首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of two commercial cellulase/hemicellulase enzymes derived from Trichoderma reesei on silage fermentation and aerobic stability were investigated in three laboratory-scale experiments. In Experiment 1, perennial ryegrass ( Lolium perenne ) was treated with enzyme A at the rates of 0. 0·125, 0·250, 0·500 and 0·750 cm3 kg-1. In Experiment 2, Italian ryegrass ( Lolium multiflorum ) was treated with the same enzyme at the rates of 0, 0·250 and 0·500 cm3 kg-1 and with 85% formic acid (3·5 cm3 kg-1). In Experiment 3, perennial ryegrass was ensiled untreated, with enzyme A (0·250 and 0·500 cm3 kg-1) and with 0·200 and 0·400 cm3 kg-1 enzyme B which also contained glucose oxidase. All silages were well preserved. Aerobic deterioration was related to numbers of lactate assimilating yeasts. In Experiment 1, all silages were stable over a 4-day period. In Experiment 2, enzyme A treatment delayed the temperature rise compared with the untreated control ( P <0·05), whereas the formic acid-treated silage was stable. In Experiment 3, the temperature rise in the silage treated with the higher level of enzyme B occurred one day later than in the other silages ( P <0·05).  相似文献   

2.
The effects of two commercial cellulase/hemicellulase enzymes derived from Trichoderma reesei on silage fermentation were investigated in three laboratory-scale experiments. In Experiment 1, perennial ryegrass ( Lolium perenne ) was treated with enzyme A at the rates of 0, 0·125, 0·250, 0·500 and 0·750 cm3 kg-1. In Experiment 2, Italian ryegrass ( Lolium multiflorum ) was treated with the same enzyme at the rates of 0, 0·250 and 0·500 cm3 kg-1 and with 85% formic acid (3·5 cm3 kg-1). In Experiment 3, perennial ryegrass was ensiled untreated, with enzyme A (0·250 and 0·500 cm3 kg-1) and with 0·200 and 0·400 cm3 kg-1 enzyme B which also contained glucose oxidase. All silages were well preserved. In general enzyme treatment reduced pH and the contents of ammonia nitrogen, neutral detergent fibre and acid detergent fibre, whereas the contents of water-soluble carbohydrates, acetic acid, lactic acid and ethanol were increased.  相似文献   

3.
Four grass silages, all made in mid-July from second-harvest perennial ryegrass swards, were compared in a 16-week feeding experiment with twelve Ayrshire cows. Two silages were unwilted and two wilted. All the silages received formic acid ('Add-F') at the rate of 3 litres t-1 either with formalin at the rate of 1 litre t-1 or without formalin. The unwilted and wilted silages had mean dry matter (DM) concentrations of 200 and 243 g kg-1, and in vitro D-values of 0·293 and 0·272 respectively. The silages were offered ad libitum plus 6 kg concentrates per cow per day. The daily intakes of unwilted and wilted silage DM were 10·2 and 9·2 kg per cow respectively on the formic acid treatment, and 10·2 and 9·2 kg on the formic acid + formalin treatment. The mean daily milk yield on the unwilted silage treatments was 19·2 kg per cow which was significantly higher than the yield of 17·2 kg per cow on the wilted silage treatments. The formalin had no significant effect on milk yield. The four silage treatments had small and non-significant effects on milk composition. It is concluded that the unwilted silages, which had excellent fermentation characteristics, were superior to the wilted silages as a feed for dairy cows.  相似文献   

4.
Four grass silages were made from perennial ryegrass ensiled after a 1h wilt in 2-t silos without additive application, with application of formic acid or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2). Effluent losses were monitored over the ensiling period (130 d).
Analyses of the silage showed that formic acid-treated silage had lower concentrations of lactic acid than the other silages. Both enzyme-treated silages had lower levels of cellulose, acid detergent fibre (ADF) and neutral-detergent fibre (NDF) than the untreated and formic acid treated silages. Effluent production was highest with enzyme-treated silages.
The silages were subsequently fed to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole-tract digestibilities of organic matter constituents were significantly lower ( P < 0·05) with both enzyme-treated silages (untreated; 0·736, formic acid; 0·722, enzyme 1; 0·694, enzyme 2; 0·703). Both untreated and enzyme 2-treated silages sustained higher nitrogen digestibilities (g g−1 intake) (untreated; 0·675, formic acid; 0·636, enzyme 1; 0·630, enzyme 2; 0·662) and N retentions (g d−1) untreated; 16·0, formic acid; 14·0, enzyme 1; 11·6, enzyme 2; 16·6), but none of these differences was significant. When formic acid-treated silage was offered, there was a greater amount of organic matter apparently digested in the rumen (ADOMR). Non-ammonia nitrogen and microbial nitrogen flows at the duodenum were similar on all diets. The efficiency of microbial protein synthesis was highest with enzyme 2-treated silage and lowest with formic acid-treated silage (untreated, 35·4; formic acid, 25·2; enzyme 1, 30·4; enzyme 2, 39·4), but none of these differences were significant.  相似文献   

