首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Sweet sorghum (Sorghum bicolor (L.) Moench.) is a drought-tolerant crop with high resistance to saline-alkaline soils, and sweet sorghum may serve as an alternative summer crop for biofuel production in areas where irrigation water is limited. A two-year study was conducted in Northern Greece to assess the productivity (biomass, juice, total sugar and theoretical ethanol yields) of four sweet sorghum cultivars (Sugar graze, M-81E, Urja and Topper-76-6), one grain sorghum cultivar (KN-300) and one grass sorghum cultivar (Susu) grown in intermediate (3.2 dS m−1) or in high (6.9 dS m−1) soil salinity with either low (120 mm) or intermediate (210 mm) irrigation water supply (supplemented with 142–261 mm of rainfall during growth). The soil salinity and irrigation water supply effects on the sorghum chlorophyll content index, photosystem II quantum yield, stomatal conductance and leaf K/Na ratio were also determined. The sorghum emergence averaged 75,083 plants ha−1 and 59,917 plants ha−1 in a soil salinity of 3.2 dS m−1 and 6.9 dS m−1, respectively. The most affected cultivar, as averaged across the two soil salinity levels, was the Susu grass sorghum emerging at 53,250 plants ha−1, followed by the Topper-76-6 sweet sorghum emerging at 61,250 plants ha−1. The leaf K/Na ratio decreased with decreasing irrigation water supply, in most cases, but it was not significantly affected by soil salinity. The dry biomass, juice and total sugar yields of sorghum that received 210 mm of irrigation water was 49–88% greater than the yields of sorghum that received the 120 mm of irrigation water. Sorghum plants grown in a soil salinity of 3.2 dS m−1 produced 42–58% greater dry biomass, juice and total sugar yields than the yields of sorghum plants grown in a soil salinity of 6.9 dS m−1. The greatest theoretical ethanol yield was produced by sweet sorghum plants grown in a soil salinity of 3.2 dS m−1 with 210 mm of irrigation water (6130 L ha−1, as averaged across cultivar), and the Urja and Sugar graze cultivars produced the most ethanol (7620 L ha−1 and 6528 L ha−1, respectively). Conclusively, sweet sorghum provided sufficient juice, total sugar and ethanol yields in fields with a soil salinity of 3.2 dS m−1, even if the plants received 50–75% of the irrigation water typically applied to sorghum.  相似文献   

2.
Large scale cultivation of the cardoon Cynara cardunculus L. for biomass production was installed using common agricultural practices and machinery in a total of 77.4 ha in southern Portugal in a region characterized by very hot and dry summers. This species is a perennial with an annual growth cycle. Installation by sowing was successful in spite of the extreme drought that occurred during this first cycle (221 mm), and the plants developed well during the second cycle (with 556 mm rainfall) with a mean density of 27 thousand plants per ha. Aerial photographs showed that 45.8 ha of the field had over 50% of ground cover by cardoon plants. The observed differences in soil occupation could be explained by rock outcrops, soil heterogeneity and land topography. The field biomass yield was estimated at 7.5 t ha−1 and the plants at harvest had on average 2.1 m height and 2.2 cm stalk diameter, with 5.3 capitula per plant. Stalks represented 59.1% of total dry biomass. The capitula contain small oil seeds with an average of 126 seeds per capitulum and weighing 32 g per 1000 seeds. The mean seed yield was 603 kg ha−1. The results of this experiment confirm that Cynara crops are suitable for biomass production in Mediterranean regions and that large scale operation can be applied including whole plant harvest or field fractionation for seed recovery. Careful attention to cultural practices was deemed important for field homogeneity and production. The observed plant variation, namely in oil seed production, suggests potential improvements through breeding.  相似文献   

