首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 °C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FTIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 °C for 80, 40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 °C were similar to that of Avicel.  相似文献   

2.
The aim of this study was to evaluate the potential of the fibrous material obtained from ethanol-water fractionation of bagasse as reinforcement of thermoplastic starches in order to improve their mechanical properties. The composites were elaborated using matrices of corn and cassava starches plasticized with 30 wt% glycerin. The mixtures (0, 5, 10 and 15 wt% bagasse fiber) were elaborated in a rheometer at 150 °C. The mixtures obtained were pressed on a hot plate press at 155 °C. The test specimens were obtained according to ASTM D638. Tensile tests, moisture absorption tests for 24 days (20-23 °C and 53% RH, ASTM E104), and dynamic-mechanical analyses (DMA) in tensile mode were carried out. Images by scanning electron microscopy (SEM) and X-ray diffraction were obtained. Fibers (10 wt% bagasse fiber) increased tensile strength by 44% and 47% compared to corn and cassava starches, respectively. The reinforcement (15 wt% bagasse fiber) increased more than fourfold the elastic modulus on starch matrices. The storage modulus at 30 °C (E30 °C′) increased as the bagasse fiber content increased, following the trend of tensile elastic modulus. The results indicate that these fibers have potential applications in the development of biodegradable composite materials.  相似文献   

3.
In this study, Nigella sativa L. oil was extracted using supercritical carbon dioxide with full factorial design to determine the best extraction condition (pressure, temperature and dynamic extraction time) for obtaining an extract with high yield, antioxidant activity and thymoquinone (TQ) quantity. The maximum thymoquinone content in the highest overall yield was achieved through SC-CO2 extraction condition of 150 bar, 40 °C, 120 min with the value of 4.09 mg/ml. The highest SC-CO2 extraction yield was 23.20% which obtained through extraction condition of 350 bar, 60 °C and 120 min. The extraction conducted at 350 bar, 50 °C, 60 min showed the lowest IC50 value (highest antioxidant activity) of 2.59 mg/ml using DPPH radical scavenging activity method. Fatty acid composition of the extracted oil with highest radical scavenging activity was obtained by gas chromatographic analysis.  相似文献   

4.
Polyol production from chemical modification of date seeds has been investigated through oxypropylation and liquefaction techniques (using organic solvents in the presence of a catalyst). The obtained products were characterized using infrared spectroscopy analysis, 1H NMR, thermogravimetric analysis and other parameters such as hydroxyl number (IOH) and viscosity. Results showed that 93% of the solid substance was converted into polyol in the oxypropylation reaction at the date seeds/propylene oxide ratio of 0.25 and 10% potassium hydroxide at 160 °C. The oxypropylated product has IOH of 779 mg KOH/g and viscosity of 6.9 Pa s. Regarding the liquefaction technique, results show that a yield of 95% was obtained at the date seeds/liquefying solvent ratio of 0.25 in 60 min of reaction at 160 °C. The liquefied product shows IOH of 336 mg KOH/g and viscosity of 0.9 Pa s.  相似文献   

5.
Spaghetti produced in a pilot plant was dried using three different drying conditions: 60 °C for 7.5 h; 75 °C for 5.5 h; 90 °C for 5 h. Proteins of spaghetti were characterized by size-exclusion chromatography (SEC) and size-exclusion–high-performance liquid chromatography (SE-HPLC). As the temperature of the drying cycles increased, a progressive decrease of the small and large monomeric proteins and an increase in molecular size of the large polymeric proteins (LPPs) were observed. Drying temperature at 60 °C already induces a significant increase in the molecular size of the LPPs and a significant decrease of the other protein fractions. At 70 and 90 °C, large and small monomeric proteins as well as LPPs polymerized as seen by a progressive shift towards higher molecular weights in the SEC profile as temperature increased. The changes in the chromatographic profiles were accompanied by increasing amount of total unextractable polymeric protein (UPP). A decrease in stickiness and an increase in firmness corresponded to the formation of large and insoluble protein aggregates.  相似文献   

