首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
Herbicide degradation in soils is highly temperature‐dependent. Laboratory incubations and field experiments are usually conducted with soils from the temperate climatic zone. Few data are available for cold conditions and the validation of approaches to correct the degradation rate at low temperatures representative of Nordic environments is scarce. Laboratory incubation studies were conducted at 5, 15 and 28°C to compare the influence of temperature on the dissipation of metribuzin in silt/sandy loam soils in southern and northern Norway and in a sandy loam soil under temperate climate in France. Using 14C‐labelled metribuzin, sorption and biodegradation were studied over an incubation period of 49 days. Metribuzin mineralisation and total soil organic carbon mineralisation rates showed a positive temperature response in all soils. Metribuzin mineralisation was low, but metabolites were formed and their abundance depended on temperature conditions. The rate of dissipation of 14C‐metribuzin from soil pore water was strongly dependent on temperature. In Nordic soils with low organic content, metribuzin sorption is rather weak and biodegradation is the most important process controlling its mobility and persistence.  相似文献   

2.
Metalaxyl and tricyclazole are two fungicides widely used in Spain in vineyard and rice crops respectively. In this study an investigation has been made of the effect of three organic amendments [two commercial amendments, solid fertiormont (SF) and liquid fertiormont (LF), and a residue from the olive oil production industry, alperujo (OW)] on fungicide fate in soils. Changes in soil porosity on amendment were studied by mercury intrusion porosimetry, sorption-desorption studies were performed by the batch equilibration method, dissipation of metalaxyl and tricyclazole in the soil was studied at - 33 kPa moisture content and 20 degrees C and leaching was studied in hand-packed soil columns. Amendments with SF and LF reduced soil porosity, while OW increased porosity through an increase in pore volume in the highest range studied. Tricyclazole sorbed to soils to a much higher extent than metalaxyl. With some exceptions, sorption of both fungicides increased on amendment, especially in the case of SF-amended soils, which rendered the highest K(oc) values. In soils amended with the liquid amendment LF, sorption either remained unaffected or decreased, and this decrease was much higher in the case of metalaxyl and a soil with 70% clay. In this clay soil, amendment with OW, of very high soluble organic matter content, also decreased metalaxyl sorption. Tricyclazole is more persistent in soil than metalaxyl, and both fungicides were found to be more persistent in amended soils than in unamended soils. Leaching of metalaxyl and tricyclazole in soil columns was inversely related to sorption capacity. The low recoveries of tricyclazole in leachates and in soil columns when compared with metalaxyl, a less persistent fungicide, were attributed to diffusion into micropores and to increase in sorption with residence time in the soil, both processes favoured by the low mobility of tricyclazole.  相似文献   

3.
SARMAH  KOOKANA  & ALSTON 《Weed Research》1999,39(2):83-94
The degradation of chlorsulfuron and triasulfuron was investigated in alkaline soils (pH 7.1–9.4) spiked at 40 μg a.i. kg–1 under laboratory conditions at 25 °C and a moisture content corresponding to 70% field capacity (–33 kPa), using high-performance liquid chromatography. Degradation data for the two herbicides did not follow first-order kinetics, and observed DT50 values in surface soils ranged from 19 to 42 days and from 3 to 24 days for chlorsulfuron and triasulfuron respectively. Disappearance of both chlorsulfuron and triasulfuron was faster in non-sterile than in sterile soil, demonstrating the importance of microbes in the breakdown process. The persistence of chlorsulfuron increased with increasing depth, which can be attributed to the decline in the microbial populations down the profile. The DT50 value for chlorsulfuron at 30–40 cm depth was nearly four times higher than that in the top-soil. The results obtained show that persistence of these herbicides in alkaline surface soils at 25 °C and at a moisture content of 70% field capacity is similar to those reported in other European and North American soils. The study shows that if these herbicides are contained in surface soil layers, the risk of residue carry-over under southern Australian conditions is small. However, the rate of their degradation in alkaline subsoils is very slow, and under conditions conducive to leaching their prolonged persistence in the soil profile is possible.  相似文献   

