首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the influence of parasympathetic tone on the arrhythmogenicity of graded dobutamine infusions in horses anesthetized under clinical conditions. Six horses were used in 9 trials. Two consecutive series of graded dobutamine infusions were given IV; each continuous graded dobutamine infusion was administered for 20 minutes. The dobutamine infusion dosage (5, 10, 15, and 20 micrograms/kg of body weight/min) was increased at 5-minute intervals. Isovolumetric saline solution vehicle (v) or atropine (A; 0.04 mg/kg) was administered IV, or bilateral vagotomy (VG) was performed as a treatment before the second series of dobutamine infusions. Treatment was not administered prior to the first dobutamine infusion. Significant interaction between treatment and dosage of dobutamine infusion existed for differences from baseline for mean arterial pressure, systolic arterial pressure, diastolic arterial pressure, heart rate, and cardiac index at dosages of 5 and 10 micrograms of dobutamine/kg/min, given IV and for heart rate at dosage of 15 micrograms of dobutamine/kg/min, given IV. Results for group-V horses were different from those for group-A and group-VG horses, but were not different between group-A and group-VG horses in all aforementioned cases, except for heart rate and cardiac index at dosage of 5 micrograms of dobutamine/kg/min, given IV. Normal sinus rhythm, second-degree atrioventricular block, and bradyarrhythmias predominated during low dobutamine infusion rates during the first infusion series (nontreated horses) and in group-V horses during the second infusion series. Only tachyarrhythmias were observed during the second infusion series in the horses of the A and VG groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Dobutamine is routinely used to improve cardiovascular function in anaesthetized horses. However, dobutamine in conscious horses is insufficiently investigated. Ten research horses that were already instrumented for a preceding trial were included into the study. Cardiovascular variables were recorded and blood samples taken after instrumentation (Baseline), before starting dobutamine and after 10 min of dobutamine infusion (2 µg kg−1 min−1). A significant increase in systemic blood pressure, mean pulmonary artery pressure and right atrial pressure, and a decrease in heart rate were observed with dobutamine compared with baseline measurements. Arterial and mixed venous haemoglobin and oxygen content, as well as mixed venous partial pressure of oxygen increased. No significant changes in cardiac output, stroke volume, systemic vascular resistance, arterial partial pressure of oxygen, or oxygen consumption, delivery and extraction ratio were detected. Concluding, dobutamine increased systemic blood pressure without detectable changes in stroke volume, cardiac output or systemic vascular resistance in conscious horses.  相似文献   

3.
Mechanisms responsible for the positive inotropic effects of dopexamine were investigated in 8 halothane-anesthetized horses. The hemodynamic effects of increasing infusions of dopexamine (5, 10, 15 micrograms/kg of body weight/min) were determined before and after sequential administration of specific antagonists. Using glycopyrrolate and chlorisondamine, and atenolol and ICI 118,551, muscarinic and nicotinic ganglionic, and beta 1, and beta 2-adrenergic receptor blockade, respectively, was induced. Dopexamine infusions induced increase in heart rate, cardiac output, systolic and mean arterial blood pressure, and maximal rate of left ventricular pressure development (+dP/dtmax). Right atrial pressure and systemic vascular resistance decreased. Parasympathetic and ganglionic blockade attenuated cardiac output, systolic and mean aortic blood pressures, and +dP/dtmax responses to dopexamine infusion. Dopexamine-induced increase in heart rate was potentiated by parasympathetic and ganglionic blockade. beta 1-Adrenergic receptor blockade decreased heart rate, cardiac output, arterial blood pressure, and +dP/dtmax from baseline values and markedly reduced the response to dopexamine infusion. beta 2-Adrenergic receptor blockade induced further decrease in hemodynamic variables from baseline values and completely abolished the cardiostimulatory effects of dopexamine on +dP/dtmax. These data indicate that baroreflex activity, beta 1- and beta 2-adrenergic receptor stimulation may be an important cause of dopexamine's positive inotropic effects in horses.  相似文献   

