首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
W. H. Wei    S. F. Zhang    L. J. Wang    J. LI    B. Chen    Z. Wang    L. X. Luo    X. P. Fang 《Plant Breeding》2007,126(4):392-398
By intergeneric sexual hybridization between Sinapis alba and Brassica oleracea , F1, F2 and BC1 progeny plants were produced. S. alba plants (genome SS, 2n = 24) were pollinated with B. oleracea (genome CC, 2n = 18), and the fertile F1 plants were pollinated with B. oleracea to obtain BC1 plants. GISH analysis showed that 10 out of 12 F1 plants had 12 S. alba chromosomes (one full S chromosome set) and nine B. oleracea chromosomes (one C chromosome sets), representing the expected hybrids. However, two F1 plants had 12 S chromosomes and 18 C chromosomes (two C chromosome sets), indicating unexpected hybrids. A maximum of three trivalents between C and S chromosomes were identified at metaphase I of semi-fertile F1 pollen mother cells (PMCs), which indicates homology and chromosome pairing between these two genomes. The C genome had obviously been doubled in two F2 plants from selfed semi-fertile F1 plants. BC1 plants consisted of 18 C chromosomes and different numbers of one, five and six additional S chromosomes, respectively. Monosomic alien addition lines developed in the present study can be used for B. oleracea breeding and Sinapis alba gene mapping.  相似文献   

2.
S. W. Bang    Y. Kaneko  Y. Matsuzawa 《Plant Breeding》1996,115(5):385-390
Intergeneric F1 hybrids between Raphanus sativus (2n = 18, RR) and Moricandia arvensis (2n = 28, MaMa) have been produced through ovary culture followed by embryo culture, when M. arvensis was used as a pistillate parent. Six BC1 plants were also obtained through ovary culture followed by embryo culture in the backcross of an amphidiploid F1, hybrid with R. sativus cv. 'Pink ball'. Two BC1 plants were ses-quidiploids (2n = 32, MaRR), and the other BC1, plants were hyperploid with 2n = 55, having MaMaRRR genomes. BC2, seeds were obtained by conventional pollination in the successive backcross of two sesquidiploid BC1, plants with R. sativus cv. 'Pink ball'. Their seed set percentages were 12.7% and 17.0%, respectively. These novel hybrid plants and derived progenies may be valuable materials for the genetic investigation and breeding of Brassiceae , including R. sativus.  相似文献   

3.
The high stearic acid sunflower mutant CAS-3 is characterized by a low seed oil content, which might represent a constraint for the commercial production of high stearic acid sunflower oil. The objective of the present research was to investigate the relationships between fatty acid profile and seed oil content in CAS-3. Plants of CAS-3 were reciprocally crossed with plants of breeding line ADV-37, with high oil content and standard fatty acid profile. Oil content and fatty acid composition were measured in individual F2 seeds and F2 plants (F3 seeds averaged). Both F2 seeds and F2 plants from the cross ADV-37 × CAS-3 had a significantly higher oil content than those from the reciprocal cross, which indicated the existence of cytoplasmic effects in the genetic control of the trait. A consistent negative correlation between oil content and palmitic acid and a positive correlation between oil content and oleic acid were detected both in F2 seeds and F2 plants. Conversely, no consistent correlation between oil content and stearic acid was observed, which suggested the feasibility of simultaneous selection for both traits.  相似文献   

4.
Four bread wheat cultivars were studied at two salinity levels. Tobari 66 had the lowest uptake of Na+ and Cl, and the highest K+/Na+ ratio; Pato had the highest uptake of these ions and Lyallpur 73 was intermediate. Intervarietal differences were greater at higher salinity, suggesting that they were not caused by variation at the Kna1 locus. There were significant differences between inbred lines for Na+, particularly in Blue Silver, suggesting the possibility of selecting genotypes with enhanced tolerance from within existing cultivars. Pato, Tobari 66 and their reciprocal F1 hybrids were further evaluated at four salinity levels. The hybrids exhibited similar relative grain yield to Tobari, with better Na+ and Cl exclusion and higher K+/Na+ ratios than Pato. Overall, Tobari had the highest absolute yield under salinity, and the hybrids were closer to Tobari than to Pato. Tiller and grain numbers, 100-grain weight and yield were more affected by salinity than were height, spike length and spikelet number. We conclude that intervarietal variation for salt tolerance in wheat is controlled by genes which could be transferred to sensitive genotypes to improve their tolerance, and that the K+/Na+ ratio of the youngest leaf could be used to screen for salt tolerance.  相似文献   

