首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective To assess the hormonal, metabolic and physiological effects of laparascopic surgery performed under a sedative analgesic combination of detomidine and buprenorphine in standing horses. Study design Prospective study. Animals Eight healthy adult Dutch Warmblood horses and five healthy adult ponies undergoing laparoscopy were studied. Five healthy adult horses not undergoing laparoscopy were used as a control group. Methods The sedative effect of an initial detomidine and buprenorphine injection was maintained using a continuous infusion of detomidine alone. The heart and respiratory rate, arterial blood pH and arterial oxygen and carbon dioxide tensions were monitored, while blood samples were taken for the measurement of glucose, lactate, cortisol, insulin and nonesterified fatty acids (NEFA). The same variables were monitored in a control group of horses which were sedated, but which did not undergo surgery. At the end of the sedation period the effects of detomidine were antagonized using atipamezole. Results The protocol provided suitable conditions for standing laparoscopy in horses. Laparoscopy induced obvious metabolic and endocrine responses which, with the exception of NEFA values, were not significantly different from changes found in the control group. While atipamezole did not produce detectable adverse effects, it is possible that anatagonism may not be essential. Conclusions The technique described reliably produces adequate sedation and analgesia for laparoscopic procedures. The level of sedation/analgesia was controlled by decreasing or increasing the infusion rate. Antagonism of the effects of detomidine may not be necessary in all cases.  相似文献   

2.
Objective To assess the effectiveness of a detomidine infusion technique to provide standing chemical restraint in the horse. Design Retrospective study. Animals Fifty‐one adult horses aged 9.5 ± 6.9 years (range 1–23 years) and weighing 575 ± 290.3 kg. Methods Records of horses presented to our clinic over a 3‐year period in which a detomidine infusion was used to provide standing chemical restraint were reviewed. Information relating to the types of procedure performed, duration of infusion, drug dosages and adjunct drugs administered was retrieved. Results Detomidine was administered as an initial bolus loading dose (mean ± SD) of 7.5 ± 1.87 µg kg?1. The initial infusion rate was 0.6 µg kg?1 minute?1, and this was halved every 15 minutes. The duration of the infusion ranged from 20 to 135 minutes. Twenty horses received additional detomidine or butorphanol during the procedure. All horses undergoing surgery received local anesthesia or epidural analgesia in addition to the detomidine infusion. A wide variety of procedures were performed in these horses. Conclusions Detomidine administered by infusion provides prolonged periods of chemical restraint in standing horses. Supplemental sedatives or analgesics may be needed in horses undergoing surgery. Clinical relevance An effective method that provides prolonged periods of chemical restraint in standing horses is described. The infusion alone did not provide sufficient analgesia for surgery and a significant proportion of animals required supplemental sedatives and analgesics.  相似文献   

3.
4.
Objective To quantitate the dose‐ and time‐related magnitude of the anesthetic sparing effect of, and selected physiological responses to detomidine during isoflurane anesthesia in horses. Study design Randomized cross‐over study. Animals Three, healthy, young adult horses weighing 485 ± 14 kg. Methods Horses were anesthetized on two occasions to determine the minimum alveolar concentration (MAC) of isoflurane in O2 and then to measure the anesthetic sparing effect (time‐related MAC reduction) following IV detomidine (0.03 and 0.06 mg kg?1). Selected common measures of cardiopulmonary function, blood glucose and urinary output were also recorded. Results Isoflurane MAC was 1.44 ± 0.07% (mean ± SEM). This was reduced by 42.8 ± 5.4% and 44.8 ± 3.0% at 83 ± 23 and 125 ± 36 minutes, respectively, following 0.03 and 0.06 mg kg?1, detomidine. The MAC reduction was detomidine dose‐ and time‐dependent. There was a tendency for mild cardiovascular and respiratory depression, especially following the higher detomidine dose. Detomidine increased both blood glucose and urine flow; the magnitude of these changes was time‐ and dose‐dependent Conclusions Detomidine reduces anesthetic requirement for isoflurane and increases blood glucose concentration and urine flow in horses. These changes were dose‐ and time‐related. Clinical relevance The results imply potent anesthetic sparing actions by detomidine. The detomidine‐related increased urine flow should be considered in designing anesthetic protocols for individual horses.  相似文献   