4.
OBJECTIVE: To determine hemodynamic and metabolic effects of IV infusion of ATP-MgCl2 combination and maximal safe IV infusion rate in conscious horses. ANIMALS: 6 adult female horses. PROCEDURE: All horses received an IV infusion of ATP-MgCl2 combination, beginning at a rate of 0.05 mg of ATP/kg of body weight/min, which was increased by 0.05 mg/kg/min increments at 10-minute intervals until a rate of 1.0 mg/kg/min was achieved. Data were collected prior to the start of the infusion, at the end of each infusion rate, and at 15-minute intervals for the next hour after discontinuation of the infusion. Measured or calculated hemodynamic variables included cardiac output, cardiac index, heart rate, stroke volume, systemic and pulmonary arterial pressures, and systemic and pulmonary vascular resistances. Arterial blood gas tensions, CBC, plasma biochemical profiles, urine volume and specific gravity, and selected clinical signs of disease also were evaluated. RESULTS: Intravenous infusion of ATP-MgCl2 significantly increased cardiac output, decreased systemic vascular resistance, and caused mild pulmonary hypertension. Magnitude of the hemodynamic alterations was dependent on rate of infusion. Maximal safe infusion rate for these horses was 0.3 mg/kg/min. All horses became lethargic, and their appetites diminished during the infusion; 5 horses had mild signs of abdominal discomfort. Flank sweating was observed in all horses as infusion rate increased. Urine volume and specific gravity and hematologic, biochemical, and arterial blood gas alterations were detected during and after infusion. CONCLUSIONS AND CLINICAL RELEVANCE: Intravenous administration of ATP-MgCl2 in healthy, conscious, adult horses caused various metabolic and hemodynamic alterations that were without appreciable detrimental effects.  相似文献   

5.
OBJECTIVE: To determine the cardiopulmonary effects of increasing doses of dopamine, dobutamine, epinephrine, and phenylephrine and measure plasma concentrations of norepinephrine, epinephrine, and dopamine in cats anesthetized with isoflurane. ANIMALS: 6 healthy adult cats. PROCEDURES: Each cat was anesthetized with isoflurane (1.5 X minimum alveolar concentration) on 4 occasions. Cardiopulmonary measurements were obtained after a 30-minute stabilization period; 20 minutes after the start of each infusion dose; and 30, 60, and 90 minutes after the infusion was discontinued. Cats received 5 progressively increasing infusions of epinephrine or phenylephrine (0.125, 0.25, 0.5, 1, and 2 microg/kg/min) or dobutamine or dopamine (2.5, 5, 10, 15, and 20 microg/kg/min). The order of treatment was randomly allocated. Results-All 4 treatments increased oxygen delivery. Heart rate (HR) increased during administration of all drugs except phenylephrine, and mean arterial pressure increased during administration of all drugs except dobutamine. A progressive metabolic acidosis was detected, but whole-blood lactate concentration only increased during administration of epinephrine and dobutamine. Systemic vascular resistance index increased during administration of phenylephrine, decreased during administration of dobutamine, and remained unchanged during administration of dopamine and epinephrine. A positive inotropic effect was detected with all treatments. CONCLUSIONS AND CLINICAL RELEVANCE: During anesthesia in cats, administration of dopamine, dobutamine, and epinephrine may be useful for increasing cardiac output, with dopamine having the most useful effects. Administration of phenylephrine increased cardiac and systemic vascular resistance indexes with minimal effect on HR and may be useful for increasing mean arterial pressure without increasing HR.  相似文献   

