首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
蒲子天  张林  张弛  王红  王鑫鑫 《土壤》2022,54(5):882-889
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能与宿主植物形成共生体,广泛存在于陆地生态系统中。大量研究表明,不同水分条件下,植物通过接种AMF比未接种AMF的植物具有更强的水分吸收能力和更高的水分利用效率。在干旱、盐胁迫下,接种AMF能有效提高宿主植物的耐旱性与耐盐性。本文综述了不同水分条件下,与植物共生的AMF通过扩大植物根系吸收面积、改善根系结构,增强植物根系吸收水分能力的相关研究进展。土壤中根外菌丝网络的形成,不但为植物增加了水分吸收途径(菌根途径),还通过改善植物体内的矿质营养来调节植物对水分的吸收,进而影响植物的水分吸收状况;不同水分条件下,根系被AMF侵染后植物的光合作用、蒸腾作用以及气孔导度都得到增强,植物蒸腾作用的增强能够直接有效的提升植物的蒸腾拉力,因此植物对水分的吸收能力得以提升。同时,被AMF侵染的植物的水分利用率、蒸腾速率以及净光合速率得以提升从而提高了植物的水分利用能力。进一步总结了缺水胁迫(干旱胁迫、盐胁迫)严重影响植物体内的水分状况,通过接种AMF可以有效调节植物在缺水胁迫下植物体内渗透调节物质的含量、抗氧化酶的活性,平衡植物体内离子平衡,提升植物光合、蒸腾作用水平,从而提高植物的耐胁迫能力。本文通过综述不同水分条件下,接种AMF对植物的影响及机制,期望为未来新型菌剂的研发与菌根互作对植物水分状况的改善提供支撑。  相似文献   

2.
干旱胁迫对花生生育中后期根系生长特征的影响   总被引:5,自引:0,他引:5  
花生是较耐旱的经济和油料作物, 长期少雨或季节性干旱是限制花生产量提高的重要环境因子, 也是花生收获前黄曲霉素感染的重要因素。根系是植物吸水的主要器官, 不同土壤水分状况下植物的根系构型可能会表现出显著差异, 进而影响植物根系吸收养分和水分的能力。研究不同土壤水分状况下花生根系形态的发育特征与抗旱性的关系对进一步理解花生的水分吸收、运输、利用和散失机制以及培育抗旱性花生具有非常重要的作用。为明确不同抗旱性花生品种的根系形态发育特征, 探讨其根系形态发育特征对不同土壤水分状况的响应机制, 在防雨棚旱池内进行土柱栽培试验, 研究抗旱型花生品种"花育22号"和干旱敏感型花生品种"花育23号"生育中后期根系生长特征及其对干旱胁迫的响应。设置正常供水和中度干旱胁迫(分别控制土壤含水量为田间持水量的80%~85%和45%~50%)2个水分处理, 分别在花针期、结荚期和饱果期进行取样,根长、根表面积和体积扫描后通过WinRhizo Pro Vision 5.0a程序进行分析; 收获时测定产量和抗旱系数(干旱胁迫处理与正常供水处理下产量之比)。结果表明, "花育22号"具有较高的产量和抗旱系数, "花育23号"对干旱胁迫的适应性小于"花育22号"。抗旱型品种"花育22号"具有较大的根系生物量、总根长和根系表面积, 且深层土壤内根系表面积和体积大于"花育23号"。与正常供水处理相比, 干旱胁迫显著降低2个品种花针期的根系总根长、根系总表面积和总体积, 对结荚期和饱果期根系性状无显著影响; 干旱胁迫增加2个品种生育中后期40 cm以下土层内的根长密度分布比例、根系表面积和体积, 但"花育23号"各根系性状增加幅度小于"花育22号"。干旱胁迫处理下20~40 cm和40 cm以下土层内根系表面积和体积分别与总根长、总表面积和总体积呈显著或极显著正相关, 而正常供水处理下0~20 cm土层内根系表面积和体积与整体根系性状表现极显著正相关。总体而言, 具有较大根系和深层土壤内较多的根系分布是抗旱型花生的主要根系分布特征; 土壤水分亏缺条件下, 花生主要通过增加深层土壤内根长、根系表面积和体积等形态特性调节植株对水分的利用。  相似文献   