5.
The direct and indirect contributions of root characters — root length, roots/plant, fresh and dry root weight on grain yield/plant were worked out from a 7 × 7 diallel set of rice hybrids. The materials were grown in pots with four replications. Path analysis was done at genotypic level of correlation.
The grain yield/plant showed positive correlation with all the root characters in parent, F1 and F2 except with roots/plant in F1 population. Fresh root weight demonstrated positive direct effect on grain yield/plant in all the three generations. Roots/plant had highly positive direct effect in F2. Direct effects were negative in respect of root length and dry root weight in F2 generation.  相似文献   

6.
A rye-cytoplasmic tetraploid triticale was found in Fs progenies of crosses between tetraploid rye‘No 1323’and hexaploid triticale‘KT 77′. In the tetraploid triticale, two complete rye genomes and two mixed wheat genomes, consisting of the chromosomes 1A. 2A, 4A, 7A, 3B, 5B, and 6B are present. The rye cytoplasm did not affect stability of rye chromosome pairing during metaphase 1, since rye chromosomes participated in pairing irregularities just as did wheat chramosomes, even on a larger scale. The fertility of F0, plants ranged from 0 to 75.6 %, always associated with high grain shrivelling. The analyzed pairing behaviour of induced triploid hybrids from crosses between the tetraploid triticale and diploid rye indicates the presence of at least one wheat-rye translocation in one of the investigated triploid plants.  相似文献   

7.
B. H. Jeong    T. Saga    K. Okayasu    G. Hattori    Y. Kaneko    S. W. Bang 《Plant Breeding》2009,128(5):536-537
Intergeneric hybridization was performed between Brassica rapa and Diplotaxis tenuifolia following embryo rescue. Twenty-three F1 hybrid plants were developed from the cross B. rapa  ×  D. tenuifolia and confirmed to be amphihaploids with 21 chromosomes in mitosis. Chromosome doubling of F1 hybrids by colchicine treatment resulted into five amphidiploid plants which exhibited (20–21)II + (0–2)I at metaphase I (MI) of pollen mother cells. Sib-crossing and/or open-pollination among amphidiploid plants for more than four generations resulted in the development of an ADt-06 line with reproductive systems capable of maintaining an amphidiploid line. The ADt-06 line was intermediate in some morphological traits between two parental species, and was characterized by a slightly pungent taste as a physiological trait. Analyses for genomic DNA confirmed that this line was a hybrid between two species. This new amphidiploid ADt-06 line could be a useful genetic resource for the breeding of new leafy salad vegetables.  相似文献   

8.
Seed meal amendments rich in glucosinolates are of interest for soil pest and disease control. The Ethiopian mustard ( Brassica carinata A. Braun) line N2-6215, with very high levels of seed glucosinolates (160 μmol/g), was developed from the line C-101 (116 μmol / g) following mutagenesis. The objective of this research was to study the inheritance of very high seed glucosinolate content. Plants of N2-6215 were reciprocally crossed with plants of the line C-101. The F1, F2, and BC1F1 plant generations were evaluated in two environments and seeds from individual plants were analysed for total glucosinolate content. The very high glucosinolate content in N2-6215 seeds was largely subject to maternal control. No cytoplasmic effects were detected. The trait was found to be oligogenic and determined by at least two or three genes. The estimates of broad-sense heritability were 0.45 and 0.58 in both environments, whereas the estimates of narrow-sense heritability were 0.35 and 0.50. The moderate heritability and oligogenic control of the trait suggest the feasibility of breeding for increased seed glucosinolate content in Ethiopian mustard.  相似文献   

9.
The F1 AABBRHch hybrids studied here were produced by crosses between the Portuguese triticale cultivar 'Douro' (AABBRR) and the tritordeum line HT9 (AABBHchHch). Fluorescent in situ hybridization performed with genomic DNA probes genomic in situ hybridization (GISH) from rye and Hordeum chilense allowed the unequivocal parental genomes discrimination in all hybrids. Among 55 plants, one presented a spontaneous wheat–rye translocation which was successfully detected after GISH. Recombinant chromosomes identification was made after reprobe with pTa71 and pSc119.2. Nine rDNA loci were detected by pTa71 and pSc119.2 identified the chromosome arms involved in the translocation, after comparing the observed hybridization patterns with those described by several authors. We identified the spontaneous wheat–rye translocation as being the 7BS/7RL. Many wheat–rye translocations have been found (e.g. 1BL.1RS and 1AL.1RS), but as far as we know, this is the first time that this translocation is reported. We considered it helpful for wheat breeding programmes as it could provide the transference of interesting agronomic characteristics from rye (e.g. leaf rust resistance) to wheat.  相似文献   