6.
BACKGROUND: Norepinephrine is a potent vasopressor that increases arterial blood pressure but may have adverse effects on renal blood flow. The combination of norepinephrine and dobutamine may lead to improved renal perfusion compared to an infusion of norepinephrine alone. The effects of these drugs in the normotensive neonatal foal have not been reported. HYPOTHESIS: Norepinephrine increases arterial blood pressure. Adding dobutamine to a norepinephrine infusion will change the renal profile during the infusions without changing the arterial blood pressure. ANIMALS: Eight conscious Thoroughbred foals were used in this study. METHODS: Each foal received norepinephrine (0.1 microg/kg/min), combined norepinephrine (0.1 microg/kg/min) and dobutamine (5 microg/kg/min), and a control dose of saline in a masked, placebo-controlled study. Heart rate, arterial blood pressure (direct), and cardiac output (lithium dilution) were measured, and systemic vascular resistance, stroke volume, cardiac index, and stroke volume index were calculated. Urine output, creatinine clearance, and fractional excretion of sodium, potassium, and chloride were measured. RESULTS: Norepinephrine and a combined norepinephrine and dobutamine infusion increased arterial blood pressure and systemic vascular resistance and decreased heart rate and cardiac index as compared to saline. The combination resulted in higher arterial pressure than norepinephrine alone. There was no significant difference in urine output, creatinine clearance, or fractional excretion of electrolytes with either infusion as compared to saline. CONCLUSIONS AND CLINICAL IMPORTANCE: These data suggest that norepinephrine and a combined norepinephrine and dobutamine infusion cause unique hemodynamic effects without affecting indices of renal function, and this effect warrants further investigation.  相似文献   

7.
Evidence of sympathetic or parasympathetic stimulation of the cardiovascular system has been obtained in dogs under halothane anesthesia following acupuncture. Acupuncture at Jen Chung (Go-26), which is located on the phithrum, results in sympathetic input and an increase in cardiac output, heart rate and mean arterial pressure. These effects can be inhibited by the beta adrenergic blocking agent, propranolol. Acupuncture at Tsu San Li (St-36), which is located distal to the lateral condyle of the tibia, results in parasympathetic input and decrease in cardiac output. This effect is inhibited by atropine.  相似文献   

8.
The anesthetic, hemodynamic, and respiratory effects of an intravenously administered 1:1 combination of tiletamine and zolazepam were evaluated in dogs. Each dog received tiletamine-zolazepam (6.6, 13.2, 19.8 mg/kg) on two occasions, once when awake and a second time with residual isoflurane anesthesia while instrumented for the recording of hemodynamic data. Tiletamine-zolazepam administered to conscious dogs resulted in good, rapid induction of anesthesia. Time to sternal recumbency (recovery) was dose-dependent. Character of recovery tended to be better with the lower dose. Tiletamine-zolazepam caused significant increases in heart rate after all doses and significant increases in cardiac output after the two larger doses. All doses caused significant decreases in arterial blood pressure at 1 minute. Arterial blood pressures returned to baseline and then increased significantly above baseline values. The rate of development of left ventricular pressure was significantly decreased 1 minute after the two higher doses, returned to normal, and then was significantly increased above baseline for all doses. Peripheral vascular resistance increased transiently 1 minute after the 6.6 mg/kg dose. Peripheral vascular resistance decreased significantly after the 13.2 and 19.8 mg/kg doses. Minute ventilation was significantly decreased only after the 19.8 mg/kg dose.  相似文献   

9.
A chronic model with an ultrasonic transit time blood flow probe and strain gauge force transducers implanted on the cecum was used to evaluate cecal mechanical activity and cecal arterial blood flow in 4 conscious adult horses. Intravenous administration of xylazine (1.1 mg/kg of body weight) significantly decreased heart rate and cardiac output, but significantly increased diastolic pulmonary arterial pressure, mean pulmonary arterial pressure, carotid arterial pressure, and central venous pressure. Lateral cecal arterial blood flow after xylazine administration was decreased substantially more than was cardiac output, suggesting that xylazine caused constriction of the cecal vasculature. This effect of xylazine may have resulted from either a direct effect of xylazine on the cecal vasculature or from reflex vasoconstriction attributable to reduced cardiac output. Intravenous administration of butorphanol tartrate (0.1 mg/kg) did not significantly alter the hemodynamic responses to xylazine. Cecal mechanical activity, as measured by the motility index, was decreased for 120 minutes after administration of xylazine and for 150 minutes after administration of xylazine/butorphanol.  相似文献   