4.
生防菌枯草芽孢杆菌G3^str。菌株与营养添加剂混配使用,在经有机硫土壤熏蒸剂“大扫灭”熏蒸过的土中有一定的增殖,增殖量大于不熏蒸的自然土。同时,在加入菌剂的前6d,灭菌土中脂肽和伊枯草菌素检测量高于自然土。抑制水稻纹枯病菌菌核形成试验表明,G3^str菌增殖过的灭菌土比不增殖的对照有更强的抑菌作用。盆栽试验结果表明,土壤中添加G3^str。菌显著减轻由腐霉引起的茄子猝倒病,土壤熏蒸加强防病效果。  相似文献   

5.
The very wide use of glyphosate to control weeds in agricultural, silvicultural and urban areas throughout the world requires that special attention be paid to its possible transport from terrestrial to aquatic environments. The aim of this review is to present and discuss the state of knowledge on sorption, degradation and leachability of glyphosate in soils. Difficulties of drawing clear and unambiguous conclusions because of strong soil dependency and limited conclusive investigations are pointed out. Nevertheless, the risk of ground and surface water pollution by glyphosate seems limited because of sorption onto variable-charge soil minerals, e.g. aluminium and iron oxides, and because of microbial degradation. Although sorption and degradation are affected by many factors that might be expected to affect glyphosate mobility in soils, glyphosate leaching seems mainly determined by soil structure and rainfall. Limited leaching has been observed in non-structured sandy soils, while subsurface leaching to drainage systems was observed in a structured soil with preferential flow in macropores, but only when high rainfall followed glyphosate application. Glyphosate in drainage water runs into surface waters but not necessarily to groundwater because it may be sorbed and degraded in deeper soil layers before reaching the groundwater. Although the transport of glyphosate from land to water environments seems very limited, knowledge about subsurface leaching and surface runoff of glyphosate as well as the importance of this transport as related to ground and surface water quality is scarce.  相似文献   

