首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
湖北省太子山森林植被碳密度及碳储量研究   总被引:1,自引:0,他引:1  
以湖北省太子山林场管理局2009年森林二类清查数据资料为基础,运用生物量转换因子连续函数法,从森林类型、林龄和林分起源角度,对该区域森林植被碳储量和碳密度进行估测.研究表明:湖北省太子山林管局森林植被碳储量为233855.66 t,平均植被碳密度为39.31 t·hm^-2.人工林碳储量高于天然林4.02倍,该区域森林植被碳储量主要由人工林提供.按森林类型划分,不同森林类型碳储量和碳密度均表现为针叶林>阔叶林>针阔混交林;按林龄划分森林碳储量,幼龄林>成熟林>中龄林>近熟林>过熟林,各林龄碳密度随林龄的增加表现为先增加后降低的趋势,中幼林森林面积和碳储量所占比例较大,该区域森林植被碳储量潜力巨大.  相似文献   

2.
采用材积源—生物量法计算了巩义市森林植被碳储量。结果表明,巩义市森林碳储量为51.53万t,乔木用材林贡献79.8%,灌木林贡献17.2%。乔木用材林碳储量以泡桐和栎类为主,这两个树种分别贡献36.4%和28.8%。灌木林碳储量主要来源于荆条,贡献58.0%。巩义森林平均碳密度为22 t/hm2,油松林碳密度最高为24.7 t/hm2。与全省平均水平相比,巩义森林的碳密度是比较低的。  相似文献   

3.
为研究日照五莲山风景区森林碳储量和碳密度,基于日照市2021年林草生态综合监测国家反馈数据,采用生物量计算方法,对日照五莲山风景区森林碳储量进行了计算,并对该区域不同森林类型、森林种类、优势树种和不同龄组的森林碳储量及碳密度进行了研究分析。结果表明:(1)日照五莲山风景区森林总碳储量为48.14万t,不同类型碳储量排序为土壤>植被>凋落物,土壤层碳储量要远高于植被层碳储量;(2)不同森林种类比较,植被层中乔木林碳储量最多,而竹林的碳密度最大;不同优势树种比较,碳储量最大的树种为赤松,碳密度最大的树种是松林;(3)不同森林类型比较,针叶林碳储量最大,疏林碳储量最小;不同龄组进行比较,成熟林的碳储量和碳密度最大,近熟赤松林碳储量在各优势树种的各个龄组中碳储量最大。故合理选择碳密度大的龄组林种,扩大种植面积,提高碳储量和碳汇价值,可为生态产品价值实现提供可行路径。  相似文献   

4.
基于内蒙古大兴安岭林区2013年森林资源档案数据,运用生物量扩展因子法,量化内蒙古大兴安岭林区植被碳储量和碳密度。结果表明:内蒙古大兴安岭林区植被碳库总量41709.83×104t,平均碳密度为47.59±8.93 t C·hm-2;有林地乔木层在碳封存中占主导地位,其碳储量与面积近乎成正比,按龄组划分依次为中龄林成熟林近熟林过熟林幼龄林;按林分类型为针叶林针阔混交林阔叶林阔叶混交林针叶混交林;按林分起源为天然林人工林。有林地乔木层碳密度在不同龄组及不同林分起源间存在显著差异,在不同林分类型间无显著差异,其碳密度大小按龄组依次为成熟林近熟林过熟林中龄林幼龄林;按林分类型为阔叶林阔叶混交林针叶林针阔混交林针叶混交林;按林分起源为天然林人工林。  相似文献   

5.
相对准确地计量地带性森林碳库大小是估算区域森林碳汇潜力的前提。根据全市不同森林类型设置样地900个,运用样地清查法估算广州市森林生态系统碳储量和碳密度。结果表明:广州市森林生态系统碳储量为52.16 Tg C。其中,植被层和土壤层碳储量分别为21.97 Tg C和27.16 Tg C。碳储量空间分布主要集中在从化区和增城区;总碳储量的组成中,土壤层碳库比例最大(58%),其次为乔木层碳库比例(40%),而灌木层、草本层、凋落物层和细根(≤ 2.0 mm)的生物量比例大多在1%~2%;天然林碳储量与人工林接近,但是碳密度显著大于人工林(p < 0.05);不同林龄从小到大排序为:幼龄林、中龄林、近熟林、过熟林、成熟林;天然林以阔叶混和它软阔的碳储量最高,阔叶混和黎蒴的碳密度最高。人工林不同林型从大到小排序为:南洋楹 > 黎蒴 > 木荷 > 木麻黄 > 它软阔 > 阔叶混 > 湿地松。森林生态系统碳密度为178.03 t C hm-2,其中,植被层和土壤层碳密度分别为79.61 t C hm-2和98.42 t C hm-2。本研究全面计量了广州市森林生态系统碳库现状,这对评估该地区森林固碳潜力和指导碳汇林经营管理具有重要参考价值。  相似文献   

