首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
研究了海滨木槿Hibiscus hamabo子叶期幼苗和早期幼苗抗坏血酸-谷胱甘肽循环对NaCl胁迫的响应规律,结果显示,经150和300 mmol·L~(-1)NaCl处理的海滨木槿SOD(超氧化物歧化酶),APX(抗坏血酸过氧化物酶)和GR(谷胱甘肽还原酶)活性较对照显著提高。对子叶期幼苗,各指标呈现先升高后降低趋势;AsA(抗氧化剂抗坏血酸),GSH(谷胱甘肽)含量随盐浓度升高呈下降趋势,O_2~(·-)的产生速率、H_2O_2含量与盐浓度呈正相关。而早期幼苗中SOD,APX和GR活性以及AsA,GSH含量均随NaCl浓度升高而升高,O_2~(·-)的产生速率、H_2O_2含量也随NaCl浓度的增加不断上升。实验结果表明,随着海滨木槿幼苗的生长发育,海滨木槿通过提高AsA-GSH循环中抗氧化酶活性及抗氧化物质含量来清除因盐胁迫产生的活性氧,增强对盐胁迫产生的活性氧的清除。  相似文献   

2.
GSH对低温胁迫下枇杷幼果叶绿体AsA-GSH循环代谢的影响   总被引:1,自引:0,他引:1  
以3年生"早钟6号"枇杷容器苗为试材,研究不同质量浓度(100,300,500 mg·L~(-1))谷胱甘肽(GSH)处理对-3℃条件下枇杷幼果叶绿体AsA-GSH循环代谢的影响及其在抗低温胁迫中的作用.低温胁迫下枇杷幼果叶绿体抗氧化剂还原型谷胱甘肽(GSH)和抗坏血酸(AsA)含量下降,抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、单脱氢抗坏血酸还原酶(MDHAR)和脱氢抗坏血酸还原酶(DHAR)活性受到不同程度的抑制.采用100 mg·L~(-1)的GSH处理可显著提高低温胁迫下枇杷幼果叶绿体GSH,AsA含量以及APX,GR和MDHAR活性,促进AsA-GSH循环,叶绿体清除自由基的能力增强,在枇杷幼果抵抗低温胁迫中发挥作用.  相似文献   

3.
外源NO对低温胁迫下核桃幼苗活性氧代谢的影响   总被引:3,自引:0,他引:3  
[目的]研究外源NO处理对低温胁迫下核桃幼苗活性氧代谢系统的影响,探讨其影响核桃抗寒性的可能作用机制,寻找通过施加外源NO提高果树抗逆性的新方法,为外源NO在未来核桃抗逆生产中的广泛应用提供理论基础。[方法]以抗寒性不同的‘香玲'、‘鲁果12号'核桃品种为材料,采用人工气候室模拟低温处理与叶片喷施SNP相结合的方法,研究SNP(200μmol·L~(-1))对低温胁迫下核桃幼苗活性氧代谢的影响。[结果]1)正常生长条件下,喷施SNP对核桃幼苗叶片质膜透性、叶绿素含量、超氧阴离子(O_2~(·-))产生速率、过氧化氢(H_2O_2)含量、膜脂过氧化产物丙二醛(MDA)含量、脯氨酸(Pro)含量和超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性影响不大,显著提高了过氧化物酶(POD)、脱氢抗坏血酸还原酶(DHAR)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)含量以及AsA/DHA和GSH/GSSG比值,降低了氧化型抗坏血酸(DHA)和还原型谷胱甘肽(GSH)含量,但2个品种的各项指标变化程度不同。2)低温胁迫下,SNP处理可显著提高核桃幼苗叶片POD,SOD,CAT,APX和GR等抗氧化物酶活性,同时,提高叶绿素和Pro,ASA,DHA,GSH,GSSG含量,减少H_2O_2和MDA的积累,降低O_2~(·-)产生速率和细胞质膜相对透性,2个品种的变化幅度不同。[结论]低温胁迫下,外源NO处理可增强核桃幼苗叶片抗氧化物酶活性,提高抗氧化剂含量,维持抗坏血酸-谷胱甘肽(AsAGSH)循环系统的稳定性,降低H_2O_2、MDA的积累及O_2~(·-)的产生速率,从而减轻活性氧对核桃叶片的伤害,保护细胞膜结构的稳定性,增强抗寒性。  相似文献   