3.
Forages could be used to diversify reduced and no-till dryland cropping systems from the traditional wheat (Triticum aestivum L.)-fallow system in the semiarid central Great Plains. Forages present an attractive alternative to grain and seed crops because of greater water use efficiency and less susceptibility to potentially devastating yield reductions due to severe water stress during critical growth stages. However, farmers need a simple tool to evaluate forage productivity under widely varying precipitation conditions. The objectives of this study were to (1) quantify the relationship between crop water use and dry matter (DM) yield for soybean (Glycine max L. Merrill), (2) evaluate changes in forage quality that occur as harvest date is delayed, and (3) determine the range and distribution of expected DM yields in the central Great Plains based on historical precipitation records. Forage soybean was grown under a line-source gradient irrigation system to impose a range of water availability conditions at Akron, CO. Dry matter production was linearly correlated with water use resulting in a production function slope of 21.2 kg ha−1 mm−1. The slope was much lower than previously reported for forage production functions for triticale (X Triticosecale Wittmack) and millet (Setaria italic L. Beauv.), and only slightly lower than slopes previously reported for corn (Zea mays L.) and pea (Pisum sativa L.) forage. Forage quality was relatively stable during the last four weeks of growth, with small declines in crude protein (CP) concentration. Values of CP concentration and relative feed value indicated that forage soybean was of sufficient quality to be used for dairy feed. A standard seed variety of maturity group VII was found to be similar (in both productivity and quality) to a variety designated as a forage type. The probability of obtaining a break-even yield of at least 4256 kg ha−1 was 90% as determined from long-term precipitation records used with the production function. The average estimated DM yield was 5890 kg ha−1 and ranged from 2437 to 9432 kg ha−1. Regional estimates of mean forage soybean DM yield ranged from 4770 kg ha−1 at Fort Morgan, CO to 6911 kg ha−1 at Colby, KS. Forage soybean should be considered a viable alternative crop for dryland cropping systems in the central Great Plains.  相似文献   

4.
Fibre hemp and energy sunflower are potential energy crops for production of solid biomass as renewable energy. The current study estimated (i) the lignin content of fibre hemp and energy sunflower plants grown on different nitrogen treatments and (ii) the quality of the briquettes made from different plant types of fibre hemp (i.e. monoecious and dioecious), energy sunflower and the combination of fibre hemp and energy sunflower. The monoecious and dioecious fibre hemp cultivars (Chameleon, Finola and Santhica-27, USO-31, respectively) and the energy sunflower cultivar Wielkopolski were grown in the experimental field in 2008-2010 on Stagnic Luvisol soil. The plants were grown on N treatments of N0, mineral nitrogen (100 kg N ha−1), cattle slurry (100 kg N ha−1), sewage sludge (100 kg N ha−1) and vetch (100 kg N ha−1). Calorific values (16.6-17.4 MJ kg−1) of briquettes pressed from different materials did not differ significantly and had relatively low sulphur (<0.05%) and chlorine content (0.03-0.37%). Briquettes with higher compactness were made from the sunflower and the dioecious hemp. Dioecious hemp had significantly higher lignin content. The dioecious hemp needs lower GDD values for maturating, its stems lignin content was higher than of monoecious hemp by harvest time and therefore this plant type is more suitable for briquetting in Nordic climatic conditions. Comparison of the different N treatments indicated that application of sewage sludge decreased the emergence and density of the fibre hemp plants and the lignin content per kg of DM.  相似文献   

5.
The APSIM model was used to assess the impact of legumes on sorghum grown in rotation in a nutrient-limited system under dry conditions in south-western Zimbabwe. An experiment was conducted at Lucydale, Matopos Research Station, between 2002 and 2005. The model was used to simulate soil and plant responses in the experiment. Sequences of cowpea (Vigna unguiculata), pigeonpea (Cajanus cajan), groundnut (Arachis hypogaea) and sorghum (Sorghum bicolor) were used in the rotations. Legumes accumulated up to 130 kg of N ha−1 which was potentially available for uptake by sorghum in the following season. The APSIM model predicted total biomass, grain and N yields of the legume phase within the experimental error and performed well in predicting sorghum yield and N supplied in the rotation after cowpea and groundnut. The model generally under-predicted sorghum total biomass and grain yield after pigeonpea. Observed patterns of crop water use, evaporative losses during the dry season and re-charge of soil profile at the start of the rainy season were generally well predicted by the model. An assessment of output on sorghum N and water stresses in the rotation indicated that the legume–cereal rotation is more driven by soil nitrogen availability than water availability even under semi-arid conditions. Further legume–cereal rotation analysis using the model will assist in the understanding of other processes in the rotations in dry environments.  相似文献   

