首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The feasibility of producing biodiesel from Idesia polycarpa var. vestita fruit oil was studied. A methyl ester biodiesel was prepared from refined I. polycarpa fruit oil using methanol and potassium hydroxide (KOH) in an alkali-catalyzed transesterification process. The experimental variables investigated in this study were catalyst concentration (0.5–2.0 wt.% of oil), methanol/oil molar ratio (4.5:1 to 6.5:1), temperature (20–60 °C) and reaction time (20–60 min). A maximum yield of over 99% of methyl esters in I. polycarpa fruit oil biodiesel was achieved using a 6:1 molar ratio of methanol to oil, 1.0% KOH (% oil) and reaction time for 40 min at 30 °C. The properties of I. polycarpa fruit oil methyl esters produced under optimum conditions were also analyzed for specifications for biodiesel as fuel in diesel engines according to China Biofuel Systems Standards. The fuel properties of the I. polycarpa fruit oil biodiesel obtained are similar to the No. 0 light diesel fuel and most of the parameters comply with the limits established by specifications for biodiesel.  相似文献   

2.
Jatropha curcas oil (JCO) has a high content of free fatty acids and has been used extensively as a feedstock in biodiesel production. In the present study, the transesterification reaction of JCO to Jatropha curcas methyl ester (biodiesel) was performed in a continuous pulsed loop reactor under atmospheric conditions. The JCO was pre-treated prior to the reaction to reduce the free fatty acid content to below 1% (w/w). The operating parameters of the loop reactor were optimised based on the conversion of the JCO to Jatropha curcas biodiesel and included reaction temperature, molar ratio of oil to MeOH, reaction time and oscillation frequency. The findings show that the highest reaction conversion of 99.7% (w/w) was achieved using KOH catalyst and 98.8% conversion was obtained using NaOCH3 catalyst. The optimal operating conditions were a molar ratio of 6:1, an oscillation frequency of 6 Hz, temperature of 60 °C, feedstock FFA content of 0.5% (w/w) and only 10 min of reaction time. As a commercial commodity, the physical properties of biodiesel were analysed, and they compared well with the characteristics of fossil-based diesel fuel.  相似文献   

3.
The high viscosity of vegetable oil can be reduced by transesterification with alcohols and converting it into biodiesel. Biodiesel can be used neat or blended with diesel as engine fuel. This study demonstrates that esters of castor oils have a higher viscosity than safflower oil derived esters and the viscosity can be reduced by blending with diesel. The viscosity increased in a non-linear fashion as the percentage of castor esters increased in castor esters diesel blends and in castor esters safflower esters blends. Only slight increases in viscosity were observed for B40 and B60 mixtures with No. 2 diesel. Addition of ten chemical additives in castor esters at the rate of 0.01%, 0.1% and 1.0% showed limited viscosity reduction.  相似文献   

4.
The demand for diesel fuel far exceeds the current and future biodiesel production capabilities of the vegetable oil and animal fat industries. New oilseed crops that do not compete with traditional food crop are needed to meet existing energy demands. Hybrid hazelnut oil is just such an attractive raw material for production of biodiesel. Hazelnut oil was extracted from hybrid hazelnuts and the crude oil was refined. Hazelnut oil-based biodiesel was prepared via the transesterification of the refined hazelnut oil with excess methanol using an alkaline catalyst. The effects of reaction temperature, time and catalyst concentration on the yield of diesel were examined, and selected physical and chemical properties of the biodiesel were evaluated. The biodiesel yield increased with increasing temperature from 25 to 65 °C and with increasing catalyst concentration from 0.1 to 0.7 wt%. The increase in yield with reaction time was nonlinear and characterized by an initial faster rate, followed by a slow rate. Hazelnut oil-based biodiesel had an average viscosity of 8.82 cP at 25 °C, which was slightly higher than that of the commercial soy-based diesel (7.92 cP at 25 °C). An approximate 12 °C higher onset oxidative temperature and a 10 °C lower cloud point of hazelnut oil biodiesel than those of its commercial soy counterpart indicated a better oxidative stability and flowability at low temperature. The average heat of combustion of hazelnut oil biodiesel was 40.23 kJ/g, and accounted for approximately 88% of energy content of diesel fuel. The fatty acid composition of hazelnut oil-based biodiesel was the same as the nature oil.  相似文献   