10.
The heart rate (HR) response to stepwise changes in mean arterial pressure (MAP) produced by methoxamine and sodium nitroprusside was studied in conscious horses, pigs, and calves. The respective steady-state arterial baroreflex sensitivities (delta HR/delta MAP expressed as beats min-1 . mm of Hg-1) were -1.20, -1.21, and -0.39 for decreasing MAP and -0.08, -0.91, and -0.56 for increasing MAP. After parasympathetic nervous system (PNS) blockade with atropine, the reflex sensitivity to decreasing MAP in horses and the pigs decreased to -0.62 and -0.65, respectively (P less than 0.05), whereas the sensitivity in calves was not significantly different from the calves' base-line sensitivity (P greater than 0.05). In pigs, the sensitivity to increasing MAP decreased to -0.43 after PNS blockade (P less than 0.05). Horses and calves had a response to small increases in MAP similar to that observed in the absence of PNS blockade. There was no additional change in HR with larger increases in MAP in these 2 species. These responses indicate that varying degrees of mixed PNS and sympathetic nervous system activity changes mediate the baroreflex change in HR seen for increasing and decreasing MAP in pigs and for decreasing MAP in horses. Predominantly PNS activity is responsible for the response to increasing MAP in the horses and calves, whereas predominantly sympathetic nervous system activity is responsible for the response to decreasing MAP in calves. Comparisons were made between the observations in these 3 species and other mammalian species.  相似文献   

11.
OBJECTIVE: To determine whether hyoscine has a sparing effect on the volume of dobutamine required to maintain mean arterial pressure (MAP) at 70 mmHg in horses anaesthetized with halothane. STUDY DESIGN: Prospective, randomized, controlled clinical trial. ANIMALS: Twenty adult horses weighing 507 +/- 97 kg (mean +/- SD), aged 10 +/- 5 years. MATERIALS AND METHODS: Pre-anaesthetic medication in all horses was intramuscular (IM) acepromazine (40 mug kg(-1)) and intravenous (IV) detomidine (0.02 mg kg(-1)). Anaesthesia was induced with ketamine (2.2 mg kg(-1) IV) and diazepam (0.02 mg kg(-1) IV), and maintained with halothane in oxygen. Horses breathed spontaneously. Flunixin (1.1 mg kg(-1) IV) was given to provide analgesia. Heart rate, ECG, invasive arterial pressure, respiratory rate, percentage end-tidal carbon dioxide, percentage end-tidal halothane and partial pressure of oxygen and carbon dioxide in arterial blood and blood pH were monitored. Dobutamine was infused by an infusion pump to maintain MAP at 70 mmHg. Horses were randomly assigned to receive saline or hyoscine (0.1 mg kg(-1)) IV 30 minutes after induction. The heart rate, MAP and volume of dobutamine infused over 30-minute periods were measured and analysed statistically using a one-way anova. RESULTS: After administration of hyoscine, heart rate increased for 10 minutes (p < 0.01) and MAP for 5 minutes (p < 0.01). There was no difference in the volume of dobutamine infused over 30 minutes between horses given hyoscine or saline, although there was a wide individual variation in dobutamine requirements. No side effects of hyoscine were seen. CONCLUSIONS: The increase in heart rate and blood pressure that occurs after 0.1 mg kg(-1) hyoscine is given IV in anaesthetized horses, is of short duration and does not significantly alter the amount of dobutamine required to maintain arterial pressure over the next 30 minutes. Clinical relevance The short duration of action of 0.1 mg kg(-1) hyoscine IV may limit its usefulness for correction of hypotension in horses anaesthetized with halothane. Further work is necessary to investigate the effects of higher or repeated doses or constant rate infusions of hyoscine.  相似文献   