6.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil from hemp (Cannabis sativa L.) seeds. For ground seeds, the supercritical extraction was carried out at temperatures of 40, 60 and 80 °C and pressures of 300 and 400 bar. Different solvent-ratios were applied. Supercritical CO2 extractions were compared with a conventional technique, n-hexane in Soxhlet. The extraction yields, fatty acid composition of the oil and oxidation stability were determined. The seed samples used in this work contained 81% PUFAs, of which 59.6% was linoleic acid (ω-6), 3.4% γ-linolenic (ω-3), and 18% α-linolenic (ω-6). The highest oil yield from seeds was 22%, corresponding to 72% recovery, at 300 bar and 40 °C and at 400 bar and 80 °C. The highest oxidation stability corresponding to 2.16 mM Eq Vit E was obtained at 300 bar and 80 °C.  相似文献   

7.
A new class of polyol esters were prepared by esterification of 10-undecenoic acid (UDA) with three polyols namely trimethylolpropane (TMP), neopentyl glycol (NPG) and pentaerythritol (PE) in 92-96% yields. The esters were characterized by IR, 1H NMR, HPLC and mass spectral studies. Polyol esters were evaluated for basic lubrication properties and found to be: viscosity at 40 °C, 11.2-36.1 cSt; at 100 °C, 3.2-7.3 cSt; viscosity index (VI), 162-172; pour point +3 to −36 °C; flash point, 254-296 °C. All the three polyol esters synthesized exhibited good thermal stability with TGA onset temperatures above 260 °C. The lubricating properties of the products compared well with polyol esters based on oleic acid.  相似文献   

8.
The ability of activated carbon to remove pollutants from water in packed column systems is dependent on granular material with mechanical strength sufficient to avoid attrition caused by stream flow. Therefore, an appropriate balance between surface area and hardness is essential when using activated carbon in real systems. The purpose of this research is to determine the optimal production conditions that generate activated carbon with adequate physical properties to be used in packed systems from agave bagasse, a waste product from the mezcal industries in Mexico. Activated carbons were produced by chemical activation (ZnCl2 or H3PO4). Response surface methodology (RSM) was used to evaluate the effect of the activation temperature (250-550 °C), activation time (0-50 min), and the concentration of activating agent (0.2-1.4; g activating agent/g bagasse) on both surface area and hardness. The production conditions that generated optimal characteristics in the activated carbon were 392 °C, 1.02 g activating agent/g bagasse and 23.8 min for H3PO4 activated samples and 456 °C, 1.08 g activating agent/g bagasse and 23.8 min for ZnCl2 activated samples. The surface area and hardness of the activated carbon produced from bagasse under these conditions were similar to activated commercial carbons (surface area > 800 m2/g and hardness > 85%).  相似文献   

9.
The chemical composition, main physicochemical properties and thermal stability of oil extracted from Acacia senegal seeds were evaluated. The oil, moisture and the ash contents of the seeds were 9.80%, 6.92% and 3.82%, respectively. Physicochemical properties of the oil were iodine value, 106.56 g/100 g of oil; saponification value, 190.23 mg KOH/g of oil; refractive index (25 °C), 1.471; unsaponifiable matter, 0.93%; acidity, 6.41% and peroxide value, 5.43 meq. O2/kg of oil. The main fatty acids in the oil were oleic acid (43.62%) followed by linoleic acid (30.66%) and palmitic acid (11.04%). The triacylglycerols (TAGs) with equivalent carbon number ECN 44 (34.90%) were dominant, followed by TAGs ECN 46 (28.19%), TAGs ECN 42 (16.48%) and TAGs ECN 48 (11.23%). The thermal stability analysed in a normal oxidizing atmosphere showed that the oil decomposition began at 268.6 °C and ended at 618.5 °C, with two stages of decomposition at 401.5 °C and 576.3 °C. According to these results, A. senegal seed oil has physicochemical properties, fatty acids composition and thermal characteristics that may become interesting for specific applications in several segments of food and non-food industries.  相似文献   

10.
The concept of thermal modification has evolved from a challenging research program to commercial reality in several European countries in recent years. The aim of this study is to determine the change of various physical properties (oven-dry density, air-dry density, weight loss, swelling and anti-swelling efficiency (ASE)), compression strength parallel to grain, colour difference (ΔE), glossiness and surface roughness of narrow-leaved ash (Fraxinus angustifolia Vahl.) and chestnut (Castanea sativa Mill.) woods after heat treatment under different temperatures and durations. For this study two different temperatures (160 °C and 180 °C) and two different durations (2 h and 4 h) were considered. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber. Four main roughness parameters which are mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. The properties studied were significantly different (p = 0.05) at two temperatures and two durations of heat treatment. Based on the findings of this study, the results showed that oven-dry density, air-dry density, swelling, compression strength parallel to grain and surface roughness decreases with increasing heat treatment temperature and time.  相似文献   

