首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为更好地保存和研究酸枣种质,提高利用效率,以211份酸枣种质为试材,基于表型性状数据,在25%取样比例下,对所有种质进行逐步系统聚类,从遗传距离方法、取样方法、聚类方法和取样比例4个方面探讨酸枣核心种质的最佳取样策略。根据最佳取样策略和3种分组取样方法进行分组取样,并与不分组取样进行比较。结果表明:基于25%取样比例,采用优先取样法、欧氏距离法和可变类平均法构建核心种质效果最佳;在最佳构建策略下筛选总体取样比例,结果表明最佳总体取样比例为25%;不分组取样构建的核心种质Pcore的方差差异百分率(VD)、变异系数变化率(VR)和极差符合率(CR)高于分组取样构建的核心种质Core-L,构建效果更好;定性描述性状保留比例、t检验、符合率检验、主成分分析和样品三维分布图表明构建的核心种质能够消除遗传冗余,能够代表原始种质。基于表型性状筛选出的最佳构建策略为“欧氏距离+可变类平均法+优先取样法+25%取样比例”,经过补充完善,最终得到58份核心种质,具有较高的代表性。本研究成功构建了能够代表原始酸枣种质表型遗传多样性的核心种质,有助于科学、有效地收集和保存酸枣种质资源,为深入挖掘和利用酸枣种...  相似文献   

2.
为了优化樟树种质资源保存策略,提高利用效率,利用872份中国樟树种质资源的苗高、地径、种子大小和千粒质量4个表型数据为材料,从分组方法、组内抽样比例方法、聚类方法、抽样策略、总体取样比例等方面进行中国樟树初级核心种质取样策略研究。结果表明:不同聚类方法和取样策略下采用4种系统取样法构建的核心种质的效果是不同的,在确定最长距离法和优先取样策略的前提下,组内采用对数比例法所构建的樟树核心种质效果较好。应用最长距离法进行聚类筛选出的核心种质的极差符合率和变异系数变化率相对高于其他6种方法,是构建樟树核心种质的最佳聚类方法;优先取样法构建的核心种质的遗传多样性指数、表型频率方差、表型方差和变异系数变化率的值都是最佳的。在25%的取样比例下,遗传多样性指数、表型保留比例和表型方差的值最高,表型频率方差最小,是构建樟树初级核心种质的最佳取样比例。综合6个参数的分析结果,最终确定种源-对数比例-最长距离法聚类-优先取样法为构建中国樟树核心种质的优选取样策略。  相似文献   

3.
利用数量性状构建新疆野苹果核心种质的方法   总被引:8,自引:3,他引:5  
 【目的】以300份新疆野苹果实生株系为试验材料,根据叶片、花朵和果实等器官15个数量性状的遗传多样性,研究新疆野苹果核心种质构建的方法。【方法】采用逐步聚类法,以30%的取样比例,根据2种遗传距离(欧氏距离和马氏距离)、4种系统聚类方法(类平均法、离差平方和法、最长距离法和最短距离法)和3种取样方法(随机取样法、偏离度取样法和优先取样法)构建24个核心种质,以筛选出的最佳构建策略进一步比较7种不同取样比例(10%、15%、20%、25%、30%、35%和40%)的构建效果以确定最适宜的取样比例。【结果】(1) 在新疆野苹果构建中,采用欧氏距离聚类优于马氏距离。(2) 4种系统聚类方法比较表明,最短距离法优于类平均法、离差平方和法和最长距离法。(3) 3种取样方法比较表明,优先取样法和偏离度取样法都能明显提高核心种质的方差差异百分率、极差符合率和变异系数变化率,均适宜于新疆野苹果核心种质的构建,前者略优于后者。(4)20%是最适宜的取样比例。【结论】以20%的取样比例,采用欧氏距离,利用最短距离法进行逐步聚类,结合优先取样法构建的核心种质最有代表性,是构建新疆野苹果核心种质的最佳方法。  相似文献   