4.
以10 a生落叶松幼树为试验对象,在CO_2浓度升高和对照处理的开顶式气室(OTC-Ⅰ型)内,研究分析高浓度CO_2对其针叶质膜过氧化物产量的影响,结果表明:短时间(60 d)高浓度CO_2处理条件下,MDA含量降低,细胞质膜过氧化程度减轻;但长时间(超过70 d)处于高浓度CO_2条件下则会严重损伤细胞,导致植物体受害。MDA与O2-·产生速率存在正相关关系,但并不显著,在短时间(60 d)CO_2浓度升高条件下,O2-·产生速率与H2O2含量降低;长期高浓度CO_2处理下,O2-·产生速率与H2O2含量略有上升。  相似文献   

5.
以兰州市北山九州台主要造林树种柠条(Caragana korshinskii)为研究对象,分别进行30℃、35℃、40℃和45℃高温胁迫处理后,测定分析其叶片内丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸(ASA)、脯氨酸含量等指标的变化。结果表明,高温胁迫下柠条叶片MDA含量持续增加,说明高温胁迫使柠条叶片细胞膜脂过氧化作用增强,超氧化物歧化酶(SOD)、过氧化物酶(POD)活性呈先升后降的变化趋势,ASA含量以及脯氨酸含量总体呈上升趋势。说明高温胁迫下柠条可通过提高SOD和POD酶的活性来清除自由基,起到一定的抗氧化保护作用,但随胁迫温度的增加,其抗氧化胁迫能力具有一定的限度。ASA和脯氨酸对增强柠条叶片的抗氧化胁迫能力起到了重要的作用,它们构成了柠条适应高温逆境的重要物质基础。  相似文献   

6.
以盆栽3年生红松实生苗为材料,分为CK(对照)、T1(+3.25 μW·cm~UV-B辐射)、T2(+6.51μW·cm~UV-B辐射)及T3(+9.76 μW·cm-2 UV-B辐射)4个处理,研究环境UV-B辐射增强对红松叶片自由基含量、脂质过氧化程度及抗氧化系统的影响.结果表明:UV-B辐射增强显著提高红松针叶内羟基自由基(·OH)、过氧化氢自由基(H2O2)和MDA含量(P<0.05),T3处理下叶片的H2O2(149.05 mmol·g-1)和MDA(12.56 μmol·g-1)含量最高;UV-B辐射增强诱导过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和超氧化物歧化酶(SOD)活性升高,显著降低过氧化物酶(POD)活性(P<0.05);抗氧化物质中可溶性蛋白含量随UV-B胁迫程度加强而显著增加(CK为0.17 mg·g-1,T3处理为0.26 mg·g-1),而各UV-B辐射增强处理均降低了类胡萝卜素和类黄酮含量.各生理指标相关分析结果表明:红松针叶内可溶性蛋白含量与自由基、MDA含量间存在极显著的正相关关系(P<0.01);·OH含量与类胡萝卜素、类黄酮含量间存在极显著的负相关关系(P<0.01).研究证实UV-B辐射增强通过产生大量的自由基对红松幼苗的生理代谢产生影响,而红松幼苗通过提高抗氧化酶(CAT,APX,SOD)的活性和蛋白质的含量来抵抗UV-B辐射引起的损伤,但其防御机制并不能有效地缓解这个伤害.  相似文献   

7.
为了研究大气CO_2浓度升高对西藏特有植物的影响,以野生光核桃为研究材料,以栽培桃为对照,以高浓度CO_2为胁迫条件,分析野生光核桃和栽培桃的叶绿素含量、酶活性、叶片呼吸与光合指标的变化特征。结果表明:在高浓度CO_2条件下,栽培桃植株的部分叶片有黄化趋势,野生光核桃变化不明显。在高浓度CO_2条件下,野生光核桃抗氧化酶、光合和呼吸等指标均做出了积极的响应,保持了较高的酶活性,同时保持了正常的电子传递效率,且光合效率的下降主要是由非气孔因素引起。因此,与栽培桃相比,野生光核桃对高浓度CO_2逆境的抗性更强。  相似文献   