3.
分层供水和表层施锌对玉米植株生长和锌吸收的影响   总被引:1,自引:0,他引:1  
进行分层水分隔离盆栽试验,模拟田间不同层次土壤中水分含量分布不均条件,研究表层土壤施锌情况下,玉米植株生长和锌吸收以及根系在表层和底层土壤中的分配。结果表明,施锌明显促进了玉米地上部生长。在土壤表层水分充足时,施锌对植株增长效果较明显,有利于玉米利用土壤水分。缺锌条件下,改善土壤水分并未显著提高玉米生物量。表层土壤干旱时,上下层土壤中根系干物重之比减小,底层土壤中根系分布相对增加,当表层土壤水分增加时,根系在表层土壤中干物重显著增加,分布相对增多。施锌并没有影响根系在不同层次土壤中的分配。表层土壤水分对苗期玉米植株锌吸收总量有显著影响,干旱条件下,玉米植株锌吸收总量下降;底层土壤水分供应状况对玉米锌浓度影响不大,但植株中锌向地上部运转增加。尽管施锌没有提高生长早期玉米根系生长和对底层土壤水分的利用,但本研究表明缺锌旱地土壤上如通过灌溉等措施增加了耕层土壤水分,应该注意施用锌肥,否则严重影响玉米生物量和玉米对土壤水分的利用效率。  相似文献   

4.
不同水分状况下施锌对玉米生长和锌吸收的影响   总被引:3,自引:3,他引:3  
选择潮土(砂壤)和土(粘壤)两种质地不同的土壤,进行盆栽试验,研究不同土壤水分条件下施锌对玉米生长和锌吸收的影响。结果表明,施锌显著增加了玉米植株根、茎、叶以及整株干物质重;缺锌条件下玉米植株根冠比、根叶比和根茎比趋向增大。施锌显著提高了玉米植株各器官中锌的浓度和吸收量,并明显促进锌向地上部运移。干旱胁迫抑制了玉米植株生长,根冠比、根茎比、根叶比增大;随着土壤水分供应增加,植株生长加快,各器官生物量以茎和叶增加大于根。水分胁迫下,在潮土上玉米叶片中锌浓度上升;在土上叶片中锌浓度下降。但增施锌后,根和茎锌浓度增加幅度较大,叶片增加幅度较小;施锌和水分胁迫对根和茎锌浓度的交互作用极显著。水分胁迫下,玉米植株对锌的吸收总量减少。水分胁迫和锌肥施用对玉米叶片、茎锌吸收量的交互作用十分显著,但对根锌吸收量的交互影响不显著。  相似文献   

5.
植物抗旱的分子机制研究   总被引:21,自引:0,他引:21  
干旱是影响植物生长发育最主要的逆境因子。植物在水分胁迫下会引起一系列分子反应和信号传递,干旱胁迫诱导基因表达一些重要的功能蛋白和调节蛋白以保护细胞不受水分胁迫的伤害,目前已研究证实相关蛋白有跨膜运输蛋白(水通道蛋白、ATP酶等)、水分胁迫调节剂(K^ 、Na^ 、蔗糖、脯氨酸、甜菜碱等)、运输或合成相关的酶、Lea蛋白、抗氧化作用相关的酶(SOD、CAT等)、水分胁迫蛋白、调控蛋白(蛋白激酶、转录因子)等。干旱胁迫诱导基因的活化至少涉及4条途径:植物细胞可能通过膨压变化或膜受体的构象变化感知水分胁迫,将胞外信号转为胞内信号,从而触发相应的信号途径,并可导致第二信使(Ca^2 、IP3等)生成,在这原始信号被逐级传递放大的过程中,其中2条传递途径是依赖ABA的,另外2条传递途径是不依赖ABA的。通过基因表达调控已分析鉴定出一些水分胁迫有关的顺式作用元件(ABRE、DRE、Myc等)和转录因子(bzip、DREBP、MYC/MYB等)。  相似文献   