5.
Lucerne (DM 236 g kg-1, WSC 49 g (kg DM)-1) was ensiled in test-tube silos with or without either glucose or fructose and with or without one of two commercial inoculants. The WSC content of the forage as ensiled was too low to obtain a well preserved untreated silage. By day 4 the pH values of the silages with added sugar or inoculant were significantly lower (P< 0·001) than the control silage. A satisfactory fermentation was attained only in the silages to which sugar and an inoculant had been added. These silages had a lower pH, more protein-N (P< 0·001), less ammonia-N (P<0·001), a faster increase in counts of lactic acid bacteria, and decrease in counts of coliforms than the other silages. Homo-fermentative lactic acid bacteria dominated the fermentation in the inoculated silages while leuconostocs dominated the early stages of fermentation in the control silages. The results indicate that if there is insufficient sugar in the original crop, then the bacteria in an inoculant will not be able to produce enough lactic acid to lower the pH to an acceptable level. This has important implications for the ensilage of lucerne and other highly buffered low sugar crops.  相似文献   

6.
Data from six experiments conducted at two Agricultural Development and Advisory Service Experimental Husbandry Farms during 1980–83 were used to compare low dry matter (DM, 160 g kg-1), low water soluble carbohydrate (WSC, 15 g kg-1), non-additive treated silage with silage treated with commercial inoculants or formic acid with or without added formalin (formic acid ± formalin). Formic acid ± formalin significantly decreased silage pH and ammonia-N and significantly increased silage residual WSC compared with inoculant or untreated silage. Formic acid ± formalin significantly increased oven DM and significantly reduced DM loss during ensiling compared with untreated silage. Formic acid ± formalin treatment significantly increased both silage DM and total DM intake compared with untreated silage. Daily liveweight gains of cattle offered formic acid ± formalin were significantly higher than those given inoculant or untreated silage.
It is suggested from the results that formic acid ± formalin additives can be used successfully to prevent a clostridial fermentation developing when crops contain 15 g WSC kg-1.  相似文献   

7.
In a two-year experiment, three silages were prepared from herbage treated either with an inoculant at 1·25 × 105 organisms (g fresh material (FM))−1. formic acid (850 g kg−1) at 4 1 (t FM)−1, or no additive (untreated). In Experiment 1, unwilted and in Experiment 2, wilted silages were investigated and had mean dry matter (DM) and water soluble carbohydrate (WSC) concentrations at ensiling of 171 g kg−1 and 17·6 g (kg FM)−1 and 263 g kg−1 and 25·1 g (kg FM)−1, respectively. In Experiment 1, 45 and in Experiment 2, 54 individually fed cows were used to evaluate the silages in three-treatment, randomized-block design experiments. During weeks 4-12 of lactation the cows were offered silages ad libitum and during weeks 15-26 a constant amount of silage was fed. There were few major differences in chemical composition of the resulting silages. Formic acid had no effect on silage digestibility. Inoculant treatment increased digestibility when the grass had been wilted. The use of formic acid resulted in increased silage DM intake of 9% during weeks 4-12 of lactation in Experiment 1 but not in Experiment 2. The inoculant gave no increase in silage DM intake over the control in Experiment 1 but increased silage DM intake by 7% in Experiment 2. There was no significant response in milk yield to formic acid. In Experiment 2 the response in milk yield to inoculant treatment was significant both in weeks 4-12 of lactation (4%) and in weeks 15-26 of lactation (5%). It is concluded that the response in milk yield to the use of a specific inoculant appears to be mediated through increased intake of metabolizable energy (ME).  相似文献   