5.
The purpose of this study was to evaluate the dark adaptation time in canine electroretinography (ERG) using a contact lens electrode with a built-in LED. Twelve eyes of six normal laboratory beagle dogs were used and exposed to steady room light at 500 lux for 30 min for light adaption. ERG was recorded at different time points during dark adaptation in sedated and light-adapted beagles. The stimulus intensity was 0.0096 cd/m2/sec. The b-wave amplitude increased significantly until 25 min of dark adaptation, whereas no significant changes in amplitudes were observed after 30 min. Dark adaptation for more than 25 min would be necessary for accurate ERG in canine ERG using a contact lens electrode with a built-in LED.  相似文献   

6.
Reasons for performing study: Detomidine hydrochloride is used to provide sedation, muscle relaxation and analgesia in horses, but a lack of information pertaining to plasma concentration has limited the ability to correlate drug concentration with effect. Objectives: To build on previous information and assess detomidine for i.v. and i.m. use in horses by simultaneously assessing plasma drug concentrations, physiological parameters and behavioural characteristics. Hypothesis: Systemic effects would be seen following i.m. and i.v. detomidine administration and these effects would be positively correlated with plasma drug concentrations. Methods: Behavioural (e.g. head position) and physiological (e.g. heart rate) responses were recorded at fixed time points from 4 min to 24 h after i.m. or i.v. detomidine (30 μg/kg bwt) administration to 8 horses. Route of administration was assigned using a balanced crossover design. Blood was sampled at predetermined time points from 0.5 min to 48 h post administration for subsequent detomidine concentration measurements using liquid chromatography‐mass spectrometry. Data were summarised as mean ± s.d. for subsequent analysis of variance for repeated measures. Results: Plasma detomidine concentration peaked earlier (1.5 min vs. 1.5 h) and was significantly higher (105.4 ± 71.6 ng/ml vs. 6.9 ± 1.4 ng/ml) after i.v. vs. i.m. administration. Physiological and behavioural changes were of a greater magnitude and observed at earlier time points for i.v. vs. i.m. groups. For example, head position decreased from an average of 116 cm in both groups to a low value 35 ± 23 cm from the ground 10 min following i.v. detomidine and to 64 ± 24 cm 60 min after i.m. detomidine. Changes in heart rate followed a similar pattern; low value of 17 beats/min 10 min after i.v. administration and 29 beats/min 30 min after i.m. administration. Conclusions: Plasma drug concentration and measured effects were correlated positively and varied with route of administration following a single dose of detomidine. Potential relevance: Results support a significant influence of route of administration on desirable and undesirable drug effects that influence case management.  相似文献   

7.
8.
9.

Objective

Influence of detomidine or romifidine constant rate infusion (CRI) on plasma lactate concentration and isoflurane requirements in horses undergoing elective surgery.

Study design

Prospective, randomised, blinded, clinical trial.

Animals

A total of 24 adult healthy horses.

Methods

All horses were administered intramuscular acepromazine (0.02 mg kg?1) and either intravenous detomidine (0.02 mg kg?1) (group D), romifidine (0.08 mg kg?1) (group R) or xylazine (1.0 mg kg?1) (group C) prior to anaesthesia. Group D was administered detomidine CRI (10 μg kg?1 hour?1) in lactated Ringer's solution (LRS), group R romifidine CRI (40 μg kg?1 hour?1) in LRS and group C an equivalent amount of LRS intraoperatively. Anaesthesia was induced with ketamine and diazepam and maintained with isoflurane in oxygen. Plasma lactate samples were taken prior to anaesthesia (baseline), intraoperatively (three samples at 30 minute intervals) and in recovery (at 10 minutes, once standing and 3 hours after end of anaesthesia). End-tidal isoflurane percentage (Fe′Iso) was analysed by allocating values into three periods: Prep (15 minutes after the start anaesthesia–start surgery); Surgery 1 (start surgery–30 minutes later); and Surgery 2 (end Surgery 1–end anaesthesia). A linear mixed model was used to analyse the data. A value of p < 0.05 was considered significant.

Results

There was a difference in plasma lactate between ‘baseline’ and ‘once standing’ in all three groups (p < 0.01); values did not differ significantly between groups. In groups D and R, Fe′Iso decreased significantly by 18% (to 1.03%) and by 15% (to 1.07%), respectively, during Surgery 2 compared with group C (1.26%); p < 0.006, p < 0.02, respectively.