6.
为探讨气候变化下灌草群落中主要植物水分来源差异及动态变化。以黄土高原典型自然恢复植物(油蒿、苜蓿与藜)为研究对象,通过减少自然降水的15%(中度干旱)与30%(极端干旱)来控制干旱程度,研究植物水分利用来源与生长对干旱胁迫的响应特征。将植被群落潜在水源划分为浅层(0—20 cm)、中层(20—60 cm)与深层(60—120 cm)土壤水,采用稳定水同位素技术与MixSIAR模型定量分析不同干旱胁迫程度(减雨30%、减雨15%与对照)下植被根系水分吸收特征。结果表明:(1)土壤水与植物水中稳定氢氧同位素值(δD和δ18O)均位于当地大气降水线的右下方,说明土壤水同位素受蒸发影响发生富集;(2)3种典型植物在遭遇干旱胁迫时,其水分利用来源均可灵活转换于不同土层之间,呈浅层土壤水分利用比例减少,中层与深层土壤水分利用比例增加的规律,且随干旱胁迫程度增大愈加明显;(3)不同植被响应干旱胁迫的水分利用策略不同,平地,减雨30%、减雨15%及CK处理下油蒿均主要利用浅层土壤水(贡献率分别为48.2%,52.7%,57.6%),而藜分别主要利用来自中层(43.5%)、浅层(4...  相似文献   

7.
为明确水分胁迫对芝麻苗期生长发育和生理特性的影响,以郑太芝1号芝麻品种为供试材料,采用盆栽方式,设置正常供水(土壤含水量80%)、重度干旱胁迫(土壤含水量40%)、轻度干旱胁迫(土壤含水量60%)、渍害胁迫(土壤含水量100%)4个水分处理梯度,研究了水分胁迫对芝麻苗期生长和生理生化特性(光合特性、CAT、Pro、SOD)的影响。结果表明,随着土壤含水量的增加,株高增长速度表现为正常供水轻度干旱胁迫渍害胁迫重度干旱胁迫,水分胁迫时间越长,差异越大。干旱胁迫(包括轻度和重度)根冠比增加,渍害胁迫根冠比下降。干旱胁迫、渍害胁迫均造成芝麻叶片净光合速率(Pn)、胞间CO_2浓度(Ci)和气孔导度(Gs)下降,随着水分处理时间延长,差异增大,对蒸腾速率(Tr)的影响较小。干旱胁迫促进丙二醛(MDA)积累,渍害胁迫促进脯氨酸(Pro)积累。水分胁迫导致保护酶活性下降,其中干旱胁迫下,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性在下降到最低值后,随水分胁迫时间的延长,与正常供水下保护酶活性差异逐渐减小;而渍害胁迫下,随着水分胁迫时间的延长,保护酶活性则呈逐渐下降的趋势。本研究结果为芝麻高产和水分高效利用提供了一定的理论依据。  相似文献   

8.
研究苗期干旱胁迫下施氮对东北春玉米氮素吸收利用和土壤生物化学性质的影响,为区域玉米养分管理与逆境调控提供依据。研究设置水、氮二因素盆栽试验,土壤水分包括3个水平:田间持水量的30%(W0),50%(W1)和70%(W2);施氮量包括2个水平:不施氮(N0)和施氮0.24 g/kg(N1),测定不同水氮条件下玉米苗期的植株干重和氮素吸收、根际和非根际土壤的化学性质、微生物量碳、氮(MBC、MBN)及土壤酶活性。结果表明:干旱胁迫显著降低玉米苗期植株干重和氮素吸收量,其中W0条件降幅最大(分别为51.1%,43.8%)。施氮促进各水分条件下植株生长,且与水分存在显著交互作用,W2条件下施氮后植株干重和氮素吸收量的增幅最高(分别为53.7%,83.2%)。干旱胁迫提高植株的水分利用效率,但降低氮肥利用效率。施氮显著提高W2条件植株的水分利用效率,但干旱条件下则无显著影响。水、氮及其交互作用对土壤性质的影响较为复杂。总体上,苗期干旱胁迫暂时提高了根际和非根际土壤pH,显著增加根际土壤的铵态氮和硝态氮含量。MBC、MBN对干旱胁迫的响应在根际与非根际土壤之间存在相反趋势,根际土壤随干旱程度增加而提高,非根际土壤则随之下降。土壤酶活性方面,干旱胁迫显著影响根际土壤的硝酸还原酶和亚硝酸还原酶活性。施氮增加所有水分条件下根际和非根际土壤的pH和铵态氮、硝态氮含量,其中根际土壤的增幅高于非根际土壤。施氮显著增加各水分条件下根际和非根际土壤的MBC、MBN、脲酶和硝酸还原酶活性,但显著降低根际和非根际土壤亚硝酸还原酶活性。水氮交互作用显著影响根际土壤的亚硝酸还原酶、非根际土壤的脲酶、亚硝酸还原酶和FDA水解酶活性。根际、非根际土壤各生物化学性质之间均存在显著的相关关系,而且根际土壤除土壤亚硝酸还原酶外的各指标均与植株氮素吸收和氮肥利用效率呈正相关。苗期干旱显著抑制玉米植株生长和氮素吸收,并对土壤生物、化学性质造成显著影响。施氮对植株和土壤性质的影响在不同水分条件下存在差异,而且植株表现与土壤生物、化学性质之间存在显著相关关系。  相似文献   

