320 bp和2 332 bp的上游启动子调控序列,kfpSPL基因的基因组DNA与Pyrus bretschneideri 数据库中的一段长度相同的序列具有99%的同源性,E值为0,并发现该基因有三段内含子,将克隆得到的启动子序列在梨全基因组序列数据库中进行相似性搜索,发现克隆得到的上游启动子序列的1~796 nt和1 042~2 332 nt分别与scaffold291.0中290 783~289 988 nt和289 990~288 701 nt的同源性为96%和97%,E值均为0。以生物信息学分析为依据,kfpSPL启动子序列中存在一些相关的调控元件,赤霉素响应元件GARE-motif、P-box,光响应中的顺式作用元件ACE、 Box II、CATT-motif、G-box、TCT-motif、Box 4,防御和应激反应中的顺式作用元件TC-rich repeats, 启动子和增强子区的共同顺式作用元件CAAT-box等,转录起始的核心启动子元件TATA-box等。【结论】kfpSPL基因启动子序列中存在与赤霉素、脱落酸、水杨酸等激素相关的顺式作用元件,不同生长调节剂处理脱萼果和宿萼果的花器官可以调控kfpSPL基因的表达水平。  相似文献   

14.
15.
Mechanism of RAD51-dependent DNA interstrand cross-link repair   总被引:2,自引:0,他引:2  
DNA interstrand cross-links (ICLs) are toxic DNA lesions whose repair in S phase of eukaryotic cells is incompletely understood. In Xenopus egg extracts, ICL repair is initiated when two replication forks converge on the lesion. Dual incisions then create a DNA double-strand break (DSB) in one sister chromatid, whereas lesion bypass restores the other sister. We report that the broken sister chromatid is repaired via RAD51-dependent strand invasion into the regenerated sister. Recombination acts downstream of FANCI-FANCD2, yet RAD51 binds ICL-stalled replication forks independently of FANCI-FANCD2 and before DSB formation. Our results elucidate the functional link between the Fanconi anemia pathway and the recombination machinery during ICL repair. In addition, they demonstrate the complete repair of a DSB via homologous recombination in vitro.  相似文献   

16.
Genetic disorders affecting cellular responses to DNA damage are characterized by high rates of translocations involving antigen receptor loci and increased susceptibility to lymphoid malignancies. We report that the Nijmegen breakage syndrome protein (NBS1) and histone gamma-H2AX, which associate with irradiation-induced DNA double-strand breaks (DSBs), are also found at sites of VDJ (variable, diversity, joining) recombination-induced DSBs. In developing thymocytes, NBS1 and gamma-H2AX form nuclear foci that colocalize with the T cell receptor alpha locus in response to recombination activating gene (RAG) protein-mediated VDJ cleavage. Our results suggest that surveillance of T cell receptor recombination intermediates by NBS1 and gamma-H2AX may be important for preventing oncogenic translocations.  相似文献   

17.
Mutations in the BRCA2 (breast cancer susceptibility gene 2) tumor suppressor lead to chromosomal instability due to defects in the repair of double-strand DNA breaks (DSBs) by homologous recombination, but BRCA2's role in this process has been unclear. Here, we present the 3.1 angstrom crystal structure of a approximately 90-kilodalton BRCA2 domain bound to DSS1, which reveals three oligonucleotide-binding (OB) folds and a helix-turn-helix (HTH) motif. We also (i) demonstrate that this BRCA2 domain binds single-stranded DNA, (ii) present its 3.5 angstrom structure bound to oligo(dT)9, (iii) provide data that implicate the HTH motif in dsDNA binding, and (iv) show that BRCA2 stimulates RAD51-mediated recombination in vitro. These findings establish that BRCA2 functions directly in homologous recombination and provide a structural and biochemical basis for understanding the loss of recombination-mediated DSB repair in BRCA2-associated cancers.  相似文献   

18.
19.
Chromosome organization by a nucleoid-associated protein in live bacteria   总被引:1,自引:0,他引:1  
Wang W  Li GW  Chen C  Xie XS  Zhuang X 《Science (New York, N.Y.)》2011,333(6048):1445-1449
  相似文献   

20.
The BRCT repeats of the breast and ovarian cancer predisposition protein BRCA1 are essential for tumor suppression. Phosphopeptide affinity proteomic analysis identified a protein, Abraxas, that directly binds the BRCA1 BRCT repeats through a phospho-Ser-X-X-Phe motif. Abraxas binds BRCA1 to the mutual exclusion of BACH1 (BRCA1-associated C-terminal helicase) and CtIP (CtBP-interacting protein), forming a third type of BRCA1 complex. Abraxas recruits the ubiquitin-interacting motif (UIM)-containing protein RAP80 to BRCA1. Both Abraxas and RAP80 were required for DNA damage resistance, G(2)-M checkpoint control, and DNA repair. RAP80 was required for optimal accumulation of BRCA1 on damaged DNA (foci) in response to ionizing radiation, and the UIM domains alone were capable of foci formation. The RAP80-Abraxas complex may help recruit BRCA1 to DNA damage sites in part through recognition of ubiquitinated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号