11.
During baking, bread dough undergoes an expansion followed by a slight contraction at the end of baking. The contraction during baking has been evidenced by some authors. However, there is a limited amount of literature about the contraction of the crumb during the chilling phase and also during the freezing phase in the case of freezing. A study has been carried out to better understand the impact of the baking degree on the contraction of the crumb during chilling after baking and during freezing. The volume of the samples has been evaluated with a laser volumeter. Breads (70 g dough) were baked until reaching 75 °C, 85 °C, 95 °C, 98 °C and then 98 °C for 10 min. Results showed that a longer baking resulted in a lower contraction of the bread. The volume change was between 25% and 2.5% for baking at 75 °C—0 min dwell and 98 °C—10 min dwell, respectively. The contraction was compared to the contraction of degassed bread crumb samples, which was more important. SEM pictures showed that the degree of baking also corresponded to a very different structure of the crumb. For the longer baking, the starch granules were fully gelatinized and no ghosts of starch granules were visible. The magnitude of the contraction was thus associated with the degree of baking and with the degree of starch granule destructuration.  相似文献   

12.
An ionic liquid (IL)-water mixture employed to treat lignocellulosic biomass is promising. The addition of water decreases viscosity and process cost so as to improve the IL practical application. In this work, effects of temperature (50-170 °C), water content (0-80 wt%), treating duration (0.5-4 h) and pressure (0.1-3.2 MPa) on treating legume straw process using a 1-butyl-3-methylimidazolium chloride ([C4mim]Cl)-water mixture were experimentally investigated. Legume straw was found to be partially dissolved, and the dissolved substances can be flocculated by adding the coagulating agent—water (equal to volume of the solution). For this process at 0.1 MPa, the maximum 29.1 wt% legume straw is dissolved in the [C4mim]Cl-water mixture with water content of 20 wt% at 150 °C during 2 h, which is much higher than 9.8 wt% using pure [C4mim]Cl. A hemicellulose-free lignin-rich material (64.0 wt% lignin and 35.3 wt% cellulose) is obtained by adding the water. Even for 0.5 h, 22.3 wt% of legume straw is dissolved in the case of water content of 20 wt%, 150 °C and 0.1 MPa. High pressure favors the dissolution of legume straw but lignin content in the residue has no obvious change. The addition of proper amount of water facilitates the dissolution of legume straw and a relative rapid dissolving rate can be achieved in a [C4mim]Cl-water mixture. There are great differences in chemical and physical properties between legume straw and the obtained samples (residue and floc) due to the dissolution and reconstitution.  相似文献   

13.
The study based on pretreatment, hydrolyzation and separation processes with the raw material rice hull, provides a comprehensive utilization of the hydrolyzed productions, such as glucose (C6H12O6) from cellulose, silica (SiO2), and byproduct crystalline sodium sulfate (Na2SO4·10H2O). The optimum hydrolysis conditions are as follows: the concentration of H2SO4 is 72% (wt.%), the temperature is 50 °C, the ratio of H2SO4 solution volume (mL) to the rice hull mass (g) is 10:1 and the time is 5 min, the glucose yield rate reaches 45.6% (wt.%). The concentration of glucose solution could be 0.1 g/mL after neutralization measured by ultraviolet spectrophotometer (UV-VIS). Silica powder was below 50 nm characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The main byproduct crystalline sodium sulfate was featured by XRD and photographs.  相似文献   

14.
A new series of petroselinic (Coriandrum sativum L.) based estolide 2-ethylhexyl (2-EH) esters were synthesized, as the capping material varied in length and in degrees of unsaturation, in a perchloric acid catalyzed one-pot process with the esterification process incorporated into an in situ second step to provide the coriander estolide 2-EH ester. The kinematic viscosities ranged from 53 to 75 cSt at 40 °C and 9.1 to 14.6 cSt at 100 °C with a viscosity index (VI) ranging from 151 to 165. The caprylic (C8) capped coriander estolide 2-EH ester had the lowest low-temperature properties (pour point = −33 °C and cloud point = −33 °C), while the coco-coriander estolide 2-EH ester produced an estolide with modest low-temperature properties (pour point = −24 °C and cloud point = −25 °C). The coco-coriander estolide 2-EH ester was explored for the ability to resist oxidative degradation with the use of an biodegradable additive package added in 1.5%, 3.5%, or 7.0% units based on weight. The oxidative stability increased as the amount of stability package increased (rotating pressurized vessel oxidation test (RPVOT) times 65-273 min). Along with expected good biodegradability, these coriander estolide 2-EH esters had acceptable properties that should provide a specialty niche in the U.S. as a biobased lubricant.  相似文献   