9.
为探讨水分胁迫前的干旱锻炼对小麦光合生理特性的影响,采用水培法,对小麦幼苗进行水分预胁迫、解除胁迫和再胁迫处理,研究了水分预处理对干旱条件下小麦生物量、叶绿素及光合作用的影响。结果表明,经过水分胁迫预处理后的小麦在水分胁迫下根系生长明显加快,有利于吸收利用有限的水分,水分利用效率明显高于未经过预处理的小麦,净光合速率、气孔导度、胞间二氧化碳浓度、蒸腾速率和叶绿素含量的下降幅度均低于未经过预处理的小麦,预处理缓解了干旱对小麦光合生理特性的影响。  相似文献   

10.
刘盛林  贺学礼 《核农学报》2009,23(4):692-696
利用盆栽试验研究了水分胁迫下接种摩西球囊霉(Glomus mosseae)对甘草(Glycyrrhiza inflata)生长和抗旱性的影响。结果表明,土壤含水量对AM真菌接种效果有显著影响;不同水分条件下,接种AM真菌显著提高了甘草菌根侵染率和全株黄酮以及氮、磷含量。水分胁迫30 d,接种株POD活性和MDA含量显著降低,而土壤含水量为60%和80%时,接种株可溶性蛋白含量显著降低;水分胁迫60d,接种株SOD活性和可溶性蛋白含量显著降低,土壤含水量为60%和80%时,接种株POD活性和可溶性糖含量显著升高,接种株叶绿素含量只在土壤含水量为60 %时显著升高。以胁迫60d土壤含水量为60 %时接种效果最佳。AM真菌可能通过提高宿主植物根系对土壤水分和矿质元素吸收以及改善植物体内生理活动、调节保护酶活性以提高其抗旱性,促进宿主植物生长。  相似文献   

11.
不同土壤水分供应与施锌对玉米水分代谢的影响   总被引:10,自引:1,他引:10  
采用盆栽试验研究不同土壤水分状况下及施锌对玉米植株水分状况、水分生理特征的影响。结果表明,干旱胁迫下,玉米叶片含水量和水势降低,植株体内自由水分的含量减少,而束缚水含量略有增加,离体叶片失水速率小;叶片气孔阻力增加,导度下降,蒸腾作用和光合速率受到抑制。施锌后玉米叶片的水势和鲜重含水量没有明显变化,但玉米叶片气孔阻力降低,气孔导度增加,叶片蒸腾速率和光合作用速率加大。干旱胁迫下,施锌对玉米植株体内水分生理代谢有一定的调节作用,但是在土壤水分供应充足时,施锌更能增强玉米水分生理代谢,提高水分利用效率。  相似文献   

12.
A rhizobox experiment was conducted to study the changes of various zinc (Zn) forms in rhizosphere and nonrhizosphere soils of maize (Zea mays L.) plants grown under well-watered and drought conditions. The tested soil was earth-cumulic orthic anthrosol sampled from the Shaanxi Province of China. The experiment was set at two levels of Zn, 0 and 5.0 mg Zn kg?1 soil, and at two treatments of soil water content, 45%–50% (drought) and 70%–75% (well watered) of soil water-holding capacity. A completely randomized factorial design (2 Zn treatments × 2 water levels × 3 replicates) was set up. Adequate soil water supply enhanced growth and Zn accumulation of maize plants. Applying Zn increased plant biomass and Zn content more notably under well-watered conditions rather than drought conditions. Soil Zn was defined as water-soluble plus exchangeable (WSEXC) Zn, carbonate-bound Zn (CA), iron–manganese oxide–bound Zn (FeMnOX), organic matter–bound Zn (OM), and residual Zn (RES) forms using the sequential extraction procedure. Most of Zn was predominantly in the RES fraction. Zinc application increased the contents of WSEXC Zn, CA Zn, and FeMnOX Zn in soil. When Zn was added to the soil, the concentrations of CA Zn within 0–2 mm and 0–4 mm apart from the central root compartment (CC) were greater than other zones under the conditions of adequate and limited soil water supplies, respectively. Zinc application also resulted in an accumulation of FeMnOX fractions at a distance of 2 mm from CC. The FeMnOX Zn content in this compartment increased with soil drought. Under well-watered conditions, dry-matter weight and Zn concentration of shoots presented better correlations with CA Zn and FeMnOX Zn fractions in and near the rhizosphere as compared with drought conditions. It is suggested that in an earth-cumulic orthic anthrosol, soil moisture conditions affect the transformation of the added Zn into the CA and FeMnOX fractions near the rhizosphere and their bioavailability to maize plants.  相似文献   