6.
BACKGROUND: The fate of isoxaflutole (IFT) in soil is closely related to soil sorption. Sorption and transformation of IFT were investigated in laboratory incubations with four soils, and these results were used to interpret greenhouse studies using IFT to control several weed species. RESULTS: Degradation proceeded by previously observed pathways to form diketonitrile (DKN) and benzoic acid (BA) derivatives, as well as traces of unidentified products. Over the course of the incubation, DKN was the dominant active form of the herbicide present in the experimental system, and was thus critical to the soil activity of the herbicide for weed control. CONCLUSION: Control of most weed species appeared to be a function of both sorption and biodegradation of DKN, with greatest weed control being observed in soils in which a significant portion of the DKN that was formed persisted and remained bioavailable over the course of the incubation. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
A laboratory study was conducted to determine the degradation rates and identify major metabolites of the herbicide metsulfuron-methyl in sterile and non-sterile aerobic soils in the dark at 20°C. Both [phenyl-U-14C]- and [triazine-2-14C]metsulfuron-methyl were used. The soil was treated with [14C]metsulfuron-methyl (0.1 mg kg−1) and incubated in flow-through systems for one year. The degradation rate constants, DT50, and DT90 were obtained based on the first-order and biphasic models. The DT50 (time required for 50% of applied chemical to degrade) for metsulfuron-methyl, estimated using a biphasic model, was approximately 10 days (9–11 days, 95% confidence limits) in the non-sterile soil and 20 days (12–32 days, 95% confidence limits) in the sterile soil. One-year cumulative carbon dioxide accounted for approximately 48% and 23% of the applied radioactivity in the [phenyl-U-14C] and [triazine-2-14C]metsulfuron-methyl systems, respectively. Seven metabolites were identified by HPLC or LC/MS with synthetic standards. The degradation pathways included O-demethylation, cleavage of the sulfonylurea bridge, and triazine ring opening. The triazine ring-opened products were methyl 2-[[[[[[[(acetylamino)carbohyl]amino]carbonyl]amino] carbonyl]-amino]sulfonyl]benzoate in the sterile soil and methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate in the non-sterile soil, indicating that different pathways were operable. © 1999 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Sorption largely controls pesticide fate in soils because it influences its availability for biodegradation or transport in the soil water. In this study, variability of sorption and desorption of isoxaflutole (IFT) and its active metabolite diketonitrile (DKN) was investigated under conventional and conservation tillage. RESULTS: According to soil samples, IFT KD values ranged from 1.4 to 3.2 L kg?1 and DKN KD values ranged from 0.02 to 0.17 L kg?1. Positive correlations were found between organic carbon content and IFT and DKN sorption. IFT and DKN sorption was higher under conservation than under conventional tillage owing to higher organic carbon content. Under conservation tillage, measurements on maize and oat residues collected from the soil surface showed a greater sorption of IFT on plant residues than on soil samples, with the highest sorbed quantities measured on maize residues (KD ≈ 45 L kg?1). Desorption of IFT was hysteretic, and, after five consecutive desorptions, between 72 and 89% of the sorbed IFT was desorbed from soil samples. For maize residues, desorption was weak (<50% of the sorbed IFT), but, after two complementary desorptions allowing for IFT hydrolysis, DKN was released from maize residues. CONCLUSION: Owing to an increase in organic carbon in topsoil layers, sorption of IFT and DKN was enhanced under conservation tillage. Greater sorption capacities under conservation tillage could help in decreasing DKN leaching to groundwater. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
The spatial variability in mineralization of atrazine, isoproturon and metamitron in soil and subsoil samples taken from a 135-ha catchment in north France was studied. Fifty-one samples from the top layer were taken to represent exhaustively the 31 agricultural fields and 21 soil types of the catchment. Sixteen additional samples were collected between depths of 0.7 and 10 m to represent the major geological materials encountered in the vadose zone of the catchment. All these samples were incubated with 14C-labelled atrazine under laboratory conditions at 28 degrees C. Fourteen selected surface samples which exhibited distinctly different behaviour for atrazine dissipation (including sorption and mineralization) were incubated with 14C-isoproturon and 14C-metamitron. Overall soil microbial activity and specific herbicide degradation activities were monitored during the incubations through measurements of total carbon dioxide and 14C-carbon dioxide respectively. At the end of the incubations, extractable and non-extractable (bound) residues remaining in soils were measured. Variability of herbicide dissipation half-life in soil surface samples was lower for atrazine and metamitron (CV < 12%) than for isoproturon (CV = 46%). The main contributor to the isoproturon dissipation variability was the variability of the extractable residues. For the other herbicides, spatial variability was mainly related to the variability of their mineralization. In all cases, herbicide mineralization half-lives showed higher variability than those of dissipation. Sorption or physicochemical soil properties could not explain atrazine and isoproturon degradation, whose main factors were probably directly related to the dynamics of the specific microbial degradation activity. In contrast, variability of metamitron degradation was significantly correlated to sorption coefficient (K(d)) through correlation with the sorptive soil components, organic matter and clay. Herbicide degradation decreased with depth as did the overall microbial activity. Atrazine mineralization activity was found down to a depth of 2.5 m; beyond that, it was negligible.  相似文献   

10.
The correct application of a new herbicide depends on knowledge concerning its behaviour within the cultivation system. The objective of this study was to evaluate the sorption–desorption process of aminocyclopyrachlor in soils with the addition of three aged organic materials from sugar cane and their transport via leaching. Sugar cane straw (12 t/ha), filter cake (90 t/ha) and vinasse (200 m3/ha) were added to a clayey soil 15, 30 and 60 days before herbicide application. Sorption and desorption were evaluated by the batch equilibrium method. For leaching assessments, the materials were applied to the soil surface. Sorption was relatively low in all treatments (Kd = 0.17–0.41 L/kg), although significantly higher in soil without organic material addition. A negative correlation between herbicide sorption and increased soil base saturation was observed, indicating competition for sorption sites. With the addition of vinasse, 71% of the herbicide reached the leachate, while <50% reached the leachate in the other treatments. Aminocyclopyrachlor availability was not reduced with organic material addition to the soil, which may be favourable for weed control. However, the presence of vinasse leads to the risk of leaching to deeper soil layers than the seed bank.  相似文献   