15.
We assessed the influences of ambient temperature, rainfall, shade cover and elevation on seasonal abundance of coffee leafminer Leucoptera coffeella (Guérin-Ménèville) and its natural enemies in coffee farms in the Soconusco region of Chiapas, Mexico. Mined coffee leaves were most abundant during the rainy season (i.e. historical average rainfall >200 mm/mo, April–November) compared to the dry season (<100 mm/mo, December–March), and at low (<600 m asl) relative to high (>900 m asl) elevations. The abundance of mined leaves increased with rainfall, and decreased with maximum daily temperatures. Coffee leafminer survivorship was highest during the dry season (>40%), when predation was lowest (<10%). Predation was the main source of coffee leafminer mortality, and was greatest during the rainy season (>25%) when coffee leafminer incidence was highest (>30% mined leaves per plant). None of the weather variables that were evaluated (viz. maximum and minimum temperatures, and rainfall) significantly impacted parasitism ratios. Shade cover moderated on-farm temperatures, by reducing maximum daily temperatures and any potential, direct impacts of rainfall on coffee leafminer, by providing partial shelter from rainfall, but did not significantly affect coffee leafminer incidence. In 48 h laboratory trials, coffee leafminer oviposition was highest at 28 °C (∼15 eggs/female), minimal at 25 °C (∼3 eggs) and nil at 20 °C, and higher during night-time hours (>8 eggs/female/day) compared to day-time hours (<1 egg). Historical average temperatures were higher at low elevation (yearly average ca. 25 °C; range = 18.0–32.0 °C) than at high elevation (ca. 21 °C; 13.5–28.5 °C), and we predicted that physical environmental conditions (i.e. night-time hours with temperatures > 20 °C) were permissive of coffee leafminer oviposition during twice as many hours each year at low elevation (4060 h) compared to high elevation (2081 h). Overall, our results suggested that evident differences in the abundance of coffee leafminer between elevations may be due in considerable part to differences in ambient temperatures, particularly night-time temperatures, rather than rainfall, shade cover, or elevation per se.  相似文献   

16.
Biocomposites derived from polymeric resin and lignocellulosic fibers may be processed at temperatures ranging from 100 °C to 230 °C for durations of up to 30 min. These processing parameters normally lead to the degradation of the fiber's mechanical properties such as Young's modulus (E), ultimate tensile strength (UTS) and percentage elongation at break (%EB). In this study, the effect of processing temperature and duration of heating on the mechanical properties of coir fibers were examined by heating the fibers in an oven at 150 °C and 200 °C for 10, 20 and 30 min to simulate processing conditions. Degradation of mechanical properties was evaluated based on the tensile properties. It was observed that the UTS and %EB of heat treated fibers decreased by 1.17-44.00% and 15.28-81.93%, respectively, compared to untreated fibers. However, the stiffness or E of the fibers increased by 6.3-25.0%. Infra red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to elucidate further the influence of chemical, thermal and microstructural degradation on the resulting tensile properties of the fibers. The main chemical changes observed at 2922, 2851, 1733, 1651, 1460, 1421 and1370 cm−1 absorption bands were attributed to oxidation, dehydration and depolymerization as well as volatization of the fiber components. These phenomena were also attributed to in the TGA, and in addition the TGA showed increased thermal stability of the heat treated coir fibers with reference to the untreated counterparts which was most probably due to increased recrystallization and cross linking. The microstructural features including microcracks, micropores, collapsed microfibrils and sort of cooled molten liquid observed on the surface of heat treated coir fibers from the scanning electron microscope (SEM) could not directly be linked to the effect of temperature and durations of heating although such features may have largely account for the lower tensile properties of heat treated coir fibers with reference to untreated ones.  相似文献   