5.
This report presents a method for synthesizing base-stock for green industrial product from a vegetable oil with a high composition of unsaturated fatty acids. Epoxy methyl ester of palm kernel oil was synthesized from laboratory purified palm kernel oil using a two-step reaction and the products were used as a base-stock for green electrical insulation fluid. Epoxidized palm kernel oil was first prepared through epoxidation reaction involving purified palm kernel oil, acetic acid and hydrogen peroxide in the presence of amberlite as catalyst which lasted for 4 h. It was then followed by transesterification reaction involving the epoxidized product and methanol in the presence of sodium hydroxide as catalyst to synthesize the corresponding epoxy methyl ester. The thermal and electrical breakdown properties of the epoxy methyl ester demonstrated significantly improved properties for its use as raw material for bio-based industrial products such as electrical insulation fluids.  相似文献   

6.
Biodiesel is a biodegradable, renewable, non-toxic and environmentally friendly alternative fuel. The cost of raw materials comprises 60-88% of the production cost in commercial biodiesel (fatty acid methyl esters, FAMEs) production. Therefore, the use of low-cost raw material as a substrate and an in situ process for biodiesel production are being preferred. In this case, rice bran, which contains 13.5% oil, was an interesting substrate. In situ esterification of high-acidity rice bran with methanol and sulfuric acid catalyst was investigated. The individual and interaction effects of methanol to rice bran ratio, sulfuric acid catalyst concentration and reaction time on purity and recovery of biodiesel were discussed. Our results suggest that under the following operation conditions: methanol to rice bran ratio of 5 mL/g, sulfuric acid concentration in methanol of 1.5 vol.%, and reaction time of 60 min, an in situ esterification operated on rice bran could yield FAMEs with a high purity and recovery. By applying an in situ esterification with n-hexane/water extractions, Indonesia will be succesfull in obtaining biodiesel from rice bran up to 96,000 ton per year.  相似文献   

7.
A genetically altered plant strain (Cuphea viscosissima VS-320) was identified which produces an oil with elevated levels of medium- and short-chain triglycerides. Previous studies have suggested that such an oil may be appropriate for use as a substitute for diesel fuel without chemical conversion of component triglycerides to methyl esters. This oil is also of interest for other industrial applications. This paper discusses the oil composition of C. viscosissima VS-320 and presents the analysis of several important alternative fuel screening properties of this oil: dynamic viscosity for shear rates of 1.617–64.69 s1 at temperatures of 25–80°C, boiling point at atmospheric pressure, temperature dependence of vapor pressure (from 40 to 760 mmHg for the 300–400°C temperature range), and heat of vaporization (ΔHv). These properties have been established as indicators of fuel performance and can be used for initial screening of possible diesel fuel substitutes. These properties are compared to those of diesel, biodiesel, and vegetable oils. Analysis of these properties suggests that further genetic development of this plant as a source of diesel fuel is warranted.  相似文献   

8.
以茶树[Camellia sinensis (L.) O. Kuntze]茶籽油为原料,研究了茶籽油甲酯化制备生物柴油的工艺条件。在单因素试验的基础上,选取反应温度、催化剂用量(占精炼油质量百分比)、反应时间和醇油摩尔比为影响因子,以酯交换率为响应值,应用Box-Behnken中心组合试验设计建立数学模型,进行响应面分析。结果表明,茶籽油制备生物柴油的最佳工艺条件为:反应温度58℃、催化剂用量1.05%、反应时间66min、醇油摩尔比9.7∶1。在此条件下,酯交换率达到98.73%。对生物柴油进行红外光谱和GC-MS分析,产品质量达到国家生物柴油标准。  相似文献   

9.
The physicochemical properties, fatty acids profile and triglyceride compositions of the stillingia oil were analyzed. The stillingia oil was found to contain 98.79% neutral lipids, 0.22% phospholipids and 0.99% glycolipids, which exhibited varying contents of fatty acids. The major triglyceride was double linoleic acid linolenic acid triglyceride, which accounted for approximately 79.49% of the total triglycerides. Preparation of biodiesel from stillingia oil was investigated by enzyme transesterification with methanol as the acyl acceptor. The results showed that lipase type (Novozym 435, Lipozyme TLIM and Lipozyme RMIM), reaction systems (in solvent-free and tert-butanol system) and operational parameters (lipase loading, reaction time, temperature, and molar ratio of alcohol to oil) influenced the biodiesel yield. Fuel properties of biodiesel from stillingia oil were evaluated and all were in acceptable range for use as biodiesel in diesel engines, and had remarkable flash point and satisfactory cold flow properties. It was concluded that stillingia oil was an alternative potential feedstock oil for biodiesel production.  相似文献   