6.
Sweet sorghum (Sorghum bicolor (L.) Moench) is particularly suitable as a feedstock for a variety of bioprocesses, largely because of its high yields of both lignocellulosic biomass and fermentable saccharides. Sweet sorghum is less economically important for refined sugar production than other sugar crops, e.g., sugar beet and sugarcane, but can produce more raw fermentable sugar under marginal conditions than those crops. In this review, the agronomic requirements of sorghum (viz., water, soil, and nutrient requirements), cultural practices, and plant morphology are discussed from a bioprocessing perspective. Historically, sugar extraction from the plant in the form of juice has been of primary interest; these methods, along with modern developments are presented. Recently, the direct yeast fermentation of sorghum juice for ethanol production has been studied. Additionally, the bagasse resulting from the juice extraction has been used for a variety of potential products: forage, silage, combustion energy, synthesis gas, and paper. The bagasse contains high levels of relatively low crystallinity cellulose, along with relatively labile lignin, and so is itself of interest as a fermentation feedstock. Whole sorghum stalk, and its bagasse, have been subjected to studies of a wide array of pretreatment, enzymatic hydrolysis, and fermentation processes. The potential fermentation products of sweet sorghum are wide ranging; those demonstrated include ethanol, acetone, butanol, various lipids, lactic acid, hydrogen, and methane. Several potential native products of the plant, in addition to cellulose for paper production, are also identified: waxes, proteins, and allelopathic compounds, such as sorgoleone.  相似文献   

7.
Increased land degradation and shortage of forage resources for animal production over-winter have accentuated the need for alternative cropping systems in northeast China. While short frost-free period and cool temperatures are major limitations to cereal grain production in the northern regions of China (45°N, 122°E), crop varieties that are able to produce food and feed in short growing season and tolerant to low temperature may extend the total cropping period. Three hulless oat (Avena sativa L.) lines, Baiyan 9015, Baiyan 9017 and Baiyan 9044, were bred and tested for 3 years (2004–2006) to determine their suitability for summer seeding in a double cropping system. The new lines were sown both in the spring and summer to provide growers with opportunities to harvest two grain-crops in a year. Averaged across 3 years, Baiyan 9044 produced 2.5 and 1.6 Mg ha−1 yr−1 grain yield when sown in spring and summer, respectively. The new lines seeded in 20th or 21st July and harvested in early October allowed utilization of an average of over 1500 growing degree days (GDDs). For grain yield alone, the net income for two oat crops a year was up to 1390 Chinese yuan (RMB) ha−1, more than that of growing a single oat crop in 3 years, or in most cases, equivalent to monocultured corn (Zea mays L.) production, the dominant crop in the region. In addition, an average of 5 Mg ha−1 of oat straw was produced as valuable forage fodder for the livestock industry, which was in great demand for over-wintering animals. Furthermore, in the traditional single small grain cereal cropping system, bare ground after harvest leads to severe water and wind erosions. Our results indicate that the new oat lines could be a potential crop for summer seeding, particularly when spring-seeded crops fail due to abiotic (hail, drought, etc.) or biotic (e.g. insects) stresses. The double cropping system provides growers with a potential opportunity to facilitate the farming strategy of food, cash crops and control soil erosion in the region.  相似文献   

8.
The nitrogen (N) requirement of dedicated crops for bioenergy production is a particularly significant issue, since N fertilisers are energy-intensive to make and have environmental impacts on the local level (NO3 leaching) and global level (N2O gas emissions). Nitrogen nutrition of Miscanthus × giganteus aboveground organs is assumed to be dependent on N stocks in belowground organs, but the precise quantities involved are unknown. A kinetic study was carried out on the effect of harvest date (early harvest in October or late harvest in February) and nitrogen fertilisation (0 or 120 kg N ha−1) on aboveground and belowground biomass production and N accumulation in established crops. Apparent N fluxes within the crop and their variability were also studied.Aboveground biomass varied between 24 and 28 t DM ha−1 in early harvest treatments, and between 19 and 21 t DM ha−1 in late harvest treatments. Nitrogen fertilisation had no effect on crop yield in late harvest treatments, but enhanced crop yield in early harvest treatments due to lower belowground biomass nitrogen content. Spring remobilisation, i.e. nitrogen flux from belowground to aboveground biomass, varied between 36 and 175 kg N ha−1, due to the variability of initial belowground nitrogen stocks in the different treatments. Autumn remobilisation, i.e. nitrogen flux from aboveground to belowground organs, varied between 107 and 145 kg N ha−1 in late harvest treatments, and between 39 and 93 kg N ha−1 in early harvest treatments. Autumn remobilisation for a given harvest date was linked to aboveground nitrogen accumulation in the different treatments. Nitrogen accumulation in aboveground biomass was shown to be dependent firstly on initial belowground biomass nitrogen stocks and secondly on nitrogen uptake by the whole crop.The study demonstrated the key role of belowground nitrogen stocks on aboveground biomass nitrogen requirements. Early harvest depletes belowground nitrogen stocks and thus increases the need for nitrogen fertiliser.  相似文献   