13.
The purpose of the present work was to evaluate effects of zinc application on growth and uptake and distribution of mineral nutrients under salinity stress [0, 33, 66, and 99 mM sodium chloride (NaCl)] in soybean plants. Results showed that, salinity levels caused a significant decrease in shoot dry and fresh weight in non-zinc application plants. Whereas, zinc application on plants exposed to salinity stress improved the shoot dry and fresh weight. Potassium (K) concentration, K/sodium (Na) and calcium (Ca)/Na ratios significantly decreased, while sodium (Na) concentration increased in root, shoot, and seed as soil salinity increased. Phosphorus (P) concentration significantly decreased in shoot under salinity stress. Moreover, calcium (Ca) significantly decreased in root, but increased in seed with increased salinization. Iron (Fe) concentration significantly decreased in all organs of plant (root, shoot, and seed) in response to salinity levels. Zinc (Zn) concentration of plant was not significantly affected by salinity stress. Copper (Cu) concentration significantly decreased by salinity in root. Nonetheless, manganese (Mn) concentration of root, shoot, and seed was not affected by experimental treatments. Zinc application increased Ca/Na (shoot and seed) ratio and K (shoot and seed), P (shoot), Ca (root and seed), Zn (root, shoot, and seed) and Fe (root and shoot) concentration in soybean plants under salinity stress. Zinc application decreased Na concentration in shoot tissue.  相似文献   

14.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

15.
Abstract

Blackbeans (Phaseolus vulgaris (L.) var ‘Black Turtle') were grown on a Lakeland soil in a factorial growth chamber experiment with 0 and 8 ppm added Zn; 0, 20, 40, 80, and 160 ppm added P; and under two temperature regimes ‐ a 28°C/23°C (day/night) temperature and a 20°C/15°C (day/night) temperature. Blackbeans were also grown at two field sites in Southern Manitoba which were selected for their low supply of available zinc. Zinc, at 0 and 15 kg/ha, and phosphorus, at 0, 100, 200, 400, and 800 kg P205/ha vere disced into the soil in a factorial experiment.

Blackbean zinc uptake was much greater at the higher temperature, while phosphorus uptake was not similarly affected by temperature. Blackbean phosphorus uptake was regulated by the plant when sufficient Zn was present but was not regulated at low plant Zn levels. At low blackbean Zn levels, plant uptake of phosphorus further decreased blackbean Zn uptake. Blackbean Zn uptake was not affected by phosphorus concentration as long as Zn levels remained sufficiently high.  相似文献   

16.
选择 土为供试土壤, 进行盆栽玉米试验, 设定0和5.0 mg·kg-1两个锌处理, 按土壤饱和持水量的40%~45%和70%~75%在玉米的4叶1心期实施干旱和正常水分处理。生长50 d后, 测定不同土壤水分与锌供应状况下植株生物量和锌含量, 利用透射电子显微镜观察完全伸展新叶的超微结构变化, 以期揭示不同土壤水分供应下, 植物对施锌的响应机理。结果表明: 土壤水分供应充足条件下, 与不施锌相比, 施锌玉米地上部生物量和总干重分别增加78%和52%, 根系和地上部锌含量和锌吸收量增加较多; 而干旱条件下, 施锌对玉米生物量无显著影响。干旱条件下缺锌玉米叶片维管束鞘细胞中叶绿体结构基本保持完好, 淀粉粒和基质片层清晰可见, 但叶肉细胞中叶绿体膜受损, 基质片层结构出现皱缩, 基粒片层减少; 施锌玉米叶片维管束鞘细胞中叶绿体结构保持完好, 叶绿体周围的线粒体数目较多, 叶肉细胞中叶绿体中脂肪颗粒增多, 叶片维管束鞘细胞与叶肉细胞之间可见清晰的胞间连丝。土壤水分充足处理下, 缺锌叶片细胞膜出现皱缩, 维管束鞘细胞叶绿体淀粉粒增多, 片层结构受损, 严重时维管束鞘细胞中内溶物消失, 残存的叶绿体中仅有淀粉粒和少许片层; 叶肉细胞中叶绿体可见淀粉粒, 但片层结构少, 有些出现断裂、收缩。土壤水分充足条件下, 施锌玉米维管束鞘核叶肉细胞结构清晰, 叶绿体结构完整。结论认为: 锌对干旱胁迫下玉米叶片细胞结构的破坏有一定的缓解作用; 但土壤水分正常供应下, 缺锌导致细胞结构受损程度比干旱情况下更严重。  相似文献   