6.
在外业样地(乔木层、林下灌草层、枯枝落叶层、土壤)调查的基础上,结合乔木生物量模型,研究了秦皇岛市海滨林场森林碳密度与碳储量的分配特征。结果表明:海滨林场森林平均碳密度为132.19 t·hm~(-2),碳密度的大小顺序为乔木层(113.55 t·hm~(-2))>土壤层(21.68 t·hm~(-2))>林下灌草层(1.07 t·hm~(-2))>枯枝落叶层(0.88 t·hm~(-2))。总碳储量为105 224 t,其大小顺序与碳密度一致,乔木层(87 094.4 t)>土壤层(16 632 t)>林下灌草层(822.7 t)>枯枝落叶层(674.9 t)。近熟林、成熟林、过熟林是海滨林场乔木层碳储量的主体,占乔木层总碳储量的89.46%。  相似文献   

7.
针对密云县冯家峪镇9种典型森林类型,设置典型样地,开展乔木、灌木、草本、土壤和枯落物碳储量调查,并对增汇潜力进行分析。结果表明:1)冯家峪镇现有森林面积12 823.55hm2,总碳储量为692 141.73t;油松林的碳储量最高(195 806.52t),柞树林以144 831.77t次之,再次为落叶松人工林(74 597.60t)。2)冯家峪镇不同林分中,落叶松人工林的碳密度(72.02t/hm2)为最高,其次为油松人工林和刺槐人工林,分别为64.42t/hm2和62.87t/hm2,侧柏人工林的碳密度最低,为42.79t/hm2。在对总的碳密度的贡献中,乔木碳库和土壤碳库起着主要的作用。3)与全国森林植被碳储量平均水平(40.06t/hm2)相比,冯家峪镇森林通过合理经营其碳储量可增加潜力为166 400t。  相似文献   

8.
利用福鼎市2015年森林资源建档数据,采用转换因子连续函数法,结合不同树种(组)的含碳率,估算福鼎市林分乔木层碳储量与碳密度。结果表明:2015年福鼎市林分乔木层碳储量为1 531 476 t,碳密度为21.60 t/hm2,针叶林、阔叶林与针阔混交林碳储量分别占总碳量的31.8%、48.4%与19.8%,阔叶林碳密度值远大于针叶林与针阔混交林,马尾松林碳密度最低;不同经营单位的碳储量与碳密度空间差异较大,大体呈现南大北小、西高东低的趋势;生态公益林碳储量与碳密度均高于商品林,其中防护林碳密度略低于全市碳密度;重点生态区位内林分的碳储量低于重点生态区位外林分碳储量,但其碳密度高于生态公益林与重点生态区位外林分碳密度。该研究揭示了福鼎市森林植被碳储量总体分布较合理,但碳密度较低,固碳能力具有较大的提升空间。  相似文献   

9.
以广州市黄埔区南亚热带常绿阔叶木荷(Schima superba)风水林群落为对象,用样地生物量法对乔木、灌草、凋落物、细根和土壤层的碳库储量进行计量,并用碳税率法参数估算了群落碳库价值.结果表明:(1)3个样地的生态系统碳储量密度在138.00~176.56 t C·hm-2之间,平均为155.34±11.30 t C·hm-2,但与地带性顶级群落碳储量密度相比,该风水林还具有较大的增汇空间;(2)乔木层、灌木层、草本层、凋落物层、细根层和土壤层的碳储量密度占生态系统总碳储量密度的比例分别为70.17%、2.74%、1.43%、0.88%、0.81%和23.97%,乔木层是生态系统碳库的主要贡献者;(3)广州市典型木荷风水林总碳资产价值平均为18.64万元 ·hm-2,其中植被层为14.17万元 ·hm-2,土壤层为4.47万元 ·hm-2,前者是后者的3.17倍,植被层碳是风水林碳汇价值的主体部分.  相似文献   