10.
M. Baum  T. Lelley 《Plant Breeding》1988,100(4):260-267
F1 hybrids of triticale × rye derived from commercial varieties were backcrossed to the respective triticale parent. Selfing of the backcross generation yielded a large number of 4× triticales containing a genetically balanced wheat genome. This indicates that the 28-chromosome F1 plants with the genomic constitution of ABRR produced functional 14-chromosome gametes in high frequency each with a complete wheat and rye genome. The cytological mechanism leading to the formation of tetraploid triticales is described. The chromosomal constitution of the wheat genome in the progenies of 30 back cross plants was analysed by the C-banding technique. One offspring possessed a complete B genome of wheat. The production of tetraploid triticale through backcrossing in comparison to selfing the ABRR hybrid is largely independent of the genotype; it leads to new tetraploids in just three generations and it reduces the chance of translocations between the homoeologous wheat chromosomes. The possibility of studying the effect of different mixtures of chromosomes of the A and B genomes of wheat on the phenotype of the tetraploid triticale is discussed.  相似文献   

11.
K. Murai    Y. Ogihara  K. Tsunewaki 《Plant Breeding》1995,114(3):205-209
Triticum aestivum cv. 'Norin 26' with Aegilops crassa cytoplasm shows photoperiod-sensitive cytoplasmic male sterility (PCMS). This alloplasmic line is almost completely male-sterile under long-day conditions (≥ 15h), but highly male-fertile under short-day conditions (≤ 14.5h). To obtain male—fertile mutants against PCMS, seeds of the alloplasmic line were treated with ethyl methane sulfonate (EMS). The M3 generation was evaluated for PCMS expression, and one fertility-restoring (FR-mutant) line showing high male fertility under the long-day conditions was selected. Reciprocal F, hybrids between the FR-mutant and the alloplasmic 'Norin 26' showed male sterility under the long-day conditions, and continuous segregation with respect to the degree of fertility restoration occurred in their F2 generations. These results indicate that multiple recessive mutations with minor effects, induced in the nuclear genome, are involved in the fertility restoration. In fact, no restriction-fragment-length polymorphisms of mitochondrial DNA between the FR-mutant and the alloplasmic 'Norin 26' are found.  相似文献   

12.
M. Staniaszek    E. U. Kozik    W. Marczewski 《Plant Breeding》2007,126(3):331-333
Fusarium oxysporum f. sp. lycopersici inhabits most tomato-growing regions worldwide, causing tomato production yield losses. A molecular marker linked to resistance would be useful for tomato improvement programmes. Thus, a cleaved amplified polymorphic sequence (CAPS) marker TAO1902 was developed to identify tomato genotypes possessing the I-2 gene, which confers resistance to F. o. lycopersici race 2. The Rsa I or Fok I restriction fragments corresponded to the presence or absence of the I-2 allele in a segregating 100 F2 progeny, tomato cultivars, 16 resistant and 20 susceptible to Fusarium wilt, respectively, lines and F1 hybrids, representing various tomato gene pools. TAO1902 may be helpful for selection of F. o. lycopersici -resistant tomato germplasm.  相似文献   

13.
The common bean is affected by several pathogens that can cause severe yield losses. Here we report the introgression of resistance genes to anthracnose, angular leaf spot and rust in the 'carioca-type' bean cultivar 'Rudá'. Initially, four backcross (BC) lines were obtained using 'TO', 'AB 136', 'Ouro Negro' and 'AND 277' as donor parents. Molecular fingerprinting was used to select the lines genetically closer to the recurrent parent. The relative genetic distances between 'Rudá' and the BC lines varied between 0.0% and 1.99%. The BC lines were intercrossed and molecular markers linked to the resistance genes were used to identify the plants containing the genes of interest. These plants were selfed to obtain the F2, F3 and F4 plants which were selected based on the presence of the molecular markers mentioned and resistance was confirmed in the F4 generation by inoculation. Four F4:7 pyramid lines with all the resistance genes showed resistance spectra equivalent to those of their respective donor parents. Yield tests showed that these lines are as productive as the best 'carioca-type' cultivars.  相似文献   