Conclusions and clinical relevance

Intraoperative detomidine or romifidine CRI in horses did not result in a clinically significant increase in plasma lactate compared with control group. Detomidine and romifidine infusions decreased isoflurane requirements during surgery.  相似文献   

10.
ObjectiveTo assess anesthetic induction, recovery quality and cardiopulmonary variables after intramuscular (IM) injection of three drug combinations for immobilization of horses.Study designRandomized, blinded, three-way crossover prospective design.AnimalsA total of eight healthy adult horses weighing 470–575 kg.MethodsHorses were administered three treatments IM separated by ≥1 week. Combinations were tiletamine–zolazepam (1.2 mg kg−1), ketamine (1 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TKD); ketamine (3 mg kg−1) and detomidine (0.04 mg kg−1) (treatment KD); and tiletamine–zolazepam (2.4 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TD). Parametric data were analyzed using mixed model linear regression. Nonparametric data were compared using Skillings–Mack test. A p value <0.05 was considered statistically significant.ResultsAll horses in treatment TD became recumbent. In treatments KD and TKD, one horse remained standing. PaO2 15 minutes after recumbency was significantly lower in treatments TD (p < 0.0005) and TKD (p = 0.001) than in treatment KD. Times to first movement (25 ± 15 minutes) and sternal recumbency (55 ± 11 minutes) in treatment KD were faster than in treatments TD (57 ± 17 and 76 ± 19 minutes; p < 0.0005, p = 0.001) and TKD (45 ± 18 and 73 ± 31 minutes; p = 0.005, p = 0.021). There were no differences in induction quality, muscle relaxation score, number of attempts to stand or recovery quality.Conclusions and clinical relevanceIn domestic horses, IM injections of tiletamine–zolazepam–detomidine resulted in more reliable recumbency with a longer duration when compared with ketamine–detomidine and tiletamine–zolazepam–ketamine–detomidine. Recoveries were comparable among protocols.  相似文献   

11.

Objective

To evaluate intravenous (IV) detomidine with methadone in horses to identify a combination which provides sedation and antinociception without adverse effects.

Study design

Randomized, placebo-controlled, blinded, crossover.

Animals

A group of eight adult healthy horses aged (mean ± standard deviation) 7 ± 2 years and 372 ± 27 kg.

Methods

A total of six treatments were administered IV: saline (SAL); detomidine (5 μg kg?1; DET); methadone (0.2 mg kg?1; MET) alone or combined with detomidine [2.5 (MLD), 5 (MMD) or 10 (MHD) μg kg?1]. Thermal, mechanical and electrical nociceptive thresholds were measured, and sedation, head height above ground (HHAG), cardiopulmonary variables and intestinal motility were evaluated at 5, 15, 30, 45, 60, 75, 90, 120 and 180 minutes. Normal data were analyzed by mixed-model analysis of variance and non-normal by Kruskal–Wallis (p < 0.05).

Results

Nociceptive thresholds in horses administered methadone with the higher doses of detomidine (MMD, MHD) were increased above baseline to a greater degree and for longer duration (MMD: 15–30 minutes, MHD: 30–60 minutes) than in horses administered low dose with methadone or detomidine alone (MLD, DET: 5–15 minutes). No increases in nociceptive thresholds were recorded in SAL or MET. Compared with baseline, HHAG was lower for 30 minutes in MMD and DET, and for 45 minutes in MHD. No significant sedation was observed in SAL, MET or MLD. Intestinal motility was reduced for 75 minutes in MHD and for 30 minutes in all other treatments.

Conclusions

Methadone (0.2 mg kg?1) potentiated the antinociception produced by detomidine (5 μg kg?1), with minimal sedative effects.

Clinical relevance

Detomidine (5 μg kg?1) with methadone (0.2 mg kg?1) produced antinociception without the adverse effects of higher doses of detomidine.  相似文献   