10.
将鄂西北山区典型森林生态系统划分为13种森林类型,在系统调查样地乔木层、灌木层、枯落物层及土壤层碳含量的基础上,对不同森林类型碳密度进行了估算。结果表明:鄂西北森林生态系统平均碳密度为175.812t·C·hm-2,各层碳密度的大小顺序为土壤层(110.130t·C·hm-2)乔木层(48.278t·C·hm-2)灌木层(15.187t·C·hm-2)枯落物层(2.217t·C·hm-2),各层分别占整个生态系统碳储量的62.64%,27.46%,8.64%和1.26%。天然林不同林龄碳密度排序为近成过熟林中龄林幼龄林,人工林不同森林类型碳密度排序为针阔混交林针叶林阔叶林。  相似文献   

11.
桤木人工林的碳密度、碳库及碳吸存特征   总被引:4,自引:0,他引:4  
对不同年龄阶段桤木人工林生态系统碳密度、碳库和碳吸存的研究结果表明:桤木各器官的碳密度算术平均值随年龄的增长而增加,5,8和14年生的分别为478.8,485.7和495.8g·kg-1,变异系数在0.25%~9.58%之间,不同器官碳密度由高至低排序大致为:树干树枝树叶树根树皮,林下植被各组分和死地被物的碳密度随着林龄的变化规律不明显,土壤层(0~60cm)平均碳密度也随着林龄的增长逐渐增加,且在垂直分布上随着土层深度的增加而逐渐下降。不同器官的碳贮量与其生物量成正比例关系,随着林龄增长,乔木层碳贮量的优势逐渐增强,从5年生的25.88t·hm-2增加到14年生的49.63t·hm-2。桤木人工林生态系统的碳库主要由植被层、死地被物层和土壤层组成,按其碳库大小顺序排列为:土壤层植被层死地被物层,5,8和14年生桤木林生态系统中的碳库分别为95.89,122.12和130.75t·hm-2,土壤碳贮量占整个生态系统碳库的59.42%以上,且随着林龄增长,地上部分与地下部分碳贮量之比有逐渐下降的趋势,5,8和14年生桤木年净固定碳量分别6.51,6.26和7.82t·hm-2a-1。湖南省现有桤木林植被碳库为2.8034×106t,为其潜在碳库的47.51%。  相似文献   

12.
通过对龙山林场人工林及天然林的碳储量及碳密度进行计量研究,结果表明10种林分类型固定二氧化碳总量为113.08万t,其中红松林为57 085.86t,落叶松林为94 395.86t、樟子松林为77 493.36t、云杉林为540.8t、柞树林为838 309.87t、白桦林为3 306.04t、山杨林为1 890.56t、椴树林为2 102.03t、软阔混交林为3 655.93t、硬阔混交林为52 011.58t;天然林碳密度平均为179.26t CO_2-e·hm~(-2),人工林碳密度平均为88.03tCO_2-e·hm~(-2),天然林碳密度比人工林高,是人工林的103.64%。  相似文献   

13.
根据2008年黑龙江省森林面积蓄积统计资料,按照18个森林类型的蓄积量,分别估算了黑龙江省森林碳库的生物碳储量、土壤碳储量,并分析了森林碳库生物碳密度的分布规律和影响因素,同时对黑龙江省森林吸碳吐氧价值进行了经济评价。结果表明,黑龙江省森林碳库生物碳储量为8.93亿 t,同时吸收二氧化碳32.93亿 t,释放氧气23.81亿 t;黑龙江省森林土壤碳储量为9.29亿 t,同时森林土壤吸收二氧化碳34.06亿 t,释放氧气24.77亿 t。  相似文献   

14.
Abstract

This analysis reviews the state of the knowledge regarding carbon sequestration in terrestrial biomass with specific focus on tropical systems in Central America and Panama. Natural forests, exotic plantations, native species plantations, and agroforestry systems are considered in light of their carbon sequestration potential, their initiation and maintenance costs, and their ability to access the emerging regulated and informal carbon markets. All four of these systems show great potential to take up or store carbon and thus contribute to atmospheric reductions of C02. Research, investment, and institutional support are required to assist in the clear definition and expansion of carbon supply possibilities for market transactions.  相似文献   