10.
The oilseed crop Camelina sativa (camelina) has lower production costs than oilseed rape in some climates. For this reason, the production of biodiesel-grade methyl ester from camelina oil was evaluated. The evaluation included quality assessment of esters produced in laboratory and pilot plant, an examination of methods of improving ester low-temperature properties, and vehicle trials. Laboratory esterifications gave ester yields similar to rape-seed oil. Six 350 kg batches of unrefined camelina oil with acid values from 3 to 6 were esterified in a pilot plant. Ester-specific properties were satisfactory with one exception; the iodine number of 155 far exceeded the value of 120 required by the relevant EU standard. Fuel-specific properties of the camelina methyl esters were largely within specification, though low-temperature behaviour could be a problem in some climates. This problem could be overcome by the use of suitable pour-point depressants or by blending with diesel oil. In vehicle tests, the reduction in fuel economy with camelina ester was similar to that with biodiesel from other feedstocks. The high iodine number of camelina methyl ester did not lead to a more rapid deterioration of the lubricating oil. However, it was concluded that further engine trials would be needed before the use of camelina ester as an undiluted vehicle fuel could be recommended.  相似文献   

11.
This work describes the mechanical and solvent extraction of Sterculia striata seed oil. It was determined that the seeds contain up to 41% in oil, which has an unusual composition. Indeed, up to 50% of the fatty acid contain cyclopropenoid ring. The oil was used as raw material to produce bio-oil and biodiesel and their physical-chemical properties were evaluated. Some of the studied physical-chemical properties of the S. striata biodiesel are in acceptable range for use as biodiesel in diesel engines, showing a promising economic exploitation of this raw material in semi-arid regions. It was also observed that the cyclopropenoid ring remains after transesterification and is decomposed during pyrolysis.  相似文献   

12.
以乙二醇乙醚和精制大豆油在金属钠催化下合成出了豆油乙二醇乙醚酯生物柴油,考察了该生物柴油作为替代燃料在性能方面与柴油的差别;研究了作为柴油添加剂,其加入量对混合燃料性能的影响.结果表明,豆油乙二醇乙醚酯生物柴油的燃料特性达到了国外生物柴油生产标准,可以直接作为柴油使用,也可与矿物柴油掺舍使用,提高了柴油的使用性能.  相似文献   

13.
A light commercial road vehicle fitted with a heated fuel line and tank was run on cold pressed and filtered camelina sativa seed oil and unheated mineral diesel fuel. It was found that the seed oil produced a maximum power at the road wheels of 43.25 kW and returned 12.57 km/l compared to 38.50 kW and 14.03 km/l for the mineral fuel. At an engine speed >2000 rpm and high loading, both smoke opacity and CO emitted from the exhaust was found to be approximately 50% lower with the seed oil than with the mineral fuel, however, NO was higher for the seed oil by almost 6% at engine speeds >3500 rpm, but similar <3500 rpm. The CO2 and O2 emissions were similar and NO2 emitted was negligible for both fuels. The effect of heating at 170 °C on the camelina sativa seed oil was investigated and a significant increase in viscosity was observed which coincided with a reduction in the iodine value of the oil.  相似文献   

14.
新型固体碱催化大豆油制备生物柴油的工艺研究   总被引:1,自引:0,他引:1  
黄艳芹 《大豆科学》2011,30(4):668-671
制备了新型固体碱催化剂KNO3/AlSBA-15,并以此催化大豆油与甲醇酯交换反应制备生物柴油,对其工艺条件进行了优化.结果表明:醇油物质的量比为12∶1,催化剂用量为大豆油质量的3%,反应温度65C,反应时间4h,生物柴油的产率可达81%以上.该催化剂对酯交换制备生物柴油具有较高的催化活性和良好的重复使用性.  相似文献   

15.
分子筛负载杂多酸催化大豆油制备生物柴油   总被引:2,自引:0,他引:2  
黄艳芹 《大豆科学》2011,30(3):488-492
采用等体积浸渍法制备了负载型催化剂PW/MCM-41,并以此催化大豆油与甲醇酯交换反应制备生物柴油.考察了磷钨酸负载量和催化剂焙烧温度对催化剂催化活性的影响,以及醇油物质的量比、催化剂用量、反应时间和反应温度对生物柴油产率的影响.结果表明:磷钨酸负载量为30%、焙烧温度为300℃时,催化剂活性最高.酯交换反应的最佳条件...  相似文献   

16.
以大豆油为原料,KOH作催化剂,通过大豆油与乙醇的酯交换反应合成了大豆油脂肪酸乙酯。应用响应曲面分析法中的Box-behnken模型对影响大豆油脂肪酸乙酯转化率的四个主要因素(催化剂用量、醇油摩尔比、反应温度、反应时间)进行了优化。研究表明大豆油脂肪酸乙酯的最佳合成工艺条件为:KOH用量1.3%,醇油比8.3∶1,反应温度74.8℃,反应时间130min。在此条件下,酯转化率达98.93%。  相似文献   