4.
利用数量性状构建粳稻核心种质的方法比较   总被引:1,自引:0,他引:1  
以250份粳稻为研究材料,根据7个数量性状的基因型预测值,研究粳稻核心种质构建的方法。采用2种遗传距离(欧氏距离和马氏距离),8种聚类方法(最短距离法、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法),3种取样方法(随机取样法、偏离度取样法和优先取样法),在25%的取样比例下构建48个核心种质,以筛选出的最佳构建策略进一步比较6种不同取样比例(10%、15%、20%、25%、30%和35%)的构建效果以确定最适宜的取样比例。结果表明,在粳稻核心种质构建中,马氏距离优于欧氏距离。欧氏距离优先取样法下最短距离法构建的核心种质最优。马氏距离偏离度取样法构建的核心种质能较多保存原群体遗传变异。10%是最适宜的取样比例。  相似文献   

5.
海巴戟核心种质的构建方法   总被引:1,自引:0,他引:1  
以126份海巴戟种质资源为材料,利用生物学性状、农艺学性状、SRAP分子标记等遗传多样性数据,采用逐步聚类法,开展海巴戟核心种质构建机制的研究。结果表明:海巴戟核心种质的最佳构建方法为Average系统聚类,G策略取样,15%的组内取样比例。应用该构建方法初步构建了由21个不同种质株系构成的海巴戟核心种质,该核心种质能够代表原种质的遗传多样性。  相似文献   

6.
以河北省作物种质库中385份小豆资源为材料,根据13个农艺性状,利用地理来源进行分组,分别采用比例法、平方根法确定取样数法及聚类选择和随机选择2种个体选择法构建5个小豆初选核心样本,对不同的取样方法及总资源间进行品种间平均遗传距离、性状符合度、遗传多样性指数和数量性状变异系数的比较,探讨构建河北省小豆初选核心种质的最佳方案。结果表明,聚类选择取样优于随机取样,在聚类选择条件下采用比例法确定取样数优于平方根法,最终确定按地理来源分组、利用比例法确定取样数、聚类选择个体为小豆核心种质构建的最佳方案。采用该最佳方案,构建包含79份小豆种质的初选核心种质,取样比例为20.5%,13个农艺性状的性状符合度达100%。  相似文献   

7.
以400个中原牡丹品种的形态学和农艺学性状为基本数据,研究了其核心种质构建的取样策略,包括分组、总体取样比例的确定及取样策略的选择,以获得最佳的核心种质。结果表明:构建中原牡丹品种核心种质的适宜总体取样比例为15%,分组宜按花型分组为好,组内按平方根比例策略确定取样量,采用类平均法聚类抽样优于其他聚类法和随机法。对按最佳方案获得的核心种质进行代表性检测,检测结果能很好地代表原始种质的遗传多样性。  相似文献   

8.
【目的】探讨构建传统菊花品种核心种质的最优取样方法并构建核心种质,以便于传统菊花种质资源的收集与保存。【方法】以《中国菊花》专著中记载的2 249份传统菊花品种为材料,依据舌状花花色分为8组,采用逐步聚类法基于4种总体取样规模(5%、10%、15%、20%)和4种组内取样比例方法(简单比例、对数比例、平方根比例、多样性比例)构建了传统菊花备选核心种质16个,探讨最优的取样策略。筛选出最优取样策略后进一步比较2种组内取样方法(随机和聚类)的构建效果。对最优方法下建立的核心种质代表性进行检验,利用多个特征值(最小值、最大值、均值、标准差、变异系数、Shannon-Weaver遗传多样性指数)和评价参数(均值差异百分率(MD)、方差差异百分率(VD)、极差符合率(CR)、变异系数变化率(VR)和表型保留比例(RPR))综合地评价核心种质。【结果】传统菊花按照花色进行分组,各组品种呈现正态分布,能够确保取样的均匀性;对数比例法和多样性比例法都能够使每组的取样份数更加均衡,起到良好的修正作用,对数比例法下构建的核心种质各项参数值达到最大,是最优取样比例法;随着总体取样规模的增加,遗传多样性指数呈现先增大再减小的趋势,变异系数变化率不断减小,极差符合率和表型保留比例不断增大;当取样规模大于10%时,遗传多样性指数和变异系数变化率减小,而极差符合率和表型保留比例的升幅并不大,因此,构建传统菊花核心种质最适宜的总体取样规模为10%;聚类取样构建的备选核心种质各项参数值均大于随机取样构建的对应备选核心种质的参数值,以聚类取样方法构建的核心种质变异的丰富性和均匀程度更好。核心种质各特征值与原始种质表现一致,多个评价参数值表明核心种质的均度和丰度较好,充分体现了表型的遗传多样性。通过补充聚类丢失的“追抱”1个花抱性状和对花序高度、外层瓣长2个性状的完善,最终构建得到228个传统菊花品种的核心种质,占原始材料的10.14%。【结论】本研究基于2 249份传统菊花品种材料的15个表型性状,系统地比较了多种总体取样规模、组内取样比例方法、组内取样方法构建的备选核心种质后,确定了最佳的核心种质构建方法,并对核心种质的代表性进行了分析和验证,各特征值和评价参数表明本研究构建的核心种质是有效的,核心种质充分地代表了传统菊花原始种质的遗传多样性。  相似文献   