8.
Seven laboratory-scale experiments were carried out to study the effects of cellulases/hemicellulases on silage fermentation of herbage from mixed swards of timothy ( Phleum pratense ), meadow fescue ( Festuca pratensis ) and red clover ( Trifolium pretense ). Enzyme-treated silage (approximately 3500 HEC units kg−1 grass) reached a low pH sooner, had lower end pH, contained less NH3-N and more lactic acid than did the untreated silage ( P < 0·05). Applied with an inoculant, these effects were even stronger. With easily ensiled crops (experiments 1, 2, 5 and 6) preservation was first of all improved by inoculation of lactic acid bacteria; however, for the low-sugar crops (experiments 3, 4 and 7) enzyme treatment was more significant. The enzymes derived from Aspergillus spp. gave more acetic acid than the enzymes from Trichoderma reesei. The Trichoderma enzymes liberated 4·8 g WSC kg−1 FM gamma-irradiated grass during 60 d at pH 4·3 ( P < 0·05). On average, for all silages enzyme treatment increased the sum of residual sugar and fermentation products by 3·7 g kg−1 FM (21 g kg−1 DM) compared with the silages not treated with enzymes ( P < 0·001). Enzyme treatment increased the instantly degradable part of the feed, but total in sacco and in vitro digestibilities were not affected.  相似文献   

9.
Silages were made from the first cut of a predominantly perennial ryegrass sward. The silages were either untreated (W) or treated with formic acid (31 t−1, F) or with 106 lactic acid bacteria (LAB) g−1 grass of each of three strains alone (A. Lactobacillus plantarum MTD1; B, Pediococcus species 6A2; C, L. plantarum 6A6) or in combination (AB. AC) to give seven treatments. The silage fermentation in 10-kg silos was followed chemically and microbiologically and the nutritive value of selected treatments evaluated using 2-t silos.
The control silage (W) fermented well. Addition of formic acid restricted fermentation and produced a silage with a high ethanol concentration. After day 4, all inoculated silages had lower pH values and higher lactic acid concentrations and a higher ratio of lactic acid to acetic acid than the control silage. Chemically there was little difference between the inoculated silages in terms of final composition. Microbiologically the LAB applied in treatments B and C dominated the LAB populations in those silages when applied alone; however, they were suppressed when applied in combination with inoculant A.
When fed to sheep, the intake of the formic acid-treated silage was significantly ( P < 0·01) lower than that of the other silages and the intake of silage treated with inoculant A significantly ( P < 0·001) higher than that of silages treated with inoculants B and C. The apparent organic matter ( P < 0·001) and nitrogen ( P < 0·01) digestibilities of the formic acid-treated silage were also significantly lower than those of the other silages.  相似文献   

10.
Eight grass silages were made from two contrasting varieties of perennial ryegrass, four silages each from a late-cut early-maturing (high dry matter, HDM) variety and from an early-cut, late-maturing (low dry matter, LDM) variety. The grass was ensiled without additive (untreated), or with formic acid, or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2) for a period of 130 d.
Formic acid-treated silage had lower levels of lactic acid at both levels of dry matter than the other silages. Enzyme treatment of grass prior to ensilage resulted in reduced levels of cellulose, acid-detergent fibre and neutral-detergent fibre in LDM silages and lower acid-detergent fibre and neutral-detergent fibre in the HDM silages compared with the corresponding untreated and formic acid-treated silages. Voluntary intakes (g DM d−1) of untreated and enzyme-treated silages were significantly ( P <0·01) lower at both digestibilities compared with formic acid-treated silages (LDM: untreated, 982; formic, 1069; enzyme 1, 868; enzyme 2, 937; HDM: untreated, 931; formic, 1027; enzyme 1, 943; enzyme 2, 914). The organic matter, carbohydrate and nitrogen digestibility coefficients of LDM silages were significantly ( P <0·001) higher than those of HDM silages. There were no significant differences in any component digestibility related to silage additive.
Comparison of digestibility coefficients for constituents of the LDM silages fed to sheep or steers showed no differences between species.  相似文献   