8.
冰冻条件下外源SA对水曲柳幼苗叶片内抗氧化酶的影响   总被引:8,自引:1,他引:8  
吴楚  王政权 《林业科学》2002,38(5):54-59
分析了冰冻胁迫下外源水杨酸 (SA ,5mmol·L- 1 和 10mmol·L- 1 )对水曲柳幼苗叶片内抗氧化酶的影响。SOD活性受到SA抑制 ,且随外源SA的浓度增加而下降 ,导致超氧自由基上升。SA也能抑制CAT和APX活性 ,CAT活性随SA浓度增加而降低 ,APX活性也有这种趋势。尽管SA提高了POD活性 ,但由于CAT和APX活性受到抑制 ,H2 O2 含量上升。GR活性也受到SA抑制 ,呈现随SA浓度增加而降低的趋势。经 5mmol·L- 1 SA处理的叶片内MDA含量下降 ,平均比对照低 35 19% ,表明低浓度SA能降低冰冻引起的伤害。  相似文献   

9.
《林业科学》2021,57(4)
【目的】研究不同CO_2浓度、不同氮素形态及供应量条件下闽楠幼苗光合特性及生长的表现,探索氮肥施用调控闽楠幼苗光合下调现象的方式。【方法】以1年生闽楠实生苗为试验材料,采用开顶式气室进行CO_2浓度处理[自然浓度(350±70)μmol·mol~(-1),升高浓度(700±10)μmol·mol~(-1)],施用不同量硝态氮及铵态氮(中等用量每株0.8 g,增加用量每株1.2 g)培育闽楠幼苗。【结果】与自然CO_2浓度处理相比,长时间高浓度CO_2处理(88天)后施用中等量硝态氮闽楠幼苗净光合速率降低26.93%(P0.05),其核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)以及Rubisco活化酶(RCA)活性、可溶性糖、淀粉、可溶性蛋白含量、苗高、地径净生长量均显著低于自然CO_2浓度处理(P0.05),说明闽楠幼苗出现光合下调现象并最终影响生长是因为光合关键酶活性降低而非光合产物积累抑制;长时间CO_2浓度升高条件下增施硝态氮或施用铵态氮闽楠幼苗净光合速率无显著变化(P0.05),其Rubisco以及RCA活性、可溶性糖、淀粉、可溶性蛋白含量以及苗高、地径净生长量均提高或无显著变化,表明增施硝态氮或施用铵态氮可以缓解长期高浓度CO_2条件对闽楠幼苗光合及生长产生的不良表现。【结论】长期CO_2浓度升高条件下,增施硝态氮或铵态氮可提高闽楠幼苗光合关键酶活性,增加有机物含量,最终促进闽楠幼苗生长以缓解其对闽楠幼苗生长的负面影响。  相似文献   

10.
[目的]研究菲胁迫下活性氧和抗氧化物质的变化规律,探究蒿柳抗氧化系统的防御机制,为提高其对多环芳烃(PAHs)的抗性及加强植物修复的研究提供理论依据。[方法]以蒿柳扦插苗为试验材料,采用水培方式,研究其在0、1.0 mg·L^-1菲处理下活性氧、抗氧化酶、抗氧化剂以及丙二醛(MDA)的动态变化,处理时间为16 d。[结果]研究表明:(1)菲处理后第4天,H2O2含量和氧自由基(O2^·-)生成速率迅速增加,MDA含量升高,过氧化氢酶(CAT)活性显著上升;第8天超氧化物歧化酶(SOD)和过氧化物酶(POD)活性显著升高;第16天时,H2O2含量下降到与对照无显著差异,O2^·-和MDA的增加量下降。(2)还原型谷胱甘肽(GSH)和谷胱甘肽还原酶(GR)在处理后第4天即迅速上升,谷胱甘肽-S-转移酶(GST)呈缓慢上升趋势。(3)还原型抗坏血酸(AsA)含量在处理后第4天低于对照,但随着处理时间的延长呈上升趋势,在第16天时高于对照。[结论]菲胁迫下,O2^·-是造成细胞膜脂过氧化的主要活性氧,SOD活性一直高于对照,但不足以清除增加的O2^·-,CAT和POD的升高可以清除过量的H2O2;GSH是抵御菲胁迫的有效抗氧化剂,并通过GST的催化参与菲的解毒。  相似文献   