9.
为最大限度地保存辣椒原群体的遗传变异度,利用SSR分子标记技术比较不同距离聚类和抽样方法构建辣椒的核心种质库。结果表明:在马氏距离下,4种抽样比例中当抽样比例达20%和25%时均值差异百分率MD%为0;在相同欧氏距离下,4种抽样比例中,以10%、15%和20%比例进行抽样均值差异百分率(MD%)为0。在采用的8种聚类方法中,只有最短距离法均值差异百分率(MD%)为最小值0。不同取样法,变异系数变化率为多次聚类偏离度取样法(107.06%)多次聚类随机取样法(101.18%)多次聚类优先取样法(59.57%)。从97份参试材料中筛选出沿河2、德江5、石阡3、台江1、仁怀4、务川2、遵义5、河南1和海南1共计9份核心种质,均匀分布于不同的类群中。结论:在欧氏距离下,按10%比例进行抽样,用多次聚类随机取样法取样、最短遗传距离法进行聚类分析为构建辣椒核心种质库的最佳选择。  相似文献   

10.
中国普通野生稻初级核心种质取样策略   总被引:12,自引:0,他引:12  
以国家品种资源库编目入库的中国普通野生稻种质5571份为材料、19个分类和形态性状的数据比较研究了中国普通野生稻的核心种质总体取样比例和取样策略,以获得最佳初级核心种质。设3个总体取样比例5%、15%和25%,取样方案分3个层次即分组原则、组内取样比例和组内取样方法。分组原则为省、纬度、生长习性和单一性状及不分组的大随机;组内取样比例为对数法、平方根法、遗传多样性指数和简单比例法;组内取样采用随机和聚类2种方法。结果表明,当总体取样比例从5%增加到15%时,所取得核心种质的表型保留比例有比较大的增幅,而比例由15%增加到25%时,表型保留比例变化不大,因此认为15%的取样比例较为合适;取样方案以采集省份分组,组内以对数比例法聚类取样效果最好。最终根据这一方案在计算机上编程取样860份,其多样性指数为1.1015、变异系数为16.87,表型方差为0.8546。3个检测参数值比原始种质库都有明显的提高。此外,根据国家种质资源库表型数据人工定向取样60份,建立了920份材料的中国普通野生稻初级核心种质。  相似文献   

11.
为筛选出较优的核心种质构建策略,基于前期调查的480份番茄种质资源的20个表型性状数据,依次对8个系统聚类法和5个不同的抽样比例分别进行对比;在此基础上对2个遗传距离、排名前二的抽样比例、3个抽样方法和排名前二的系统聚类法进行组合试验,并对所构建的24个核心种质进行代表性评价。结果表明,系统聚类法的排序为离差平方和法>可变法>最长距离法>可变类平均法>中间距离法>最短距离法>类平均法;抽样比例排序为15%>30%>25%>20%>10%;组合试验最佳的构建方法是:遗传距离为马氏距离,抽样比例为15%,抽样方法为偏离度取样法,系统聚类法为离差平方和法。研究结果为构建核心种质提供了最优构建策略,为宁夏地区番茄种质资源的核心种质构建与相关研究提供了理论依据和技术支持。  相似文献   