12.
Dynamic baroreflex sensitivity for increasing arterial pressure (DBSI) was used to quantitatively assess the effects of anesthesia on the heart rate/arterial pressure relationship during rapid (less than or equal to 2 minutes) pressure changes in the horse. Anesthesia was induced with IV administration of xylazine and ketamine and maintained with halothane at a constant end-tidal concentration of 1.1 to 1.2% (1.25 to 1.3 minimal alveolar concentration). Systolic arterial pressure (SAP) was increased a minimum of 30 mm of Hg in response to an IV bolus injection of phenylephrine HCl. Linear regression was used to determine the slope of the R-R interval/SAP relationship. During dynamic increases in SAP, a significant correlation between R-R interval and SAP was observed in 8 of 8 halothane-anesthetized horses. Correlation coefficients between R-R interval and SAP were greater than 0.80 in 5 of 8 horses. Mean (+/- SD) DBSI was 4.8 +/- 3.4 ms/mm of Hg in anesthetized horses. A significant correlation between R-R interval and SAP was observed in only 3 of 6 awake horses during dynamic increases in SAP. Lack of correlation between R-R interval and SAP in 3 of 6 awake horses indicated that rapidly increasing SAP with an IV phenylephrine bolus is a poor method to evaluate baroreceptor-mediated heart rate changes in awake horses. Reflex slowing of heart rate in response to a rising arterial pressure appeared to have been overridden by the effects of excitement. Mean (+/- SD) DBSI (3 horses) was 7.3 +/- 3.3 ms/mm of Hg in awake horses.  相似文献   

13.
The hemodynamic and respiratory effects of three doses (9.7, 15.8, and 23.7 mg/kg intravenous [IV]) of a 1:1 combination of tiletamine and zolazepam were studied after isoflurane anesthesia in cats instrumented for the recording of hemodynamic data. Systolic, mean, and diastolic arterial blood pressures were decreased 1 minute after drug administration but then increased above baseline with all three doses. Cardiac output was decreased briefly at 1 minute with the 15.8 and 23.7 mg/kg doses. The rate of development of left ventricular pressure and peripheral vascular resistance decreased at 1 minute but returned to baseline or above by 10 minutes. There were no significant changes in heart rate, central venous pressure, or left ventricular end diastolic pressure. The arterial pH and blood gas measurements reflected the development of respiratory acidosis after administration of 23.7 mg/kg. These results support the conclusions that tiletamine-zolazepam administered intravenously is a useful and comparatively safe anesthetic agent in the cat.  相似文献   

14.
Volatile agent-induced hypotension may contribute to anaesthetic-related morbidity and mortality in horses. Dobutamine is commonly used to support arterial blood pressure (ABP) but little is known about its cardiovascular effects under clinical conditions. The aim of this clinical study was to elucidate the relationship between cardiovascular function and dobutamine infusion in isoflurane-anaesthetized horses. Forty-four horses anaesthetized for a variety of surgical procedures were studied. Premedication with acepromazine, methadone and detomidine was followed by induction of anaesthesia with ketamine and midazolam. Anaesthesia was maintained with isoflurane vaporized in oxygen. Routine anaesthetic monitoring was applied and cardiac output was measured by lithium dilution. Dobutamine was infused to maintain mean ABP above 70 mmHg. The relationship between dobutamine infusion rate, heart rate (HR), ABP and cardiac index was investigated immediately prior to ( T 0) and 15 min ( T 1) after dobutamine infusion started, followed at 30 min intervals ( T 2, etc.). Arterial blood pressure increased significantly after dobutamine infusion started, HR and cardiac index increased significantly only with dobutamine infusion in combination with surgical stimulus. Although isoflurane decreases blood pressure mainly by vasodilation, dobutamine is an effective treatment for hypotension under clinical conditions in isoflurane-anaesthetized horses. The effect of dobutamine is not directly proportional to dose and surgical stimulus probably contributes to the cardiovascular improvement.  相似文献   