11.
We investigated the changes in the contents of H2O2, malonaldehyde (MDA) and endogenous antioxidants, the activities of protective enzymes and some critical enzymes involved in the ascorbate-glutathione (ASA-GSH) cycle as well as freezing resistance (expressed as LT50) and correlations mentioned above, in detail using Populus suaveolens cuttings. The purpose was to explore the physiological mechanism of the enhancement of freezing resistance induced by freezing acclimation at –20°C, and to elucidate the physiological mechanisms by which trees adapt to freezing. The results showed that freezing acclimation enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), monodehydroascorbate reductase (MDAR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). And it increased the contents of reduced ascorbate (ASA), reduced glutathione (GSH), dehydroascorbate (DHA) and oxidized glutathione (GSSG). However, H2O2 and MDA contents and LT50 of cuttings were decreased. LT50 in cuttings was found to be closely correlated to the levels of SOD, POD, CAT, APX, DHAR, MDAR, GR, H2O2, MDA, ASA, GSH, DHA and GSSG during freezing acclimation. This suggested that the enhancement of freezing resistance of cuttings induced by freezing acclimation may relate to the distinct increase for the levels of SOD, POD, CAT, APX, DHAR, MDAR, GR, ASA, GSH, DHA, and GSSG. In addition, the observed levels of APX, DHAR, MDAR, GR, ASA, DHA, GSH and GSSG were higher than those of SOD, POD and CAT during freezing acclimation. It indicated that a higher capacity of the ASA-GSH cycle is required for H2O2 detoxification, and growth and development of cuttings. Based on the obtained results, it can be concluded that the ASA-GSH cycle plays an important role in enhancement of freezing resistance of P. suaveolens cuttings during freezing acclimation.  相似文献   

12.
We investigated the effects of increasing soil NaCl concentration on intracellular compartmentalization of salt and on the activities of antioxidant enzymes (superoxide dismutase (SOD), ascorbic peroxidase (APX), catalase (CAT) and glutathione reductase (GR)) and their role in the regulation of reactive oxygen species (ROS; O(2)(-*) and H(2)O(2)) in leaves and xylem sap of salt-tolerant Populus euphratica Oliv. and salt-sensitive P. popularis cv. 35-44. Mesophyll cells of P. euphratica exhibited a high capacity for NaCl exclusion and compartmentalization of salt in vacuoles compared with P. popularis. In P. popularis, the salt treatment resulted in large accumulations of Na(+) and Cl(-) in leaves that induced significant increases in O(2)(-*) and H(2)O(2) production despite marked increases in the activities of antioxidant enzymes in leaves and xylem sap. Separation of the isoforms of leaf SOD, APX and CAT by polyacrylamide gel electrophoresis followed by in-gel activity staining revealed that the salt-induced activities of APX and CAT were the result of increases in activities of all the isoenzymes. Leaf injury and shedding of aged leaves occurred following the oxidative burst in P. popularis, indicating that the increased activities of antioxidant enzymes in P. popularis were insufficient to counter the harmful effects of ROS at high soil NaCl concentrations. Unlike P. popularis plants, P. euphratica plants did not exhibit an oxidative burst in response to the NaCl treatments, because of (1) a high salt exclusion capacity and effective compartmentalization of salt in vacuoles, and (2) up-regulation of antioxidant enzymatic activities after the onset of salt stress. We conclude that P. euphratica plants subjected to saline conditions control ROS homeostasis through two pathways: (1) by maintaining cellular ionic homeostasis and thereby limiting the NaCl-induced enhancement of ROS production under long-term saline conditions; and (2) by rapidly up-regulating antioxidant defenses to prevent oxidative damage.  相似文献   