11.
A second cut of lucerne was wilted to 500 g DM kg−1 and either left untreated (control) or treated with formic acid (4.5 1 fresh forage t−1) or with a commercial inoculum of lactic acid bacteria (105 colony forming units (cfu) g forage−1). The forages were ensiled in 2-t capacity silos for 8 months, and later fed to six lambs (mean initial weight 27.7 ±1.60 kg) in a 3x3 duplicated Latin square with 27-d periods. Portions of the untreated and additive-treated forages were also ensiled in laboratory silos at 25 ° C for intervals up to 42 d. Results from the laboratory silos showed that the major increase in ammonia-N in silage occurred between 40 h and 7 d of fermentation; during this period, both formic acid and the inoculant produced a smaller increase in ammonia-N, than did the control. The pH of inoculated silage declined from 5.74 to 4.57 in 7 d, but it took 14 d for the pH of the control silage to fall below 5.0. Formic acid treatment immediately reduced the silage pH from 5.74 to 5.10 ( P < 0·01); the pH then remained unchanged until 21 d, after which it decreased slightly. When compared with control, lambs fed formic acid-treated silage consumed more ( P < 0·05) digestible organic matter; the response was associated with a trend towards decreased concentration of ammonia in plasma. Inoculation of lucerne silage did not ( P < 0·05) affect voluntary intake but increased ( P <0.05) apparent digestibility of fibre and tended to increase N retention.  相似文献   

12.
Two silages were made from primary growth perennial ryegrass and ensiled after the application of either formic acid or an enzyme mixture of cellulase and hemicellulase. Silage analysis showed both silages to be well preserved with low pH of 3·70 and 3·62 for the formic and enzyme treatments respectively. Formic acid-treated silage had a higher total amino acid concentration than enzyme-treated silage. The silages were offered to growing steers either as the sole diet or supplemented with rapeseed meal at 60 g or 120 g fresh weight kg−1 silage DM offered, in a 6 × 6 Latin square arrangement.
Non-ammonia nitrogen and microbial nitrogen flows at the duodenum (g d−1) were significantly ( P < 0·05) increased by supplementation of enzyme-treated silage compared with formic acid-treated silage (enzyme, 83·6, 58·7; enzyme + 60 g, 101·7, 75·3; enzyme + 120 g, 112·5, 80·7; formic, 91·9, 63·7; formic + 60g, 88·3, 67·9; formic + 120 g, 95·5, 67·1) respectively. Efficiencies of microbial protein synthesis were increased for supplemented enzyme-treated silage diets and values were reduced for supplemented formic acid-treated silage diets compared with the silage only diets (enzyme, 27·9; enzyme + 60 37·7; enzyme + 120 g, 38·6; formic, 33·7; formic + 60g, 31·2; formic + 120 g, 28·8). Total amino acid flow at the duodenum increased with supplementation of both silages; however, microbial amino acid flow increased significantly ( P < 0·05) with supplementation of enzyme-treated silage compared with formic acid-treated silage diets. Significantly greater amounts of cystine, methionine, alanine, valine and aspartic acid entered the small intestines of animals receiving supplemented enzyme silages compared with supplemented formic acid silages.  相似文献   

13.
An experiment was carried out during 1984 to study the effect of treating grass at ensiling with three commercially available inoculant-type additives (H/M Inoculant, Grass Sile and Siron), formic acid (850 g kg−1; Add-F) or no additive on grass preservation, in-silo loss, intake and animal performance. Primary growth grass ensiled from 28–29 May into concrete-walled covered silos was of high dry matter (DM, 234 g kg−1), water-soluble carbohydrate content (WSC. 212 g kg DM−1) and digestibility (MADF, 250 g kg DM−1).
The untreated silage displayed good preservation and with the exception of the Sirontreated silage which showed significantly lower buffering capacity (Be) and volatile fatty acid (VFA) contents than the untreated silage, the application of inoculant-type additives did not improve silage preservation or decrease in-silo DM losses. The formic acid-treated silage displayed significantly lower Be, water-soluble carbohydrate, ash, ammonia nitrogen (g kg total N−1) and lactate contents than the untreated silage.
After a 133 d storage period, silages were offered to finishing beef cattle for an 84-d period. Cattle offered the silages displayed similar and non-significant daily DM intakes, daily liveweight gains, dressing proportions and daily carcass gains. From this experiment it appears unlikely that any of the additives evaluated will improve animal performance relative to a well-preserved untreated silage.  相似文献   