11.
Results of laboratory batch studies often differ from those of outdoor lysimeter or field plot experiments--with respect to degradation as well as sorption. Laboratory micro-lysimeters are a useful device for closing the gap between laboratory and field by both including relevant transport processes in undisturbed soil columns and allowing controlled boundary conditions. In this study, sorption and degradation of the herbicide metsulfuron-methyl in a loamy silt soil were investigated by applying inverse modelling techniques to data sets from different experimental approaches under laboratory conditions at a temperature of 10 degrees C: first, batch-degradation studies and, second, column experiments with undisturbed soil cores (28 cm length x 21 cm diameter). The column experiments included leachate and soil profile analysis at two different run times. A sequential extraction method was applied in both study parts in order to determine different binding states of the test item within the soil. Data were modelled using ModelMaker and Hydrus-1D/2D. Metsulfuron-methyl half-life in the batch-experiments (t1/2 = 66 days) was shown to be about four times higher than in the micro-lysimeter studies (t1/2 about 17 days). Kinetic sorption was found to be a significant process both in batch and column experiments. Applying the one-rate-two-site kinetic sorption model to the sequential extraction data, it was possible to associate the stronger bonded fraction of metsulfuron-methyl with its kinetically sorbed fraction in the model. Although the columns exhibited strong significance of multi-domain flow (soil heterogeneity), the comparison between bromide and metsulfuron-methyl leaching and profile data showed clear evidence for kinetic sorption effects. The use of soil profile data had significant impact on parameter estimates concerning sorption and degradation. The simulated leaching of metsulfuron-methyl as it resulted from parameter estimation was shown to decrease when soil profile data were considered in the parameter estimation procedure. Moreover, it was shown that the significance of kinetic sorption can only be demonstrated by the additional use of soil profile data in parameter estimation. Thus, the exclusive use of efflux data from leaching experiments at any scale can lead to fundamental misunderstandings of the underlying processes.  相似文献   

12.
Activity, adsorption, and mobility of emulsifiable concentrate (EC) and microencapsulated (ME) formulations of alachlor and acetochlor as well as of metolachlor, S-metolachlor, dimethenamid and flufenacet were studied. Petri-dish bioassay, based on root response of oats ( Avena sativa L.), was used for their activity in sand and in a silty clay loam soil, and for determination of herbicide concentrations in soil solution (not adsorbed) and in column leachates of the adsorption and mobility studies respectively. Flufenacet and both acetochlor formulations showed the highest activity in both soils and ME-alachlor and metolachlor the lowest; the activity of dimethenamid, EC-alachlor and S-metolachlor was intermediate. Activity of both formulations of alachlor and acetochlor decreased with increasing organic matter content, but alachlor activity was reduced more than that of acetochlor. Lower amounts of dimethenamid and S-metolachlor were adsorbed by soil compared with the other herbicides and, consequently, greater amounts of these two herbicides were leached through that soil. None of the herbicides tested was detected below 30 cm. Less alachlor and acetochlor were biologically available in soil solution after their application as ME-formulations and, therefore, lower amounts of both ME-alachlor and ME-acetochlor were leached through the soil compared with those applied as EC-formulations.  相似文献   

13.
苦参碱在土壤中的环境行为研究   总被引:1,自引:0,他引:1  
农药在土壤中的吸附、移动及消解等特性是评价其环境安全性的重要指标。为评价植物源农药苦参碱对土壤环境的安全性,依据《化学农药环境安全评价试验准则》,探讨了苦参碱在东北黑土、江西红土、关中娄土及河南二合土等典型土壤中的吸附、移动、消解特性及其影响因素。结果表明:苦参碱在4类典型土壤中均为中等吸附、易移动,且土壤有机质含量与其吸附性呈正相关;在未灭菌条件(25℃,避光)下,苦参碱在4类6种不同土壤中的消解半衰期为4.1~9.8 d,而在灭菌条件下,半衰期为11.6~13.7 d,均为易降解。研究表明,苦参碱对土壤环境较为安全。  相似文献   