13.
To explore the physiological and biochemical mechanism of the occurrence of vitrified shoots of Populus suaveolens in tissue culture, the changes in water, chlorphyll, lignin, H2O2, phenylalanine ammonialyase (PAL), malonaldehyde (MDA), protective enzymatic systems, and some key enzymes involved in the ascorbate- glutathione cycle were comparatively studied in both normal and vitrified shoots of P. suaveolens. The results show that the lower activities of peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and PAL, and the less contents of chlorphyll, lignin, ascorbate (ASA) and reduced glutathione (GSH) as well as the lower ratios of ASA / DHA and GSH / GSSG are observed in vitrified shoots than in normal ones during the whole culture period. While in comparison with normal shoots, the higher activity of superoxide dismutase (SOD) and the more concentrations of water, H2O2, MDA, dehydroascorbate (DHA) and oxidized glutathione (GSSG) are found in vitrified shoots. Statistical analysis indicates that the enhanced activity of SOD and the decreased activities of CAT and POD as well as some enzymes involved in the ascorbate-glutathione cycle might be closely correlated to the accumulation of H2O2. The less regeneration of ASA and GSH and the lower capacity of the ascorbate-glutathione cycle observed in vitrified shoots might be due to a significant decrease in APX, MDAR, DHAR and GR activities and a decline in redox status of ASA and GSH. The decreases in chlorphyll content might result in a decline in photosynthesis. The lower activities of POD and PAL could result in the decrease of lignin synthesis and cell wall ligination, which might be the key factor leading to the increase in water content. It is concluded that the deficiency of detoxification capacity caused by the lower capacity of the ascorbate-glutathione pathway and the decreased activity of protective enzymatic system might lead to the large accumulation of H2O2 and the enhancement of membrane lipid peroxidation, which might be the main cause leading to the occurrence of vitrifying shoots of P. suaveolens in tissue culture. [Supported by National Natural Science Foundation of China (Grant No. 30271093) and the Foundation of State-designated Base for Biology Researching and Teaching in Beijing Forestry University]  相似文献   

14.
To explore the physiological and biochemical mechanism of the occurrence of vitrified shoots of Populus suaveolens in tissue culture, the changes in water, chlorphyll, lignin, H202, phenylalanine ammonialyase (PAL), malonaldehyde (MDA), protective enzymatic systems, and some key enzymes involved in the ascorbate- glutathione cycle were comparatively studied in both normal and vitrified shoots of P suaveolens. The results show that the lower activities of peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and PAL, and the less contents of chlorphyll, lignin, ascorbate (ASA) and reduced glutathione (GSH) as well as the lower ratios of ASA / DHA and GSH / GSSG are observed in vitrified shoots than in normal ones during the whole culture period, While in comparison with normal shoots, the higher activity of superoxide dismutase (SOD) and the more concentrations of water, H2O2, MDA, dehydroascorbate (DHA) and oxidized glutathione (GSSG) are found in vitrified shoots. Statistical analysis indicates that the enhanced activity of SOD and the decreased activities of CAT and POD as well as some enzymes involved in the ascorbate-glutathione cycle might be closely correlated to the accumulation of H202. The less regeneration of ASA and GSH and the lower capacity of the ascorbate-glutathione cycle observed in vitrified shoots might be due to a significant decrease in APX, MDAR, DHAR and GR activities and a decline in redox status of ASA and GSH. The decreases in chlorphyll content might result in a decline in photosynthesis. The lower activities of POD and PAL could result in the decrease of lignin synthesis and cell wall ligination, which might be the key factor leading to the increase in water content. It is concluded that the deficiency of detoxification capacity caused by the lower capacity of the ascorbate-glutathione pathway and the decreased activity of protective enzymatic system might lead to the large accumulation of H2O2 and the enhancement of membrane lipid peroxidation, which might be the main cause leading to the occurrence of vitrifying shoots of P.suaveolens in tissue culture.  相似文献   

15.
An attempt was made to examine the possible connection between the various ratios of calcium/aluminum (Ca/Al) in the nutrient solution of plant cultures and the active oxygen scavenging system of hinoki cypress (Chamaecyparis obtusa) seedlings. The hinoki cypress seedlings were transferred to nutrient solutions containing 5 mM AlCl3 together with various concentrations of Ca(NO3)2 in pots containing glass beads and Teflon tips. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) in the needles were estimated at several stages during the 7-day treatment. The samples treated with the lower Ca/Al solutions show the highest SOD activities. The activities of APX and GR, both of them involved in the ascorbate-glutathione cycle, showed the same tendency with decrease to higher Ca/Al ratio. These results indicate that rhizospheric Ca might compete with Al and ameliorate Al toxicity on and in the roots, the Al stress is not transformed to the needles after a few days, and the ascorbate-glutathione cycle in the hinoki cypress needles might fluctuate and be suppressed by the rhizospheric Al stress during the 7 days. This work was supported in part by funding from the Japan Science & Technology Corporation, the CREST program 1996–2001, and the Center for Forest Decline Studies.  相似文献   