15.
The purpose of this study was to evaluate changes in echocardiographic parameters during increasing infusion rates of dobutamine in isoflurane-anesthetized horses and to compare our results with those of previous studies. Six Standardbred female healthy horses were included in this study. All animals were anesthetized and infused with dobutamine at different rates. mean arterial pressure (MAP), heart rate (HR), and some echocardiographic measurements were recorded. Statistical analysis was applied. Under basal conditions (time 0 [T0]), HR ranged between 32 and 42 beats per minute (bpm), and MAP was between 39 and 63 mm Hg. MAP increased significantly from T0 compared with values at T2, T2, and T3 in a dose-dependent manner, while HR increased significantly only at T3 if compared to the other measuring times. Left ventricular internal diameter during diastole (LVDs) decreased significantly in a dose-dependent manner, with increasing of the infusion rate of dobutamine. Interventricular septal dimension during diastole (IVSs) increased significantly, and end-systole left ventricular volumes (LVVols) decreased significantly at T2 and T3 compared to T1. Ejection fraction (%) increased significantly between T0 and T1, T2, and T3. Cardiac output increased significantly only at the higher dosage (T3 vs. others) of dobutamine, but cardiac power output was enhanced significantly at T2 versus that at T0 and T1 and at T3 versus all the previous measurements. Arrhythmias were diagnosed in 5 of 6 (83.3%). In this study, the increase of MAP was found to be dose-dependent, according with literature. The HR and MAP values registered at T0 were comparable to previous results obtained both in anesthetized and conscious horses, while at T1, T2, and T3, HR and MAP values were similar only too those reported in anesthetized horses. IVSs increased and LVDs decreased significantly with the increment of dobutamine infusion rate. These findings suggest that dobutamine, even at low infusion rates, induces an enhancement in cardiac systolic function. The dose-dependent increase of IVSs and decrease of LVDs measurements are in line with those reported for dobutamine administered in conscious horses but with lower values. The LVVols dose-dependent reduction obtained in this study is in line with that in other reports, but both LVold and LVVols values after dobutamine infusion at different dosages are lower if compared to previous studies. The low LVol values and the wide standard deviation have influenced consequently the derived indices values (stroke volume [SV], EF, cardiac output [CO]). In the present study, SV did not significantly increase during dobutamine infusion. These results disagree with those reported by others. The increment of CO might be due mainly to the enhanced HR rather than to the weak changes of SV. Cardiac power output increased significantly from the 5 mcg/kg/min dosage in a dose-dependent manner, as reported by others.  相似文献   

16.
The effects of intravenous (iv) infusion of endotoxin for 60 mins at a cumulative dosage of 0.03 micrograms/kg bodyweight on systemic arterial, right atrial and pulmonary arterial pressures, heart rate, cardiac output, and derived pulmonary vascular resistance and total peripheral vascular resistance were compared to the effects of iv infusion of saline solution in four healthy horses. Heart rate was increased significantly after endotoxin infusion, although diastolic arterial pressure, systolic arterial pressure, electronically averaged arterial pressure, cardiac output, total peripheral resistance, and right atrial pressure did not change significantly. Average pulmonary arterial pressure was increased significantly by endotoxin infusion. This was accompanied by a trend toward increased diastolic pulmonary arterial pressure (P = 0.1), systolic pulmonary arterial pressure (P = 0.08) and pulmonary vascular resistance (P = 0.07). These results suggest that low dosages of endotoxin produce pulmonary hypertension without causing hypotensive, hypodynamic shock.  相似文献   

17.
Alterations in parasympathetic tone are partially responsible for xylazine's hemodynamic effects. The purpose of this study was to evaluate and compare the hemodynamic changes caused by the administration of intravenous (IV) atropine or glycopyrrolate after IV xylazine in isoflurane-anesthetized dogs. Six healthy beagles (8.2 to 10.7 kg) were used in two trials separated by 7 days. Anesthesia was induced and maintained with isoflurane in 100% oxygen with controlled ventilation. Once constant end-tidal isoflurane (1.8%) and arterial partial pressure of carbon dioxide (35 to 45 mm Hg) values were reached, baseline data were recorded and xylazine (0.5 mg/kg, IV) was given. In trial 1 atropine (0.1 mg/kg, IV) was given 5 minutes after xylazine, and in trial 2 glycopyrrolate (0.025, mg/kg, IV), was given 5 minutes after xylazine. Hemodynamic variables were recorded 3 minutes after xylazine and 3 minutes after anticholinergic administration. In trial 2, bilateral vagotomies were performed 10 minutes after glycopyrrolate, and hemodynamic variables were recorded 3 minutes later. Heart rate, cardiac index, and stroke index decreased; arterial pressure and systemic vascular resistance increased after xylazine. Heart rate, cardiac index, and rate pressure product increased after anticholinergic administration. Significant differences between atropine and glycopyrrolate were not observed in any of the hemodynamic parameters. Similarly, significant differences between glycopyrrolate and bilateral vagotomy were not observed. The authors conclude that intravenous atropine and glycopyrrolate have equivalent hemodynamic actions during the increased pressure phase after IV xylazine in isoflurane-anesthetized dogs; that intravenous atropine and glycopyrrolate produce comparable increases in heart rate and that both may increase the risk of myocardial hypoxia associated with an increase in rate pressure product; and that vagal blockade produced by high-dose glycopyrrolate (.025 mg/kg, IV) is similar to that produced by bilateral vagotomy.  相似文献   