9.
Cover cropping can have various beneficial effects to the cropping system such us the increase of soil nutrient content and weed suppression. In this respect, the species used for covering is of great importance. This paper reports results on the yield and weed control effects in potato crops preceded by different cover crops over a 2-year period (2003 and 2004) in Central Italy (Viterbo). Results were obtained in the frame of a more complex study set up in 2002 where in a 3-year chick-pea/potato/tomato rotation, each crop was preceded by 7 different soil managements: 5 cover crops (rapeseed, Italian ryegrass, hairy vetch, snail medick and subclover) + 1 unfertilised weedy fallow (cover crop absent) + 1 control (weedy fallow fertilised with mineral N at a rate of 170 kg ha−1 for potato). Two different weed control regimes in potato were also applied [weed-free crop (1 inter-row hoeing + 1 hilling up + manual weeding on the row); mechanical control (1 inter-row hoeing + 1 hilling up)]. Cover crops were sown in September and cut and ploughed just before potato planting in March. The potato crops following the cover crops were only fertilised with green manure. Averaged over years, all the cover crops produced more above-ground dry biomass than the weedy fallow (4.79 t ha−1 on average vs 2.36 t ha−1). Hairy vetch and subclover accumulated the highest N in the incorporated biomass (169 and 147 kg ha−1), followed by snail medick (108), rapeseed (99), ryegrass (88) and weedy fallow (47). Rapeseed and ryegrass were the most efficient weed suppressors and had the least proportion of weed biomass (<1%) of the total produced by the cover, while they also reduced weed emergence in the following potato crops (8.8 plants m−2vs 25.5 plants m−2 with all other cover crops). Following subclover and hairy vetch the potato crop yield was similar to that obtained by mineral N-P-K fertilisation (48.5 t ha−1 of fresh marketable tubers). Mechanical weed control compared to weed free crop always reduced potato yield and the reduction, averaged over years, was greater in N-P-K mineral fertilised control (−23.6%) and smaller in ryegrass (−7.9%).  相似文献   

10.
In the framework of the E.U. project Fair CT 96-1913 “Environmental studies on sweet and fibre sorghum, sustainable crops for biomass and energy”, a research has been carried out with the aim to study the water and nitrogen balance and determine the critical N dilution curve of sweet sorghum cv. Keller. A field experiment was performed, where three irrigation treatments (I0 = dry control, I50 = 50% ETm restoration, I100 = 100% ETm restoration) and four nitrogen fertilization levels (N0 = no nitrogen control, N60 = 60 kg ha−1, N120 = 120 kg ha−1; N180 = 180 kg ha−1) were studied. The final yield was significantly affected by the amount of water distributed but not by the nitrogen level. The treatments watered up to crop establishment (I0) produced, in the average, 7.5 t ha−1 of dry matter, against 21.1 and 27.1 t ha−1 of I50 and I100, respectively. The crop determined a great reduction in nitrate concentration of soil water, irrespective of nitrogen supplied. The variation between N output and input (Δ) was negative in N0, N60 and N120 and positive in N180. The critical value of nitrogen uptake change in relation to the water availability. The amount of nitrogen supplied did not determine significant differences upon WUE. The crop seems to have a great potentiality in Mediterranean environment in terms of yield production.  相似文献   