14.
Perennial ryegrass, harvested as second-cut material on 10 and 11 July 1990, was treated with either formic acid at 31 t-1 or an acid-salt type additive at 61 t-1 and ensiled in roofed 150 t bunker silos. Subsequently both silages underwent a predominantly lactic fermentation. Nevertheless the acid-salt-treated silage had a significantly higher quantity of formic acid (19 vs 12 g kg DM-1) and significantly lower levels of lactic (98 vs 118 g kg DM-1) and acetic acid (11 vs 17 g kg DM-1) compared with formic acid-treated silage. In-silo losses and effluent production were similar.
Each silage was individually fed to 10 October-calving Friesian dairy cows (average weight 565 kg) from weeks 2 to 15 of lactation, together with 3 kg d-1 of a compound feed containing 190 g kg DM-1 crude protein and with an estimated metabolizable energy content of 12·6 MJ kg DM-1. The acid-salt additive had no significant effect on silage DM intake, daily milk yield, milk protein or cow liveweight change, but significantly increased milk butterfat content compared with formic acid-treated silage.
It is concluded that the acid-salt type additive produced little difference in terms of either silage fermentation or animal performance compared with formic add treatment.  相似文献   

15.
In two separate feeding experiments using a total of twenty-four individually housed Ayrshire cows six silages made from perennial ryegrass were offered ad libitum with supplements of concentrates. In Experiment I herbage with a dry matter (DM) concentration of 225 g kg−1 received either formic acid ('Add-F') at the rate of 2·0 litres t−1 or undiluted cane molasses at rates of 10, 20 and 30 litres t−l; the mean daily silage intakes were 9·54, 908, 9·27 and 9·49 kg DM per cow and the daily milk yields, corrected to 40 g fat kg−1, were 23·2, 22·3, 22·8 and 22·9 kg per cow respectively but none of the differences between the four treatments was significant. In Experiment 2 herbage with a DM concentration of 269 g kg−1 received formic acid at a uniform rate of 2·6 litres t−1 either with or without an additional application of molasses at 20 litres t−1; the mean daily silage DM intakes were 8·70 and 9·28 kg per cow and the daily fat-corrected milk yields were 22·2 and 21·9 kg per cow respectively and were not significantly different. In both experiments the effects of the treatments on milk composition were small and not significant. It is concluded that there were no advantages in applying molasses to herbage treated with formic acid, and that the rate of application of molasses to untreated herbage which equated with the formic acid application was 20·30 litres t−l when assessed on the basis of silage composition, intake and milk production.  相似文献   

16.
Three grass silages were made from perennial ryegrass ensiled without additive application (U) or with the application of formic acid (F) or an enzyme mixture of hemicellulases and cellulases (E).
Analysis of silages showed that both untreated and enzyme-treated silages had higher lactic acid concentrations than formic acid-treated silage. Enzyme-treated silage had lower levels of ADF and NDF but higher concentrations of residual WSC than other silages.
The silages were fed to growing steers supplemented with either rapeseed meal (RSM) (60 g kg−1 silage DM) or fishmeal (FM) at a level isonitrogenous with RSM diets, so providing six diets (UR, UF, ER, EF, FR, FF). Organic matter intakes were similar, but ADF intakes were significantly ( P < 0·001) lower with enzyme-treated silage diets (UR, 1163; UF, 1160; ER, 1104; EF, 1035; FR, 1216; FF, 1213), as were intakes of NDF ( P < 0·01) (UR, 1946; UF, 1955; ER, 1877; 1772; FR, 2031; FF, 2041). Apparent whole tract digestibilities of organic matter were significantly ( P < 0·001) higher with enzyme-treated silages (UR, 0·644, UF, 0·644; ER, 0·668; EF, 0·678; FR, 0·633; FF, 0·633). Liveweight gains were generally higher with treated silage diets and RSM supported a greater response than FM (UR, 0·496; UF, 0·498; ER, 0·567; EF, 0·489; FR, 0·543; FF, 0·506) with both enzyme and formic acid-treated silages, although none of these differences were significant.  相似文献   