18.
OBJECTIVE: To use Doppler ultrasonography and single-fiber laser Doppler flowmetry (LDF) to evaluate blood flow in the dependent and nondependent hind limbs of anesthetized horses and to evaluate changes in femoral arterial blood flow and microvascular skeletal muscle perfusion in response to administration of phenylephrine hydrochloride or dobutamine hydrochloride. ANIMALS: 6 healthy adult horses. PROCEDURE: Horses were anesthetized and positioned in left lateral recumbency. Doppler ultrasonography was used to measure velocity and volumetric flow in the femoral vessels. Single-fiber LDF was used to measure relative microvascular perfusion at a single site in the semimembranosus muscles. Phenylephrine or dobutamine was then administered to decrease or increase femoral arterial blood flow, and changes in blood flow and microvascular perfusion were recorded. RESULTS: Administration of phenylephrine resulted in significant decreases in femoral arterial and venous blood flows and cardiac output and significant increases in mean aortic blood pressure, systemic vascular resistance, and PCV. Administration of dobutamine resulted in significant increases in femoral arterial blood flow, mean aortic blood pressure, and PCV. Significant changes in microvascular perfusion were not detected. CONCLUSION AND CLINICAL RELEVANCE: Results suggest that Doppler ultrasonography and single-fiber LDF can be used to study blood flows in the hind limbs of anesthetized horses. However, further studies are required to determine why changes in femoral arterial blood flows were not associated with changes in microvascular perfusion.  相似文献   

19.
The relationship between mixed venous O2 tension and cardiac output was studied in six anesthetized horses breathing 100% O2. Cardiac output, O2 consumption, mean arterial pressure, heart rate, and arterial and venous blood gases were measured after administration of xylazine or dobutamine to horses in lateral, sternal, and dorsal recumbencies. After approximately 3 hours, Escherichia coli endotoxin was administered while horses were in dorsal recumbency, and all measurements were repeated. Relationships between cardiac index (CI) and PVO2, heart rate, mean arterial pressure, jugular PVO2, and PVO2 of blood from a superficial limb vein were evaluated by linear regression analysis. Mean arterial pressure was significantly (P less than 0.05) correlated with CI in horses in all positions and after endotoxin administration. However, data points were poorly grouped. Heart rate and CI were significantly correlated in horses in all positions, but not after endotoxin administration. Correlations between jugular PVO2 and PVO2 of blood from a superficial limb vein were not significant in horses in sternal recumbency, and PVO2 of blood from a superficial limb vein was not significantly correlated with CI in horses in lateral recumbency. There was a significant and tight correlation between PVO2 and CI in horses in all positions and after endotoxin administration.  相似文献   

20.
Intraoperative bradycardia is not an uncommon complication in anaesthetised horses and it has been recommended that severe bradycardia (defined as heart rate (HR) <25 beats/min) during general anaesthesia, when associated with hypotension (mean arterial pressure (MAP) <70 mmHg) and other signs of inadequate tissue perfusion, should be treated with anticholinergics. Muscarinic antagonists, such as atropine and glycopyrrolate, cause positive chronotropism and dromotropism (improved atrioventricular conduction) by competitively blocking the effects of acetylcholine at muscarinic receptors in the heart. However, in horses, prolonged intestinal hypomotility and colic have been associated with the use of atropine and glycopyrrolate which has led to the investigation of the use of hyoscine N-butylbromide (hyoscine NBB) to treat alpha 2 agonist-induced bradycardia in horses. This report describes the successful use of hyoscine NBB to treat symptomatic intraoperative bradycardia in three isoflurane-anaesthetised horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号