12.
Objective To compare the effect of orally delivered detomidine on head posture when administered alone or in combination with two different food items, and to determine the serum concentrations of detomidine after oral delivery. Study Design Prospective randomized experimental study. Animals Fifteen adult grade mares weighing 328–537 kg. Methods The horses were randomly assigned to one of the three treatment groups (five horses each). The groups were given detomidine (0.06 mg kg?1): alone; mixed with 3 mL of an apple sauce and gum mixture; or mixed with 3 mL molasses. Head droop, measured before treatment and at 15, 30, 45, 60, 75, 90, and 105 minutes after treatment, was used to evaluate sedation. Yohimbine (0.1 mg kg?1 IV) was administered after the 90‐minute evaluation. Blood samples were collected from the detomidine‐alone group before treatment and at 15, 30, 45, 60, 75, and 90 minutes after treatment. Sera were analyzed for detomidine equivalent concentrations by an ELISA. Head droop percentages were compared using a repeated measures analysis of variance. Results Significant mean head droop developed in each treatment group by 30 minutes and persisted until reversal with yohimbine. After yohimbine administration, head positions returned to 87–91% of pre‐treatment levels. There were no significant differences among the oral treatment groups at any time. Mean serum detomidine equivalents increased slowly until 45‐minute post‐administration, but never exceeded 30 ng mL?1. Conclusions Orally administered detomidine results in measurable serum drug concentrations using any of the delivery mediums investigated, and can be expected to produce profound head droop in horses approximately 45 minutes after administration.  相似文献   

13.
Diagnostic laparotomy and laparoscopy are surgical techniques commonly used for the investigation of chronic abdominal disease and weight loss. They can both be usefully carried out in the standing sedated horse, allowing a thorough examination of the dorsal abdominal cavity and biopsies to be harvested. Small intestinal disease is an important cause of weight loss and recurrent colic. Inflammatory or neoplastic bowel disease may not always be apparent grossly and histopathological assessment of full thickness biopsies may be required to provide a definitive diagnosis. Details of cases of 15 horses that underwent small intestinal biopsy or enterectomy while sedated and standing are presented. Three incisional infections occurred causing delayed wound healing. Three horses were subjected to euthanasia before hospital discharge: two had persistent gastric reflux and one had colitis. A further six were subjected to euthanasia in the first 4 months due to their underlying inflammatory bowel condition. One horse was subjected to euthanasia for severe laminitis that was presumed to be caused by treatment with a corticosteroid 4 years later, and one died of acute colic 2.3 years after successful resection and anastomosis. Five horses were alive at the time of review, median 2.7, range 1.2–4.3 years. Overall therefore, 3 (20%) horses died during hospitalisation and 5 (33%) were still alive at the end of the study. Results from this series suggest that minimising the number of intestinal biopsies may reduce morbidity, but the underlying pathological process appears to be the most important prognostic factor for survival. Resection and anastomosis in the standing sedated horse proved feasible.  相似文献   

14.
The aim of this investigation was to determine and evaluate the sedative, analgesic, clinicophysiological and haematological effects of intravenous (i.v.) injection of detomidine, detomidine‐butorphanol, romifidine and romifidine‐butorphanol. Six standing donkeys were used. Each donkey received 4 i.v. treatments and the order of treatment was randomised with a one‐week interval between each treatment. We found that i.v. injection of a combination of detomidine‐butorphanol or romifidine‐butorphanol produced potent neuroleptanalgesic effects thus providing better, safe and effective sedation with complete analgesia in standing donkeys compared with injection of detomidine or romifidine alone. The changes and reduction in pulse rate were within acceptable limits. The changes in clinicophysiological, haematological and biochemical values were mild and transient in these clinically healthy donkeys.  相似文献   

15.
OBSERVATIONS: A pony undergoing elective castration accidentally received an overdose of IV detomidine (200 microg kg(-1)) before anaesthesia was induced with ketamine and midazolam. A further 100 microg kg(-1) IV dose of detomidine was administered during anaesthesia. The mistake was recognized only when the animal failed to recover from anaesthesia in the expected time. The overdose (300 microg kg(-1) in total) was treated successfully with atipamezole, initially given IV and subsequently IM and titrated to effect to a total dose of 1100 microg kg(-1). The pony regained the standing position. A further injection of atipamezole (76 microg kg(-1) IM) was given 5 hours later to counteract slight signs of re-sedation. CONCLUSIONS: Atipamezole proved an effective antagonist for detomidine in a pony at an initial dose 3.65 x and a final total dose 3.9 x greater than the alpha2 agonist.  相似文献   