17.
A new series of petroselinic (Coriandrum sativum L.) based estolide 2-ethylhexyl (2-EH) esters were synthesized, as the capping material varied in length and in degrees of unsaturation, in a perchloric acid catalyzed one-pot process with the esterification process incorporated into an in situ second step to provide the coriander estolide 2-EH ester. The kinematic viscosities ranged from 53 to 75 cSt at 40 °C and 9.1 to 14.6 cSt at 100 °C with a viscosity index (VI) ranging from 151 to 165. The caprylic (C8) capped coriander estolide 2-EH ester had the lowest low-temperature properties (pour point = −33 °C and cloud point = −33 °C), while the coco-coriander estolide 2-EH ester produced an estolide with modest low-temperature properties (pour point = −24 °C and cloud point = −25 °C). The coco-coriander estolide 2-EH ester was explored for the ability to resist oxidative degradation with the use of an biodegradable additive package added in 1.5%, 3.5%, or 7.0% units based on weight. The oxidative stability increased as the amount of stability package increased (rotating pressurized vessel oxidation test (RPVOT) times 65-273 min). Along with expected good biodegradability, these coriander estolide 2-EH esters had acceptable properties that should provide a specialty niche in the U.S. as a biobased lubricant.  相似文献   

18.
茶籽油在柴油机上燃烧特性的试验研究   总被引:3,自引:0,他引:3  
马荣朝  秦文 《茶叶科学》2004,24(2):105-108
植物能源已开始成为今后农用柴油机燃料重要能源,本文以茶籽油作燃料、在S195柴油机上进行了燃烧特性试验研究。结果表明:在柴油机结构基本不改动的情况下,燃用茶籽油或茶、柴混溶油是可行的;柴油机燃用茶籽油或混溶油时,耗油率稍有上升,且燃烧室和喷油嘴有一些积炭,其排气污染下降,但柴油机燃用50%茶籽油与50%柴油的混溶油,且供油提前角为19o时,燃烧性能较好。  相似文献   

19.
Sunflower (Helianthus annuus L.) is a potential cash crop for the southeastern United States for production of cooking oil or biodiesel. Two years (2006 and 2007) of experiments were conducted at each of five locations in Mississippi to evaluate the effect of planting date (April 20, May 20, and June 20), and hybrid (DKF3875, DKF2990, DKF3510, DKF3901, PR63M80, PR62A91, PR63A21, PR63M91, and PR64H41) on seed yield, oil content, and oil composition of sunflower. Seed oil concentration varied from 25 to 47%. The oleic acid concentration in the oil was greater than 85% for DKF3510 and PR64H41, above 65% for PR63M80 and PR63M91, and intermediate for the other hybrids. Total saturated fatty acids (TSFA) concentration in the oil (the sum of palmitic, stearic, arachidic, behenic, and lignoceric acids) ranged from 6.3 to 13.0%, with DKF3510, PR63M91, and PR64H41 having lower concentration of TSFA than the other hybrids. Mean seed yields ranged from 997 to 2096 kg ha−1 depending on location. Mean oil yields at the five locations ranged from 380 to 687 kg ha−1, and calculated biodiesel production ranged from 304 to 550 kg ha−1. Seed and oil yields in this study suggest sunflower in Mississippi should be planted by the last week of May. Later planting (20 June) may significantly decrease both seed and oil yields in the non-irrigated system in Mississippi and in other areas of the southeastern United States with similar environmental conditions.  相似文献   

20.
Palm esters were synthesized through enzymatic transesterification of various palm oil fractions with oleyl alcohol using Lipozyme RM IM as the catalyst. At the optimized alcoholysis reaction condition, after 5 h reaction time all palm oil fractions exhibited a high percentage yields of esters (>80%). Simultaneous differential scanning calorimeter-thermal gravity analysis showed a high thermal stability profile of palm esters. Other physicochemical properties of palm esters such as refractive index, density, surface tension, slip melting point, saponification value, iodine value and acid value were analyzed following standard test methods modified from the American Oil Chemists’ Society standards. The dermal irritation assay of palm oil esters shows the non-irritancy of the esters with a Human Irritancy Equivalent (HIE) score below 0.9. Furthermore, an increase in skin hydration of 40.7% after 90 min after application in an acute moisturizing test, has proven the suitably of palm oil esters to be used in the cosmetics formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号