17.
RESEARCH NOTE     
Data from twenty-two experiments conducted at tour ADAS Research Centres during 1980–92 were used to compare untreated silages with silages treated with formic acid, with or without added formalin, commercial inoculants or molasses. The sillages were made from herbage whose dry-matter (DM) and water-soluble carbohydrate (WSC) contents were 277 (s.e. 0.46) g DM kg−1 and 36 (s.e. 8.1) g kg−1 respectively. Inoculant use significantly decreased silage pH and ammonia-N, significantly increased lactic acid and total acid content, and decreased butyric acid and total short-chain fatty acids. Formic acid use significantly increased silage lactic acid and total acid content, and decreased butyric acid content, whereas formic acid+formalin significantly decreased silage ammonia-N level. Molasses had little effect upon silage fermentation. Improvements in silage fermentation, however, produced little benefit in terms of either silage DM intake or liveweight gain when the silages were offered to growing lambs.
It is suggested from the results that inoculant- and formic acid-based additives can be used to improve the fermentation of big-bale silages.  相似文献   

18.
A randomized block experiment was conducted to compare unwilted and wilted grass silages and the effects of the feed additive monensin sodium on the silage intake and performance of finishing beef cattle. Two regrowths from a predominantly perennial ryegrass (cv. S24) sward were ensiled either without wilting or after field wilting for 3 d (dry matter (DM) concentrations 161 and 266 g kg−1 respectively). Both silages were treated with formic acid (2·6 and 30 litre t−1 respectively) and were well preserved. The silages were offered ad libitum to forty-eight Charolais-cross cattle (thirty-two steers and sixteen heifers, mean initial live weight 351 kg) for 145 d. All animals received 2·2 kg concentrates per head daily and half of those on each silage treatment received in addition 200 mg monensin sodium per head daily. Silage DM intake was 5.04, 504. 5·48, 5·63 ± 0.134 kg d−l; fasted liveweight gain was 0·69, 0·77. 0·64 and 0·73 ± 0.033 kg d−l and carcass gain was 0·47, 0·50, 0·40 and 0·45 ± 0·020 kg d−1 for the unwilted silage without and with monensin and the wilted silage without and with monensin respectively. It is concluded that wilting grass of low DM concentration for 3 d prior to ensiling reduced the performance of finishing beef cattle below that obtained from well-preserved unwilted silage in spite of a higher DM intake being achieved with the wilted silage. The inclusion of monensin sodium in a silage-based diet increased performance without significantly affecting feed intake.  相似文献   

19.
In three separate feeding experiments using a total of twenty-six individually-housed Ayrshire cows, three wilted silages made from Blanca white clover were offered ad libitum with either different supplements or different proportions of grass silage. The clover silages contained 680 g white clover kg−1 on a DM basis, and had a mean DM concentration of 263 g kg−1 with 231 g CP kg−1 DM and 91 g ammonia-N kg−1 N. The pH values averaged 4·16 and the DOMD concentrations 611 g kg−1. In experiment 1 the daily intake of clover silage given alone was 15.2 kg DM per cow, i.e. 30·1 g kg−1 live weight, and decreased by 0·76 kg DM kg−1 barley DM and by 0·66 kg DM kg−1barley plus soybean meal DM when these feeds were offered as supplements. Milk yield and fat concentration were higher on the supplement treatments than on the clover silage-only treatment. In experiments 2 and 3 the intakes of silage and total DM increased as the weight of clover in the diet increased from 0 to 700 g kg−1 with parallel increases in milk yield. The effects on milk composition were small and generally non-significant. Although white clover silages with excellent fermentations were made, it is concluded that the main role of white clover in a silage system will be in mixed swards with grass to reduce the input of fertilizer N and to increase the voluntary intake of silage.  相似文献   

20.
Abstract The ensiling characteristics of safflower ( Carthamus tinctorius ) wilted to 290 and 411 g dry matter (DM) kg−1 fresh material were studied in 1·5 l glass jars. The experiment included a control and the application of Lactobacillus plantarum at 3·3 × 105 colony-forming units (cfu) per g of crop. After 60 days of ensiling, the pH of safflower silages was 4·6 and 4·0 in the control and inoculated silages respectively, with corresponding values for lactic acid, the major fermentation product, of 20 and 45 g kg−1 DM. The silages from the anaerobic jars were stable upon aerobic exposure. It is concluded the safflower silage has potential as an alternative fodder in semiarid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号