12.
割手密初级核心种质取样策略研究   总被引:1,自引:0,他引:1  
以国家甘蔗种质资源圃中596份割手密为研究对象,根据21个质量性状和6个数量性状,从分组原则、组内取样比例、组内取样方法3个层次探讨构建割手密初级核心种质的最佳取样策略,共形成50种取样策略;同时设10个总体取样量梯度,确定最佳的总体取样量.分组原则以采集地、海拔、茎径、纬度、生态区域、总体聚类进行分组及不分组的大随机...  相似文献   

13.
构建核心种质可大幅提高种质资源利用效率。以410份甜椒种质资源为材料,基于8个性状表型数据,采用混合线性模型分析方法无偏地预测基因型值,利用马氏距离计算种质间遗传距离,分别采用两种聚类方法(最短距离法和类平均法)和两种取样方法(随机取样法和偏离度取样法),按照25%抽样比率构建甜椒核心种质库。采用均值、方差、极差和变异系数4个指标评价不同取样和聚类构建核心种质库水平。结果表明,最短距离法能极显著增加性状方差和变异系数,明显优于类平均法;偏离度取样法优于随机取样法;基于马氏距离、最短距离法和偏离度取样方法获取的102份甜椒核心种质资源能代表原群体遗传多样性。该研究可为甜椒种质资源有利基因发掘和新品种选育奠定基础。  相似文献   

14.
中国大豆(Glycine max)核心种质构建Ⅰ.取样方法研究   总被引:36,自引:1,他引:36  
 以 2 3 587份中国栽培大豆为试验材料 ,根据农艺性状 ,用 2 0种方法构建了大豆初级核心种质 ,对 3种分层法、3种确定取样数法和 2种个体选择法进行了比较 ,明确了栽培大豆核心种质构建的适宜取样方法和取样比例。不同取样方法与总体都进行了品种分类数、各性状符合度、数量性状平均数、各性状多样性指数方差和平均品种距离共 5个指标的比较分析 ,结果表明 ,三层次取样方法 (品种分类法 )对总体的代表性优于二层次或一层次取样法 ,按比例和平方根确定取样数方法对总体的代表性优于多样性指数法 ,聚类选择的方法对总体的代表性优于随机选择方法。在 2 0种方法不同取样比例条件下 ,方法 17的平均品种距离降低幅度大于方法 15。因此 ,利用品种分类法进行分层 ,用比例法确定取样数目 ,根据聚类结果进行个体选择的方法 15是构建大豆初级核心种质的最佳方法。用最佳方法构建的初级核心种质 ,比较不同取样比例的品种平均距离 ,确定品种平均距离由缓慢降低到明显降低点 (9.0 % )为适当的取样比例  相似文献   

15.
利用已搜集的180份菜用豌豆材料进行核心种质构建策略研究。分别对所有种质材料进行单株荚数、每荚粒数、荚长、荚宽、荚厚、百荚鲜质量、百粒鲜质量及产量等性状进行调查,结果表明,搜集的材料具有丰富的遗传多样性。利用上述数据,采用最小距离逐步取样(minimum distance stepwise sampling, LDSS)法,分别选择4种遗传距离、8种取样比例进行核心种质构建策略研究,并采用极差符合率(coincidence rate of range, CR)和变异系数变化率(variable rate of coefficient of variation, VR)2个参数对构建策略进行评价;同时,利用主成分分析法和聚类分析法对构建的核心种质代表性进行鉴定。结果表明,采用LDSS法构建菜用豌豆核心种质的最佳遗传距离为欧式距离,最佳取样比例为25%。该构建策略将为菜用豌豆核心种质构建与高效利用奠定基础。  相似文献   