16.
17.
Reasons for performing study: Standing fracture repair in the horse is a recently described surgical procedure and currently there are few follow‐up data. This case series contains 2 novel aspects in the standing horse: repair of incomplete sagittal fractures of the proximal phalanx and medial condylar repair from a lateral aspect. Objectives: To describe outcome in a case series of horses that had lower limb fractures repaired under standing sedation at Rossdales Equine Hospital. Method: Case records for all horses that had a fracture surgically repaired, by one surgeon at Rossdales Equine Hospital, under standing sedation and local anaesthesia up until June 2011, were retrieved. Hospital records, owner/trainer telephone questionnaire and the Racing Post website were used to evaluate follow‐up. Results: Thirty‐four horses satisfied the inclusion criteria. Fracture sites included the proximal phalanx (incomplete sagittal fracture, n = 14); the third metacarpal bone (lateral condyle, n = 12, and medial condyle, n = 7); and the third metatarsal bone (lateral condyle, n = 1). One horse required euthanasia due to caecal rupture 10 days post operatively. Twenty horses (66.7% of those with available follow‐up) have returned to racing. Where available, mean time from operation to return to racing was 226 days (range 143–433 days). Conclusions: Standing fracture repair produced similar results to fracture repair under general anaesthesia in terms of both the number of horses that returned to racing and the time between surgery and race. Potential relevance: Repair of lower limb fracture in the horse under standing sedation is a procedure that has the potential for tangible benefits, including avoidance of the inherent risks of general anaesthesia. The preliminary findings in this series of horses are encouraging and informative when discussing options available prior to fracture repair.  相似文献   

18.
19.
Reasons for performing study: There is minimal published information on equine oromaxillary fistulae that are unrelated to cheek teeth (CT) repulsion or on the conservative treatment of these atypical fistulae. Objectives: To report equine oromaxillary fistulae unrelated to CT extraction and describe their management in standing horses. Methods: Case details of oromaxillary fistulae of atypical aetiology occurring at 2 referral centres between 2002–2006, including their treatment and response to treatment were examined. Results: Nine cases of oromaxillary fistula were recorded, mainly in aged horses (median 22 years). Fistulae were associated with CT diastemata in 7 cases, fractured CT in one and a central defect in a worn CT in another. After removing food and exudate from the sinuses, 6 cases were treated successfully by filling the diastema or dental defect with polymethylmethacrylate (PMMA). Following dental extraction, the other 3 cases were treated successfully by use of PMMA alveolar packing. Conclusion: Older horses can spontaneously develop oromaxillary fistulae, usually secondary to CT diastemata. In the absence of apical infection, this disorder can usually be treated successfully in standing horses by treating the sinusitis and sealing the oral aspect of the diastema with PMMA. Potential relevance: Older horses with sinusitis should be assessed for the presence of CT diastemata and oromaxillary fistulae. If detected, these disorders can be treated successfully in the standing horse.  相似文献   

20.

Objective

To compare the topographic modifications and tactile sensitivity of the pharynx and larynx after administration of four sedative and analgesic protocols in standing horses.

Study design

Experimental, observer-blinded, crossover study.

Animals

Eight healthy mares.

Methods

Five protocols were evaluated: 1) xylazine and butorphanol administered intravenously (IV); 2) detomidine and butorphanol administered IV; 3) xylazine administered IV and lidocaine topically; 4) detomidine administered IV and lidocaine topically and 5) no analgesia or sedation (control). Quality of sedation, head height and sudden head movements were recorded. The degree of arytenoid cartilage displacement, the degree of pharyngeal collapse and the occurrence of soft palate displacement were scored using standardized scales. Tactile sensitivity was tested on 10 different pharyngeal and laryngeal regions using an atraumatic transendoscopic probe. Statistical analysis was performed using linear or generalized mixed-effects models.

Results

Head height was significantly decreased in protocols with xylazine (p = 0.002). Head movements were significantly increased in protocols with butorphanol (p = 0.0001). No changes in abduction grade or degree of soft palate displacement were observed between all sedative protocols and the control group. Pharyngeal collapse was significantly more frequent in protocols with lidocaine (p < 0.001) or xylazine (p = 0.017). For the pharyngeal regions, no tactile sensitivity difference was observed between the control and treatment protocols. All treatment protocols led to greater desensitization of all the laryngeal regions compared with the control protocol.

Conclusion and clinical relevance

All the protocols provided adequate sedation and analgesia for the manipulation of the larynx and pharynx but significant differences were noted. Xylazine produces a more profound sedation compared with detomidine, but can induce dorsal pharyngeal collapse. Lidocaine caused pharyngeal collapse and its use should be limited to the target area. Butorphanol can be added to improve analgesia in the other regions but frequent head jerking can be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号