11.
Biological nitrogen fixation (BNF) as a result of the legumes–rhizobia symbioses is the main source of nitrogen in organic farming systems. Lucerne (Medicago sativa L.), used as green manure or as forage legume, is important on arable farms under dry site conditions. In a field experiment on organically managed agricultural fields, we examined the impacts of the utilisation system (harvested = forage production versus mulched = green manure) and the crop composition (pure lucerne crops versus lucerne–grass mixtures) on yield, biological nitrogen fixation (BNF), soil inorganic N content, N balance and water consumption of autumn-cultivated lucerne crops. The study was conducted at the University of Natural Resources and Applied Life Sciences, Vienna, in eastern Austria—a region characterized by pannonian site conditions (9.8 °C mean annual temperature, 545 mm average total precipitation) and stockless farming systems. Our results indicate that the utilisation system and the crop composition had no marked influence on above- and below-ground dry matter (DM) and N yield, soil inorganic N contents, BNF, or water use efficiency of lucerne. The level of symbiotically fixed N2 in harvested lucerne was 89–125 kg N ha−1 (27–33% Ndfa = nitrogen derived from atmosphere) in the first year and 161–175 kg N ha−1 (47–49% Ndfa) in the second year of the study. The high soil inorganic N supply in the first year increased the N uptake from soil by lucerne and led to a reduced BNF. Under the dry and unfavourable conditions in both study years, the nitrogen release from the legume mulch was retarded and BNF in mulched lucerne was not reduced. Assuming low gaseous N losses by mulching (15–30 kg N ha−1), the green manure system reached a positive N balance (+137 to +186 kg N ha−1) for the subsequent crops because abundant residues remained on the field.  相似文献   

12.
Livestock producers are interested in growing forage soybean [Glycine max (L.) Merr.] in summer and ensiling alone or in mixtures with corn or sorghum. Four row spacings (20, 40, 60, and 80 cm), four seeding rates (50, 100, 150, and 200 kg seeds per hectare) and four harvesting stages for forage production (V5, R2, R4, and R6) were evaluated under irrigated conditions in a randomized split–split plot design with three replications in three different locations in Turkey with Mediterranean-type climate in 2004 and 2005. Dry matter (DM) yield was significantly reduced with increased row spacings in all locations. There was no significant difference between 20, 40, or 60 cm row spacings while 80 cm provided the lowest yield. Increased seeding rates (50, 100, 150, and 200 kg seeds per hectare) generally increased DM yield, although the most suitable row spacing varied by location. DM yield was significantly affected by harvest maturity increasing with advancing maturity in all locations. DM constituent plant components were generally unaffected by row spacing and seeding rate but harvest maturity did significantly affect DM partitioning. As expected, leaf blade fractions decreased continually as plant maturity increased, while stem and flower plus pod fraction increased from V5 to R6. In general, row spacing and seeding rate did not significantly affect crude protein, degradable protein, and in vitro dry matter digestibility of soybean forage, but all decreased significantly with advancing maturity. These studies demonstrated soybeans managed for forage in a Mediterranean-type environment can average of 9.3 and 11.3 t ha−1 dry matter yield at R4 and R6 stages, respectively, while averaging 13.3% crude protein, 8.2% degradable protein, and 60.6% in vitro dry matter digestibility.  相似文献   

13.
Under semiarid Mediterranean conditions irrigated maize has been associated to diffuse nitrate pollution of surface and groundwater. Cover crops grown during winter combined with reduced N fertilization to maize could reduce N leaching risks while maintaining maize productivity. A field experiment was conducted testing two different cover crop planting methods (direct seeding versus seeding after conventional tillage operations) and four different cover crops species (barley, oilseed rape, winter rape, and common vetch), and a control (bare soil). The experiment started in November 2006 after a maize crop fertilized with 300 kg N ha−1 and included two complete cover crop-maize rotations. Maize was fertilized with 300 kg N ha−1 at the control treatment, and this amount was reduced to 250 kg N ha−1 in maize after a cover crop. Direct seeding of the cover crops allowed earlier planting dates than seeding after conventional tillage, producing greater cover crop biomass and N uptake of all species in the first year. In the following year, direct seeding did not increase cover crop biomass due to a poorer plant establishment. Barley produced more biomass than the other species but its N concentration was much lower than in the other cover crops, resulting in higher C:N ratio (>26). Cover crops reduced the N leaching risks as soil N content in spring and at maize harvest was reduced compared to the control treatment. Maize yield was reduced by 4 Mg ha−1 after barley in 2007 and by 1 Mg ha−1 after barley and oilseed rape in 2008. The maize yield reduction was due to an N deficiency caused by insufficient N mineralization from the cover crops due to a high C:N ratio (barley) or low biomass N content (oilseed rape) and/or lack of synchronization with maize N uptake. Indirect chlorophyll measurements in maize leaves were useful to detect N deficiency in maize after cover crops. The use of vetch, winter rape and oilseed rape cover crops combined with a reduced N fertilization to maize was efficient for reducing N leaching risks while maintaining maize productivity. However, the reduction of maize yield after barley makes difficult its use as cover crop.  相似文献   