17.
Zinc (Zn) deficiency in rice has been widely reported in many rice-growing regions of the world. A greenhouse experiment was conducted with the objective of determining Zn requirements of lowland rice. Zinc rates used were 0, 5, 10 20, 40, 80, and 120 mg Zn kg?1 of soil applied to an Inceptisol. Zinc application significantly affected shoot dry weight and grain yield as well as concentrations and uptakes of Zn in soil and plant. Maximum yield of shoot dry weight and grain yield were achieved at 5 and 20 mg Zn kg?1 of soil, respectively. Zinc concentration and uptake in shoot as well as Zn uptake in grain had significant quadratic increases as Zn concentration increased in the soil solution. Zinc concentration as well as uptake was greater in the shoot as compared with concentration and uptake in the grain. Zinc-use efficiencies significantly decreased with increasing Zn rates in the soil except agrophysiological efficiency, which had significant quadratic increases with increasing Zn rates. On average, about 6% of the applied Zn was recovered by the lowland rice plants. Mehlich 1 extracting solution extracted much more Zn than diethylenetriaminepentaacetic acid (DTPA). However, Mehlich 1 as well as DTPA-extractable Zn had significant positive correlations with each other as well as with Zn uptake in grain and shoot.  相似文献   

18.
Abstract

Maize (Zea mays L.) was greenhouse cultivated with doses of 5, 10, and 15 ppm of zinc (Zn) in order to test the effectiveness of laboratory‐prepared coated and uncoated Zn fertilizers with commercial Zn‐EDTA and Zn‐ligno‐sulphonate (LS). Large increases were achieved both in crop yield and in Zn uptake in all cases while a large part of the Zn applied remained in the soil in easily plant‐available forms. Positive significant correlations were obtained between available Zn and the first three sequentially extracted fractions (water soluble plus exchangeable, organically complexed and that associated to amorphous sesquioxides) and also between the variables, yield, Zn concentration, and plant Zn uptake. Zinc uptake by the maize plants can be fairly accurately predicted from its sequential fractioning in the soil using an equation obtained by multiple regression analysis. Consideration of the amounts of Zn remaining as available (DTPA extractable) in the soil and results of a plant analysis let us conclude that under the conditions of our tests, Zn‐EDTA is a better Zn source than Zn‐LS. In addition, coating of Zn‐EDTA products with rosin improves their performance.  相似文献   

19.
Abstract

Crop yield response to micronutrient fertilization is difficult to predict, particularly under unfavorable environmental conditions as these may alter both crop nutrient demand and the soil micronutrient supply to plant roots. The research objective was to evaluate the effect of various soil temperature and moisture conditions on crop growth response to added micronutrient copper (Cu), zinc (Zn), and boron (B) along with soil micronutrient supply and distribution among fractions. Brown and Dark Brown farm soils collected from southern Saskatchewan were used to grown wheat, pea and canola within controlled environment chambers. The biomass yields of all crops decreased under cold soil temperature and moisture stress (drought and saturated) conditions. Greater plant uptake of Cu, Zn, and B was associated with optimum (i.e., field capacity) soil moisture and warm temperature (23°C) growing conditions, compared to drought (i.e., 50% field capacity), saturated, and cold (5°C) temperature conditions. Environmental stress had the greatest impact on pea growth, reducing crop yield and micronutrient utilization efficiency more than 95%. Soil supplies of Cu and Zn were most negatively impacted by drought stress due to reduced mobility of these diffusion limited nutrients. The extractable micronutrients levels and chemical speciation fractions of Cu, Zn, and B indicating that bioavailability and micronutrient transformation were not affected during our short-term (i.e., six-weeks) study. However, it is suggested that assessments of micronutrient forms also be conducted on soil samples under actual moisture and temperature conditions as they exist in the experiment, as well as on dried, processed samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号