16.
The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) in response to mechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses. Foundation project: This research is supported by the Key Science Program of the Sate Forestry Administration of China (2006–59), and the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (2006BAD01A15; 2006BAD24B04). Biography: AN Yu (1982–), female, Postgraduate in College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China.  相似文献   

17.
Xanthophyll rhodoxanthin, which is present in sun-exposed needles of certain gymnosperms in winter, may have a photoprotective role during long-term cold acclimation. To examine how cold acclimation processes vary within tree crowns and to examine putative correlations between xanthophyll cycle pigments (VAZ), rhodoxanthin and the water-water cycle in photoprotection, we monitored seasonal changes in the activities of two key antioxidant enzymes (ascorbate peroxidase (APX) and glutathione reductase (GR)), pigment composition and chlorophyll fluorescence parameters in sun and shade needles of crowns of the gymnosperm Cryptomeria japonica D. Don. Although APX and GR activities in both sun and shade needles were higher in winter than in summer when assayed at 20 degrees C, differences between seasons were less pronounced when enzymatic activities in summer and winter were assayed at 20 and 5 degrees C, respectively. These results suggest that increases in the potential activity of antioxidant enzymes in winter is an adaptation that helps counterbalance reductions in absolute enzyme activity caused by low temperature, and thus allows the photoprotective capacity of the water-water cycle in C. japonica to be maintained at a roughly constant value throughout the year. In shade needles, the concentration of VAZ increased in winter, but no rhodoxanthin accumulated. Photosynthetic activity was maintained in winter. In sun needles, however, the electron transport rate (ETR) and photochemical quenching (q(P)) decreased to their lowest values in December, just before the accumulation of rhodoxanthin, which coincided with the highest amount of VAZ. Changes in rhodoxanthin concentration mirrored changes in VAZ concentration from January to March. Winter values of ETR and q(P) were comparable with summer values after accumulation of rhodoxanthin, indicating that rhodoxanthin may play a more important role than the VAZ cycle in protecting the photosynthetic apparatus from photodamage in winter. Photosynthetic activity may be modulated, as a result of the interception of light by rhodoxanthin, to match the extent to which absorbed light energy can be utilized in winter when the VAZ cycle is unable to operate effectively because of low temperatures.  相似文献   

18.
The changes of hydrogen peroxide(H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar(Populus simonii ×P.pyramidalis ‘Opera 8277') in response to mechanical damage(MD) and herbivore wounding(HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance.Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves.The activities of antioxida...  相似文献   

19.
试验选取盆栽巨龙竹(Dendrocalamus sinicus)实生苗,通过控制土壤水分含量设置轻度干旱、中度干旱和重度干旱3个胁迫水平研究不同干旱胁迫处理对巨龙竹实生苗的光合参数和抗氧化酶活性的影响。结果表明:随干旱程度的增加,土壤含水量显著下降,巨龙竹实生苗叶片的叶绿素含量(SPAD值)、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)均呈下降趋势,而胞间CO2浓度(Ci)在中度和重度干旱时呈上升趋势;在3种干旱强度下,SOD活性呈现先上升后下降再上升的变化趋势,APX活性和丙二醛含量均高于对照,CAT均低于对照。由研究结果可见,干旱会引起巨龙竹实生苗光合参数下降,光合速率下降的原因表现为随着干旱强度的增加由气孔限制原因转为非气孔限制原因,并且SOD和APX是巨龙竹在干旱胁迫下起主要作用的2种酶。巨龙竹实生苗在轻度干旱环境中表现出良好的适应性,但在中度和重度干旱环境中其适应性较差。  相似文献   

20.
硒对粗壮女贞新梢和生理参数的影响   总被引:2,自引:0,他引:2  
采用国际通用营养液配方,以砂培方式研究不同质量浓度硒对粗壮女贞叶绿素、根系活力、SOD、POD、CAT、GR、MDA以及新梢萌芽能力的影响,结果表明:硒质量浓度为1mg/L时,SOD、POD活性最弱,根系活力最强,可促进粗壮女贞的生长,增强新梢的萌芽能力。而当硒质量浓度大于1mg/L时,则会起到抑制作用;MDA随着硒质量浓度的增大呈升高趋势,CAT和GR活性随着硒质量浓度的增加而减弱。因此认为适量的硒处理能够增强粗壮女贞的抗氧化能力,提高产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号