14.
The CERES-sorghum module of the Decision Support System for Agro-Technological Transfer (DSSAT) model was calibrated for sorghum (Sorghum bicolor (L.) Moench) using data from sorghum grown with adequate water and nitrogen and evaluated with data from several N rates trials in Navrongo, Ghana with an overall modified internal efficiency of 0.63. The use of mineral N fertilizer was found to be profitable with economically optimal rates of 40 and 80 kg N ha−1 for more intensively managed homestead fields and less intensively managed bush fields respectively. Agronomic N use efficiency varied from 21 to 37 kg grain kg−1 N for the homestead fields and from 15 to 49 kg grain kg−1 N in the bush fields. Simulated grain yield for homestead fields at 40 kg N ha−1 application was equal to yield for bush fields at 80 kg N ha−1. Water use efficiency generally increased with increased mineral N rate and was greater for the homestead fields compared with the bush fields. Grain yield per unit of cumulative evapo-transpiration (simulated) was consistently higher compared with yield per unit of cumulative precipitation for the season, probably because of runoff and deep percolation. In the simulation experiment, grain yield variability was less with mineral N application and under higher soil fertility (organic matter) condition. Application of mineral N reduced variability in yield from a CV of 37 to 11% in the bush farm and from 17 to 7% in the homestead fields. The use of mineral fertilizer and encouraging practices that retain organic matter to the soil provide a more sustainable system for ensuring crop production and hence food security.  相似文献   

15.
In the moist mid‐latitudes of eastern Australia, soil water dynamics, herbage production and water use efficiency (WUE) were monitored during 2006–2008, for five perennial pastures: digit grass (Digitaria eriantha), Rhodes grass (Chloris gayana), forest bluegrass (Bothriochloa bladhii), native grass (Bothriochloa macra and Rytidosperma bipartita dominant), lucerne (Medicago sativa); and two forage crops: oat (Avena fatua) and sorghum (Sorghum bicolor). Ground cover formed more quickly in Rhodes grass and lucerne (>70% ground cover in 120 and 175 days after sowing [DAS] respectively) than in forest bluegrass and digit grass (245 and 365 DAS respectively). Values of maximum extractable water (MEW) for Rhodes grass and lucerne were similar (180–242 mm), while values for digit grass and forest bluegrass (129–175 mm) were equal to or greater than those for native grass, and two annual forage crops (77–144 mm). Lucerne expressed the maximum root depth (1.46 m), while values for the tropical grasses (0.96–1.39 m) were greater than native grasses and forage crops (0.87–0.96 m). Native grasses (6.5–12 t DM/ha) had the lowest herbage production, which resulted in values of WUE that were significantly less than most other treatments (16–21 vs. 23–43 kg DM ha?1 mm?1). Digit grass (33–34 kg DM ha?1 mm?1) had higher WUE compared with the other tropical grasses (20–27 kg DM ha?1 mm?1). The data collected here suggest that a forage system comprising digit grass, lucerne and forage oat would provide high production and WUE in this environment.  相似文献   