16.
桃(Prunus persica (L.) Batsch.)品种核心种质的构建与评价   总被引:4,自引:0,他引:4  
为构建桃品种核心种质,通过对56份桃(Prunus persica(L.) Batsch.)初级核心种质的形态农艺性状数据(MOR)和SSR等位基因数据的分析,研究了不同聚类取样方法和完全随机取样方法下9种取样比例的遗传多样性指数、保留比例及各频率段等位基因的丢失比例。结果表明:聚类取样的方法优于完全随机取样,并以在80%的取样比例下MOR结合SSR数据聚类取样的效果最好,利用此方案构建的桃品种核心种质共包括45份材料,该核心种质的基因遗传多样性指数最高,保留了初级核心种质100%的形态农艺性状和96.6%的SSR等位基因,在出现频率低于0.05的等位基因中共丢失了2个等位变异,保留了出现频率在0.05~0.10的所有等位基因;利用6个数量性状对所构建的核心种质的代表性检测表明所构建的核心种质很好地代表558份桃原始种质的遗传变异。  相似文献   

17.
水稻核心种质的构建策略研究   总被引:8,自引:0,他引:8  
以包括34项质量性状和15项数量性状数据的丁氏收集稻种资源中的2262份为供试材料,采用3种抽样方法、3种类型的性状数据、8种系统聚类方法和调整的欧氏距离构建巢式核心种质,以确定一种最佳的核心种质构建策略。结果表明,抽样比例在2.2%~9.9%之间的核心子集已足以保持原群体最大程度的遗传多样性。整合的质量数量性状构建的核心子集遗传多样性最大,优于仅由数量性状或质量性状构建的核心子集。采用优先取样结合多次聚类随机取样法,结合可变类平均法或类平均法构建的效果最好,由此得到150份核心种质,占原群体的6.6%。对核心种质的评价与验证表明,核心种质绝大部分性状的Shannon-Weaver多样性指数均大于原群体,其表型频率方差均小于原群体,表型保留比例均达到100%,大部分数量性状的均值与原群体无显著差异,最大值、最小值、极差与原群体完全符合。150份核心种质较好地保存了原群体的遗传多样性和遗传结构。  相似文献   

18.
以823份太湖流域粳稻地方品种资源的19个表型性状为基础数据,形成45个核心种质测试群体,利用均值差异率(MD,%)、极差符合率(CR,%)、方差差异率(VD,%)、变异系数变化率(VR,%)、表型保留率(PR,%)和多样性指数率(H',%)6个评价参数,对2种遗传距离(欧氏遗传距离、马氏遗传距离)、6种聚类法(最短距离法、最长距离法、中间距离法、重心法、类平均法、离差平方和)、3种核心种质抽样法(多次聚类随机法、多次聚类优先法和多次聚类偏离度法)和不同抽样比例(10%~50%)的组合策略在核心种质构建中的优劣进行分析.结果表明:采用欧氏距离、类平均法聚类和优先取样法为最佳方案,15%~25%为构建本资源初级核心种质比较适宜的比例范围;以此策略构建的Core2,1,5-15群体为基础,质量性状遗失基因型为补充,构建了以129份资源组成的太湖流域粳稻地方品种初级核心种质,数量占初始群体的15.7%;与初始群体相比,核心种质各性状平均数无显著差异(MD为0),极值符合率100%,表型保留率100%.  相似文献   

19.
白桦核心种质构建的抽样方法   总被引:1,自引:0,他引:1  
以白桦种质资源240个家系的胸径、树高、材积和纤维素含量数据为依据,在采用马氏距离计算家系间距离、不加权类平均聚类法和10%的抽样比例下,研究了多次聚类随机抽样法、多次聚类优先取样法和多次聚类偏离度取样法构建的核心种质遗传参数、聚类结果和分布格局.结果表明,多次聚类优先取样法构建的核心种质最能代表原种质群体.  相似文献   

20.
玉米核心种质及构建方法研究进展   总被引:1,自引:0,他引:1  
玉米是多样性丰富的一种作物,构建核心种质是研究和利用其多样性的一个崭新途径。世界各国都开展了构建玉米核心种质的研究,建立了多个核心种质库或核心种质子集。系统介绍了构建玉米核心种质的研究进展及基于距离和基于模型的聚类方法两步Ward-MLM取样策略和组(类)内取样量计算方法D方法的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号