14.
Y. B. Wang  H. Hu  J. W. Snape 《Euphytica》1995,81(3):265-270
Summary Heptaploid hybrids between octoploid triticale and wheat were backcrossed as female parents with wheat to examine the rye chromosome distribution in the resultant progenies using genomic in situ hybridization (GISH). One hundred and one backcross (BC) seeds were examined and whole rye chromosome additions and substitutions, wheat/rye centric and noncentric translocations and rye telocentric chromosomes were detected. Dicentric wheat/rye translocated chromosomes were also observed. Comparisons were made with previous results on the rye chromosome distribution from male gametes of the same cross and differences were found, where in the female derived population a deficit of plants with more than two rye chromosomes was apparent relative to the anther derived population.  相似文献   

15.
M. Dujardin  W. W. Hanna 《Euphytica》1988,38(3):229-235
Summary An interspecific hybridization program designed to transfer gene(s) controlling apomixis from Pennisetum squamulatum Fresen. (2n=6x=54) to induced tetraploid (2n=4x=28) cultivated pearl millet, Pennisetum americanum (L.) Leeke resulted in four offtype plants, two with 27 chromosomes and two with 28 chromosomes. These plants were found among 217 spaced plants established from open-pollinated seed of an apomictic 21-chromosome polyhaploid (2n=21) plant derived from an apomictic interspecific hybrid (2n=41) between tetraploid pearl millet and Pennisetum squamulatum. It appeared that a 21- (or 20-) chromosome unreduced egg from the apomictic polyhaploid united with a 7-chromosome pearl millet (2n=2x=14) gamete to produce a 28- (or 27-) chromosome offspring. Meiotic chromosome behavior was irregular averaging from 3.60 to 4.05 bivalents per microsporocyte in the 27- and 28-chromosome hybrids. The 27- or 28-chromosome hybrids, like the 21-chromosome female parent, shed no pollen, but set from 1.8 to 28 seed per panicle when allowed to outcross with pearl millet. Progeny of the 28-chromosome hybrids were uniform and identical to their respective female parents, indicating that apomixis had been effectively transferred through the egg. In addition, a 56-chromosome plant resulting from chromosome doubling of a 28-chromosome hybrid was identified. Pollen was 68 per cent stainable and the plant averaged 2.3 selfed seeds per panicle. Chromosomes of the 56-chromosome plant paired as bivalents (x=10.67) or associated in multivalents. Three to nine chromosomes remained unpaired at metaphase I. Multiple four-nucleate embryo sacs indicated the 56-chromosome hybrid was an obligate apomict. The production of 27-, 28-, and 56-chromosome hybrid derivatives were the results of interspecific hybridization, haploidization, fertilization of unreduced apomictic eggs, and spontaneous chromosome doubling. These mechanisms resulted in new unique genome combinations between x=7 and x=9 Pennisetum species.  相似文献   

16.
G. H. Kim    H. K. Yun    C. S. Choi    J. H. Park    Y. J. Jung    K. S. Park    F. Dane    K. K. Kang 《Plant Breeding》2008,127(4):418-423
Resistance to anthracnose or black spot ( Elsinoe ampelina ), a serious fungal pathogen in viticulture and table grape production, was investigated on 25 grape cultivars. Bioassays performed with culture filtrates produced by the pathogen revealed 14 resistant genotypes. In most plants resistance originated from Vitis labrucsa but also genotypes with V. rupestris and V. riparia  ×  V. rupestris background showed resistance. Genetic analysis was conducted in F1, S1 and BC1 plants developed from various cultivars. In total, 326 F1 plants were evaluated, 172 genotypes proofed to be resistant, whereas 154 were susceptible to anthracnose. A Mendelian segregation ratio of 1 : 1 (χ2 = 0.30–0.65) indicating that anthracnose resistance is controlled by a single dominant gene. To facilitate the use of marker-assisted selection in grape-breeding PCR-based markers were developed by random amplified polymorphic DNA and amplified fragment length polymorphism in bulk segregant analysis. Finally, OPB 151247 was developed as a sequence characterized amplified region marker being diagnostic for the locus of resistance to anthracnose in all resistant genotypes tested. Within the 25 grape cultivars OPB 151247 is diagnostic in the genetic background of both V. labrucsa and V. rupestris and V. riparia  ×  V. rupestris .  相似文献   