14.
Isoxaflutole, [4-(2-methanesulfonyl-4-trifluoromethylbenzoyl)-5-cyclopropyl isoxazole] is a relatively new pre-emergence herbicide which undergoes rapid conversion to a diketonitrile metabolite in soil. The half-life of isoxaflutole is very short but the half-life of diketonitrile is much longer and hence, diketonitrile remains for a extended period of time in soil. Sorption-desorption studies were conducted with five soils varying in physical and chemical properties. The batch equilibration technique was used for the sorption experiments, while completely mixed batch reactor systems with the decant and refill method was used for the desorption experiments. Four subsequent desorptions were examined after the sorption process in each soil with an equilibration period of seven days. An apparent sorption-desorption hysteresis was observed in all five soils. Organic matter content and the clay content of the soils were the two determining factors for hysteresis. In soils with high organic matter content, the sorption-desorption hysteresis was mainly governed by organic matter content, but in soils with low organic matter clay content played an important role. With the exception of the Chelsea soil, which had a very high organic matter content (57.4%), all other soils exhibited a high correlation between the clay content and hysteresis index (HI) values calculated at 0.75 ( r 2 = 0.960), 25 ( r 2 = 0.934) and 150 mg L−1 ( r 2 = 0.928). In conclusion, the potential for leaching through soil and crop injury due to isoxaflutole and its metabolite would decrease as soil organic matter and clay content increases.  相似文献   

15.
The behaviour of sulcotrione, a recently introduced triketone herbicide, in various soil types was studied under laboratory conditions. In particular, degradation and sorption processes were examined on Ghent and Perpignan soils. Kinetics showed that the degradation of sulcotrione was influenced by biotic and/or abiotic factors. Half-lives ranged between 45 and 65 days. Among the degradation compounds identified were 1,3-cyclohexanedione (CHD) and 2-chloro-4-mesyl benzoic acid (CMBA), previously described as hydrolysis products, and, under special conditions, a derivative of phenylheptanoic acid (PHD). This new degradation product suggested that sulcotrione could follow two possible pathways in the soil, as in water. During the sorption study, a moderate retention of sulcotrione and CMBA relative to CHD and PHD, which were highly adsorbed whatever the soil type, was reported. Experiments carried out under the same conditions for sulcotrione and mesotrione, another triketone herbicide recommended in maize culture, made it possible to compare the two triketones and to conclude that they exhibited relatively similar behaviour in the soil, i.e. that their leaching potential needs to be properly addressed and risks evaluated. Copyright (c) 2007 Society of Chemical Industry.  相似文献   

16.
BACKGROUND: The behavior of the termiticide fipronil in soils was studied to assess its potential to contaminate ground and surface water. This study characterizes (1) adsorption of fipronil in three different soils, (2) transport of fipronil through leaching and runoff under simulated rainfall in these soils and (3) degradation of fipronil to fipronil sulfide and fipronil sulfone in these soils. RESULTS: The adsorption experiments showed a Freundlich isotherm for fipronil with Koc equal to 1184 L kg?1. In the leaching experiments, the concentration of fipronil and its metabolites in leachate and runoff decreased asymptotically with time. The concentration of fipronil in the leachate from the three soils correlated inversely with soil organic carbon content. The degradation experiment showed that the half‐life of fipronil in the soils ranged from 28 to 34 days when soil moisture content was 75% of field capacities, and that 10.7–23.5% of the degraded fipronil was transformed into the two metabolites (fipronil sulfide and fipronil sulfone). CONCLUSION: Fipronil showed large losses through leaching but small losses via runoff owing to low volumes of runoff water generated and/or negligible particle‐facilitated transport of fipronil. The half‐life values of fipronil in all three soils were similar. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
The dependence of the behaviour of metsulfuron-methyl on soil pH was confirmed during incubations under controlled laboratory conditions with two French soils used for wheat cropping. The fate of [14C] residues from [triazine-14C]metsulfuron-methyl was studied by combining different experimen-tal conditions: soil pH (8·1 and 5·2), temperature (28 and 10°C), soil moisture (90 and 50% of soil water holding capacity) and microbial activity (sterile and non-sterile conditions). Metsulfuron-methyl degradation was mainly influenced by soil pH and temperature. The metsulfuron-methyl half-life varied from five days in the acidic soil to 69 days in the alkaline soil. Under sterile conditions, the half-life increased in alkaline soil to 139 days but was not changed in the acidic soil. Metsulfuron-methyl degradation mainly resulted in the formation of the amino-triazine. In the acidic soil, degradation was characterised by rapid hydrolysis giving two specific unidentified metabolites, not detected during incubations in the alkaline soil. Bound residues formation and metsulfuron-methyl mineralisation were highly correlated. The extent of bound residue formation increased when soil water content decreased and was maximal [48 (±4)% of the applied metsulfuron-methyl after 98 incubation days] in the acidic soil at 50% of the water holding capacity and 28°C. Otherwise, bound residues represented between 13 and 32% of the initial radioactivity. © 1998 SCI  相似文献   