16.
Widening the range of organic nutrient resources, especially N sources, is a major challenge for improving crop productivity of smallholder farms in southern Africa. A study was conducted over three seasons to evaluate different species of indigenous legumes for their biomass productivity, N2-fixation and residual effects on subsequent maize crops on nutrient-depleted fields belonging to smallholder farmers under contrasting rainfall zones in Zimbabwe. Under high rainfall (>800 mm yr−1), 1-year indigenous legume fallows (indifallows), comprising mostly species of the genera Crotalaria, Indigofera and Tephrosia, yielded 8.6 t ha−1 of biomass within 6 months, out-performing sunnhemp (Crotalaria juncea L.) green manure and grass (natural) fallows by 41% and 74%, respectively. A similar trend was observed under medium (650–750 mm yr−1) rainfall in Chinyika, where the indifallow attained a biomass yield of 6.6 t ha−1 compared with 2.2 t ha−1 for natural fallows. Cumulatively, over two growing seasons, the indifallow treatment under high rainfall at Domboshawa produced biomass as high as 28 t ha−1 compared with ∼7 t ha−1 under natural fallow. The mean total N2 fixed under indifallows ranged from 125 kg ha−1 under soils exhibiting severe nutrient depletion in Chikwaka, to 205 kg ha−1 at Domboshawa. Indifallow biomass accumulated up to 210 kg N ha−1, eleven-fold higher than the N contained in corresponding natural fallow biomass at time of incorporation. Application of P to indifallows significantly increased both biomass productivity and N2-fixation, translating into positive yield responses by subsequent maize. Differences in maize biomass productivity between indifallow and natural fallow treatments were already apparent at 2 weeks after maize emergence, with the former yielding significantly (P < 0.05) more maize biomass than the latter. The first maize crop following termination of 1-year indifallows yielded grain averaging 2.3 t ha−1, significantly out-yielding 1-year natural fallows by >1 t ha−1. In the second season, maize yields were consistently better under indifallows compared with natural fallows in terms of both grain and total biomass. The first maize crop following 2-year indifallows yielded ∼3 t ha−1 of grain, significantly higher than the second maize crop after 1-year indifallows and natural fallows. The study demonstrated that indigenous legumes can generate N-rich biomass in sufficient quantities to make a significant influence on maize productivity for more than a single season. Maize yield gains under indifallow systems on low fertility sandy soils exceeded the yields attained with either mineral fertilizer alone or traditional green manure crop of sunnhemp.  相似文献   

17.
Response of grain sorghum to fertilisation with human urine   总被引:1,自引:0,他引:1  
Human urine is rich in valuable plant nutrients, and, when separately collected, it can substitute for fertilisers. A high valorisation of urine in crop production requires that each nutrient be balanced to match the actual demand. The objective of the present study was to evaluate the effectiveness of phosphorus- (P) and potassium- (K) balanced urine as a nutrient source for the cultivation of sorghum (Sorghum bicolor (L.) Moench). For this purpose, human urine, mineral fertiliser and compost plus urine were compared in field experiments. Triple super phosphate and potassium chloride were added to the urine fertiliser and potassium chloride to the compost-urine fertiliser to supply similar amounts of nitrogen (N), P and K (100, 44, 83 kg ha−1 in 2006; 50, 22, 42 kg ha−1 in 2007 and 2009) as NPK mineral fertiliser. The mineral fertiliser treatment was repeated with the addition of water at the same volume as contained in urine to one variant.No distinct changes in the chemical soil properties were detected, but a consistent decrease in pH and cation content was observed for mineral fertiliser, while these parameters increased in the urine and compost treatments. The plants responded to all fertilisers with faster development and significant increases in the number of green leaves, size and total area. One hectare produced 520 kg grains in non-fertilised control soil while grain yields per hectare were 1657 kg in urine fertilised, 1244 kg in mineral fertilised and 1363 kg in mineral fertilised and water added and 2127 kg in compost fertilised plots.Our results demonstrate that for the cultivation of sorghum, the N requirement can be fully met and the P and K requirements can be partially met by urine and substitute mineral fertilisers. Where feasible, the combined application of compost and urine is recommended. The long-term impact of fertilisation with human urine requires further investigation with respect to N efficiency, the effect of sulphur and soil salinisation.  相似文献   