17.
S. P. Yang    M. P. Duan    Q. C. Meng    J. Qiu    J. M. Fan    T. J. Zhao    D. Y. Yu    J. Y. Gai 《Plant Breeding》2007,126(3):302-305
The F1, F2 and F2:3 of the NJCMS1A × 'Zhongdou 5' cross were used to analyse the inheritance of the male fertility restoration of the cytoplasmic-nuclear male-sterile line NJCMS1A in soybean. The results of genetic analysis showed two pairs of dominant genes conferring the male fertility restoration of NJCMS1A, which further confirmed previous results. The F2 population from the NJCMS1A × 'Zhongdou 5' cross was used for tagging the restorer genes for NJCMS1A with 664 pairs of simple sequence repeat primers selected randomly from the genetic linkage map of soybean published by Cregan et al. (1999) . Satt626 on linkage group M and Satt300 on linkage group A1 of the integrated linkage map by Song et al. (2004) were found to link to the two restorer genes of NJCMS1A. The maximum-likelihood estimates of the genetic distance between the two markers, Satt626 and Satt300, and the two restorer genes of 'Zhongdou 5' were 9.75 and 11.18 cM, respectively.  相似文献   

18.
H. Yamanouchi    A. Koyama    H. Machii    T. Takyu    N. Muramatsu 《Plant Breeding》2009,128(3):321-323
A mulberry variety, Morus alba 'Shidareguwa', has a weeping habit and is used as an ornamental and landscape plant. This variety is known for being difficult to propagate by hardwood cuttings. To clarify the mode of inheritance of the weeping character and its relationship to the difficulty in cutting propagation, we crossed 'Shidareguwa' with a non-weeping variety 'Noi' that has a very high rooting ability. The phenotypic segregations exhibited by the F1 and F2 plants suggested that the weeping habit is controlled by a single recessive gene. In tests of the F2 plants for cutting propagation, no obvious correlation was recognized between the weeping trait and the rooting ability of cuttings. As a result, we were able to develop new weeping mulberry strains with improved high rooting ability.  相似文献   

19.
The pea weevil, Bruchus pisorum (L.), is one of the most intractable pest problems of cultivated pea, Pisum sativum L., in the world. This study investigated the transfer of pea weevil resistance from two accessions (PI 595946, PI 343955) of wild pea, Pisum fulvum Sibth. & Sm., to interspecific populations derived from crossing these accessions with a weevil-susceptible pea cultivar ('Alaska 81'). Partial life tables characterized weevil stage-specific mortality and survivorship on parents and interspecific progeny in two glasshouse trials. Larval mortality rates on pods (F3 plants) of several F2:3 families were between 36.0% and 52.9%. These means were statistically similar to mean mortality rates on pods of resistant parents (45.4% and 46.2%), but significantly greater than mean rates on the susceptible parent (1.2% and 10.6%). Pod surface characteristics contributed to high neonate larval mortality on pods of resistant parents and interspecific progeny. Seed resistance was not broadly transferred to interspecific progeny [revealed by high weevil survivorship in seeds (means mostly >80%) and high seed damage ratings of 3–5 where ratings of 1–2 denote resistance (production of resistant seed averaged 4.2% to 22.8%)]. Estimates of total weevil mortality on pods and seeds of eight F2:3 families were 50–70%. Thus, weevil resistance in the Pisum secondary gene pool can be transferred to interspecific progeny, thereby providing a potential avenue to develop weevil-resistant pea cultivars.  相似文献   

20.
Y. H. He    G. G. Ning    Y. L. Sun    Y. C. Qi    M. Z. Bao 《Plant Breeding》2009,128(1):92-96
In marigold, an F2 segregation population of 167 plants was constructed from a cross of a line (M525A) carrying the male sterility trait × an inbred line (f53f). In line M525A, the male sterility trait was controlled by the recessive gene, Tems . The intersimple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) techniques combined with bulked segregant analysis were used to develop markers linked to the trait. From a survey of the 38 ISSR primers and 170 SRAP primer combinations, only one SRAP marker that was closely linked to the target trait was identified and successfully converted into sequence characterized amplified region (SCAR) marker that was located within 2.4 cM from Tems locus. The marker was validated with five other two-type lines and in each case the male fertile plants were reliably identified. This SCAR marker therefore permits the efficient marker-assisted selection of male sterile individuals in breeding programmes of marigold and will greatly facilitate the breeding of F1 cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号