15.
湖南省杉木林植被碳贮量、碳密度及碳吸存潜力   总被引:2,自引:0,他引:2  
基于湖南省2005和2010年森林资源调查统计数据,结合国家野外科学观测研究站湖南会同杉木林生态系统定位研究站的观测数据,估算湖南省杉木林植被碳贮量、碳密度及碳吸存潜力.结果表明:2005和2010年湖南省杉木林植被碳贮量分别为30.39×106和32.92×106t,均以中龄林的碳贮量最高,分别为17.64×106和17.31×106t; 2010年各地州市杉木林植被碳贮量为0.34×106~6.45×106t;杉木林碳密度随林分龄级增加而增高,过熟林最大(23.90 tC·hm1以上),2005和2010年湖南省杉木林平均碳密度分别为10.83和12.05 tC·hm-2,各地州市杉木林植被碳密度为6.03 ~16.58 tC·hm-2,基本上呈现出南高北低的趋势;湖南省杉木林植被的现实碳吸存潜力为90.75×106t,不同龄级林分的现实碳吸存潜力表现为中龄林(53.62×106t)>近熟林(32.77×106t)>幼龄林(4.36×106t),各地州市杉木林植被的现实碳吸存潜力为1.18×106 ~ 17.39×106t;湖南省(2010年)现有未成熟杉木林到2020年时的固碳潜力为176.77 × 106t,年固碳潜力为17.68×106t·a-1,到达成熟阶段(26年生)时固碳潜力为211.67×106t.湖南省杉木林分质量不高,中幼龄林所占比重较大,若能对现有杉木林加以更好的抚育管理,湖南省杉木林仍有很大的碳汇潜力.  相似文献   

16.
郭树平 《森林工程》2011,27(3):9-11,16
通过研究分析证明,黑龙江省碳储量约为9.994×109t,其中,森林植物和林地土壤碳储量占52.31%;黑龙江省有机碳净增长约为每年9.381×107t,其中,森林碳汇净增长占88.89%;黑龙江省有机碳净增长价值合人民币为每年2.523×1010元,其中,森林碳汇价值净增长为每年2.242×1010元。  相似文献   

17.
我国森林碳库特点与森林碳汇潜力分析   总被引:1,自引:0,他引:1  
森林生态系统在稳定全球碳循环和缓解全球气候变暖方面发挥着重要的作用,合理发展林业,可以实现固碳增汇,是缓解全球气候变化的重要措施。综述了森林碳库的重要地位、我国森林生态系统碳库特点,分析了通过增加森林面积和提高森林经营水平来增加森林碳汇的潜力。  相似文献   

18.
湘乡市林地森林碳储量及碳密度研究   总被引:1,自引:0,他引:1  
通过对湘乡市林地的森林碳储量、碳密度及碳储量的空间分布特征进行研究,得出:①在各优势树种组中,中生阔叶树组的碳储量和碳密度都是最大的,碳储量排序依次为:中生阔叶树组>马尾松组>杉木组>竹木组>国外松组>经济林组〉慢生阔叶树组>灌木组>速生阔叶树组,碳密度排序依次为:中生阔叶树组>国外松组>竹木组>马尾松组〉慢生阔叶树组>杉木组>经济林组>速生阔叶树组〉灌木组;②除马尾松组和中生阔叶树组外,各优势树种小班的碳储量主要集中分布在0~100t的区域内,且与人类活动呈负相关。  相似文献   

19.
Carbon storage in forest soils   总被引:1,自引:0,他引:1  
The amounts of carbon stored in soils and vegetation in Britain,and the potential of forestry to influence, whether soils actas sinks or sources, are discussed. Soils are estimated to containc.22 x 109 t carbon, while the amount in vegetation includingforests is only 115 x 106 t. Some 86 per cent of the soil carbonis present in peats and peaty-surfaced soils, mainly in north-westBritain. Soil carbon content is strongly related to climateand altitude. Conversion of lowland cultivated land to forestcan result in carbon accumulation in soils, as it can followingthe planting of some uplands, but quantities appear to be smallin relation to the amounts carbon released to the atmospherethrough fossil fuel use. Forest felling may result in decreasesin soil carbon store, due to soil disturbance and changes inmicroclimatic conditions, but several decades after reafforestationthe carbon store may recover to near original levels. Shorteningforest rotations may result in long-term declines in soil carbonstore. The main concern is the potential for forestry to convertpeats, which contain amounts of carbon equivalent to 100 years'fossil fuel use at 1988 levels and which are normally slow sinksfor atmospheric carbon, into carbon sources returning it tothe atmosphere. The possible impacts of forestry and globalwarming on rates of carbon loss from upland soils includingpeats are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号