17.
Reliable prediction of the potential impacts of global warming on agriculture requires accurate data on crop responses to elevated temperatures. Controlled environments can precisely regulate temperature but may impose unrealistic radiation, photoperiod and humidity regimes. Infrared warming with automatic control of temperature rise has shown potential for warming field plots above ambient temperatures, while avoiding such biases. In a field experiment conducted at Maricopa, AZ, we assessed the utility of a temperature free-air controlled enhancement (T-FACE) approach by comparing phenology of wheat from a series of six sowing date treatments using T-FACE and an additional nine sowing dates that exposed crops to an exceptionally wide range of air temperatures (<0 °C to >40 °C). The T-FACE treatments were intended to achieve a warming of +1.5 °C during the daytime and +3.0 °C at night; the achieved warming averaged +1.3 °C during daytime and +2.8 °C at night. T-FACE and sowing date treatments had large effects on phenology. A regression-based analysis of simulations with the CSM-CROPSIM-CERES model showed that effects of T-FACE on phenology were similar to what would be expected from equivalent changes in air temperature. However, systematic deviations from the expected 1-to-1 relation suggested that assumed cardinal temperatures for phenology should be revised. Based on the single cultivar and location, it appeared that the base temperature for emergence to anthesis should be reduced from 0 °C to −5 °C, whereas the base temperature for grain filling should be increased from 0 °C to 4 °C and the optimal temperature, from 30 °C to 34 °C. Both T-FACE and extreme sowing date treatments proved valuable for improving understanding of high temperature effects on plant processes, as required for accurate prediction of crop responses to elevated temperatures under climate change.  相似文献   

18.
The objective of this study was to find alternative methods for the control of pericarp browning in longan fruits (Dimocarpus longan Lour.) cv. Daw in order to replace the use of sulfur dioxide (SO2). Experiments were conducted by dipping fruits in 1.5 N HCl solution (pH 0.21) for 20 min followed by draining. The effects of subsequent rinsing in water were also investigated. Untreated fruits and SO2 fumigated fruits were used as controls. Fruits from each treatment were then packaged in commercial perforated plastic baskets and stored at 3 ± 1 °C, 85% RH for 60 days. It was found that dipping the fruits in HCl controlled disease development compared with the untreated fruits. In addition, dipping the fruits in HCl as well as fumigating with SO2 gave the best control of pericarp browning. After 5 days, the pericarp of untreated fruits became brown. Dipping fruits in HCl without rinsing reduced pericarp and juice pH and increased titratable acidity which lowered eating quality. Sensory analysis was carried out to determine aril color as well as appearance, firmness, flavor and taste. Dipping in 1.5 N HCl for 20 min and rinsing exhibited higher efficacy than dipping for 0, 10 or 15 min in controlling fruit decay and maintaining fruit color and eating qualities during 7 days storage at 25 °C following 45 days storage at 5 ± 1 °C. Therefore, dipping in 1.5 N HCl for 20 min, followed by rinsing in water can be considered for commercial application in extending shelf life, decreasing fruit decay and maintaining fruit quality of longan fruits.  相似文献   

19.
Rice starch suspensions of 10% dry matter (DM) were treated by heat (0.1 MPa at 20–85 °C) or pressure/heat combinations (100–600 MPa at 20, 40 and 50 °C) for 15 min to investigate their gelatinization and rheological characteristics. The maximum swelling index of about 12 g water per gram of DM was obtained by thermal treatment at 85 °C, meanwhile, that of 7.0 g was observed by 600-MPa pressurization at 50 °C. The higher temperatures or pressures resulted in the higher degrees of gelatinization. Furthermore, treatments of 0.1 MPa at 85 °C, 500 MPa at 50 °C and 600 MPa at various temperatures caused complete gelatinization of rice starch. The consistency index (K) and storage modulus (G′) dramatically increased from 70 °C or 400 MPa. The G′ values were higher in pressure-treated samples than those in thermal-treated samples. Therefore, an application of pressure/heat combinations as a processing method to improve the quality of rice starch products would be possible.  相似文献   

20.
Mature red fruits of Opuntia ficus-indica contain two soluble pigment, betanin and indicaxanthin. The optimal conditions for dye extraction were to mix 50 g of juice from cactus pears with 100 mL of acidified water as solvent for dye extraction. Two main dyes were purified from the pigment extract by chromatography and identified by UV-vis, HPLC and LC-MS techniques as indicaxanthin (15 mg per 100 g) and betanin (280 mg per 100 g). The effect of dye bath pH, salt concentration, dyeing time and temperature was studied. The optimal conditions for dyeing modified acrylic fabrics with betanin dye were carried out at 50 °C for 45 min at pH 5. Un-mordanted samples have good properties of water and washing fastness. Mordant CoSO4 was found to give good light fastness (rating 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号