18.
Alfalfa (Medicago sativa L.) plays an important role in crop–livestock mixed farming on marginal land in the semiarid Loess Plateau. However, the duration, yield performance and water use of long-term alfalfa stands and choice of appropriate subsequent crops are not clear. A 5-year field experiment was conducted at Zhonglianchuan, Gansu Province, China from 2001 to 2005. Productivity and water use were determined and compared between (1) three alfalfa stands that were 1–5 (A1–5), 6–10 (A6–10) and 11–15 (A11–15) years old during the trial; (2) alfalfa using conventional cultivation and a water-harvesting technique (RA1–5); and (3) conventional crop rotation (CK) and four 5-year crop sequence rotations sown after 10-year-old alfalfa had been ploughed, being millet–wheat–potato–pea–potato (MWLPL); millet–corn–corn–wheat–wheat (MCCWW); millet–potato–wheat–corn–corn (MLWCC) and millet–fallow–pea–potato–pea (MFPLP). Forage yield peaked in 7-year-old alfalfa (5740 kg ha−1), but 9-year-old alfalfa had the maximum forage yield profit (4477 kg ha−1 y−1) in terms of whole growing years. Soil water use efficiency (WUES in terms of forage yield and soil water use) of alfalfa increased dramatically up to the 11th year, and then leveled off from year 12 to 15. Forage yield and WUEB/ET (WUE in terms of aboveground biomass and evapotranspiration) of alfalfa were significantly higher using water harvesting compared with conventional cultivation, but were significantly lower than CK. Soil water content did not change in CK as stand age increased, but it decreased in conventional alfalfa stands. After 10 years of alfalfa, a fallow year was not necessary before planting annual crops as soil water was greatly restored after sowing subsequent annual crops. Yield of some crops in the four crop sequence rotations did not differ significantly from CK. MWLPL and MLWCC had more aboveground biomass than MCCWW and MFPLP but the choice of crop sequence needs to be further considered.  相似文献   

19.
The effect of nitrogen (N) fertilization on the dry‐matter (DM) yield and nutritional value of sorghum (Sorghum sp., cv. Jumbo) and black oat (Avena strigosa cv., IPR 61) was investigated in the context of forage and livestock production in southern Brazil. Sorghum was cultivated with 0, 37·5, 75, 150, 225, 300 and 375 kg N ha?1 during the summer crop seasons of 2010/11 and 2011/12. Black oat received 0, 40, 80, 120, 160, 200 and 240 kg N ha?1 in the winter of 2011. According to the adjusted polynomial regression, sorghum DM yield increased in response to N up to 288 (12·9 t ha?1) and 264 kg ha?1 (5·6 t ha?1) in 2010/11 and 2011/12 respectively. Crude protein (CP) content of sorghum was highest at 349 and 328 kg N ha?1, but in vitro dry‐matter digestibility (IVDMD) was highest at 212–207 kg N ha?1 in 2010/11 and 2011/12 respectively. Sorghum neutral detergent fibre (NDF) and acid detergent fibre (ADF) were not affected by N fertilization. In black oat, the maximum DM yield (6·0 t ha?1) was obtained with 187 kg N ha?1; the IVDMD, NDF and ADF were not affected by N fertilization, but the CP content increased up to 220 kg N ha?1. It is concluded that these forage species can improve the year‐to‐year amount and quality of forage produced but high rates of N fertilizer are required to achieve high yields. Fertilizer N rates of 210–280 kg N ha?1 in sorghum and 180 kg N ha?1 in black oat in the crop rotation provide the greatest responses in DM yield consistent with good nutritional quality for livestock production.  相似文献   

20.
Harvesting products from plants for conversion into renewable resources is increasing in importance. Determination of nutrition requirements for the applicable crops is necessary, especially in regions where the biofuel feedstock crops have not been historically grown. Sunflower (Helianthus annuus L.), two hybrids and one variety; sweet and grain (milo) sorghums (both Sorghum bicolor L.), one variety each, and sweet corn (Zea mays var. rugosa Bonaf.), four cultivars, were provided the recommended and twice the recommended rate of fertilizer. Biomass, expressed liquid volumes and sugar contents of sweet sorghum and sweet corn were determined. Grain yields of milo and sunflower and oil content of sunflower were determined. Sweet corn stalk sugar levels were below what is expected from field corn (maize), and were not affected by fertilizer rate. Sweet sorghum biomass and sugar content were within expected ranges and not affected by fertilizer rate. Milo grain yields were higher with increased fertilizer. Seed yield in Sunflower, which was below expected levels, was inconsistently affected by fertilizer rate, years or varieties. Overall crops year and cultivar/variety had more effect on results than did fertilizer. There does not appear to be a reason to provide fertilizer above recommended rates in production of these crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号