18.
BACKGROUND: Sorption‐desorption processes govern the movement of pesticides in soil. These processes determine the potential hazard of the pesticide in a given environment for groundwater contamination and need to be investigated. RESULTS: In the present study, sorption‐desorption processes of benfuracarb were investigated using a batch method in two mollisols. The kinetics of benfuracarb sorption in mollisols conformed to two‐compartment (1 + 1) first‐order kinetics. The fast sorption rate constant was about 3 times higher for silt loam than for loam soil. However, the slow sorption rate constants were statistically similar for both soils. The concentration‐dependent sorption‐desorption isotherms of benfuracarb could not closely conform to the Freundlich isotherm in mollisols of high organic C content. The computed values of both the sorption (log K) and desorption (log K′) capacities were higher for silt loam than for loam soil. The desorption index (n′/n) values in the range 30.0–41.3 indicated poor reversibility of sorbed benfuracarb in mollisols. CONCLUSION: In view of the strong sorption of benfuracarb in mollisols with only partial desorption, the possibility of the leaching of soil‐applied benfuracarb to contaminate groundwaters appears to be low. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
以稗草为生物测定材料,研究了土壤微生物及环境因子对乙草胺持效性的影响。结果显示:在相同温度、湿度和光照条件下,相同浓度的乙草胺在灭菌土壤中的持效期比在非灭菌土壤中的持效期长;在中性偏碱的华北褐土中的持效期比在中性偏酸的东北黑土和湖南红土中的短;在试验湿度和温度范围内,乙草胺在非灭菌土壤中的持效期随土壤湿度或温度的提高而变短。与黑暗处理相比,光照可延长土壤中乙草胺的持效期。对5种试验因子的影响程度进行综合分析可知,土壤微生物是影响乙草胺持效性的主要因素,有益于土壤中微生物生长的环境因素对土壤中乙草胺的持效期有降低作用。可以预测,通过栽培耕作等措施改变环境因子可以起到对农药的持效期进行人为调控的作用。  相似文献   

20.
The use of herbicides on railway tracks is known to present a risk to groundwater, but little is known of the mechanisms influencing leaching through the coarse material used to construct railway embankments. Therefore, in the present study, four different models based on the convection-dispersion equation (CDE) were compared with previously reported field data on the leaching of imazapyr. In particular, the significance of non-equilibrium processes was investigated by comparing different CDE formulations accounting for preferential finger flow, particle-facilitated transport and kinetic sorption. The traditional CDE assuming 'local equilibrium' based on 24 h batch sorption data gave poor results (model efficiency - 1.1). It strongly underestimated leaching of imazapyr in the first 4 months following application, thus confirming the importance of non-equilibrium transport processes. Accounting for short-term sorption kinetics made little difference, giving similar results to the 'local equilibrium' CDE simulation. A simulation accounting for particle-facilitated transport could accurately match this accelerated transport, and also gave the best overall fit to the data (model efficiency 0.76). However, not even this model could match the long-term retention of imazapyr residues observed close to the soil surface more than 1 year after application, and it also underestimated the time of breakthrough to groundwater. This strongly suggests that a long-term retention/sorption process not included in any of the models tested (i.e. sorption hysteresis or bound residues) acted to retard leaching. The formation of 'protected' residues was also indicated by a much slower degradation of imazapyr more than 1 year after application. Industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号