首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
T. Magg    M. Bohn    D. Klein    V. Merditaj  A. E. Melchinger 《Plant Breeding》2003,122(4):322-327
The European corn borer (ECB), Ostrinia nubilalis Hb., is a major pest of maize in Central Europe and is suspected to promote infection of maize with Fusarium species. The objectives of this study were to (1) determine moniliformin (MON) concentration in early maturing European Bt maize hybrids, their isogenic counterparts, commercial cultivars and experimental hybrids, (2) evaluate the association between MON concentration and ECB resistance and (3) correlate MON concentration with concentrations of other mycotoxins determined from the same plant materials. The field experiments were performed at five locations in Germany. MON concentration was significantly higher with manual infestation of ECB larvae (296 μg/kg) than under insecticide protection (66 μg/kg). Bt hybrids showed significantly lower MON concentrations and higher grain yields under manual ECB infestation than their corresponding isogenic counterparts, as well as commercial and experimental hybrids. All ECB resistance traits and grain yield under ECB infestation were significantly correlated with MON concentration. Correlations between concentrations of MON and other Fusarium mycotoxins were not significant. The use of Bt maize hybrids or insecticides to control ECB reduces the contamination of maize grains with MON in Central Europe. The presence of resistance genes against Fusarium species in the current elite maize germplasm was indicated by ECB susceptible non‐Bt hybrids with low‐MON concentrations.  相似文献   

2.
T. Magg    A. E. Melchinger    D. Klein  M. Bohn 《Plant Breeding》2001,120(5):397-403
The European corn borer (ECB), Ostrinia nubilalis (Hübner), is a major pest of maize (Zea mays L.) in Central Europe. In order to compare transgenic Bt maize hybrids with their non‐transgenic counterparts and commercial hybrids, field trials and a laboratory bioassay were conducted. The field experiments were performed at four locations with natural and manual infestation of ECB larvae in 1998 and 1999. Transgenic Bt hybrids showed significantly lower means than their corresponding non‐transgenic counterparts and commercial hybrids for all resistance traits (damage rating of stalks, number of larvae per plant, and percentage of damaged plants or ears under infestation). Bt hybrids containing the CryIA(b) gene under the control of green tissue and pollen‐specific promoters (event 176) showed a significantly higher percentage of damaged ears than Bt hybrids carrying the CryIA(b) gene under the control of a constitutive promoter (Mon810). Bt and non‐Bt hybrids showed no significant differences for all agronomic traits, except for plant height under insecticide protection and grain yield reduction under infestation, whereas Bt hybrids had significantly lower means than their non‐transgenic counterparts and other commercial hybrids. All resistance traits were significantly correlated with grain yield reduction. The laboratory bioassay confirmed the level of antibiosis of Bt hybrids against neonate ECB larvae. Bt hybrids showed the highest level of ECB resistance and therefore are an attractive method of preventing ECB damage within an integrated pest‐management system.  相似文献   

3.
Fusarium culmorum is one of the most important Fusarium species causing head blight infections in wheat, rye, and triticale. It is known as a potent mycotoxin producer with deoxynivalenol (DON), 3‐acetyl deoxynivalenol (3‐ADON), and nivalenol (NIV) being the most prevalent toxins. In this study, the effect of winter cereal species, host genotype, and environment on DON accumulation and Fusarium head blight (FHB) was analysed by inoculating 12 rye, eight wheat, and six triticale genotypes of different resistance levels with a DON‐producing isolate at three locations in 2 years (six environments). Seven resistance traits were assessed, including head blight rating and relative plot yield. In addition, ergosterol, DON and 3‐ADON contents in the grain were determined. A growth‐chamber experiment with an artificially synchronized flowering date was also conducted with a subset of two rye, wheat and triticale genotypes. Although rye genotypes were, on average, affected by Fusarium infections much the same as wheat genotypes, wheat accumulated twice as much DON as rye. Triticale was least affected and the grain contained slightly more DON than rye. In the growth‐chamber experiment, wheat and rye again showed similar head blight ratings, but rye had a somewhat lower relative head weight and a DON content nine times lower than wheat (3.9 vs. 35.3 mg/kg). Triticale was least susceptible with a five times lower DON content than wheat. Significant (P = 0.01) genotypic variation for DON accumulation existed in wheat and rye. The differences between and within cereal species in the field experiments were highly influenced by environment for resistance traits and mycotoxin contents. Nevertheless, mean mycotoxin content of the grain could not be associated with general weather conditions in the individual environments. Strong genotype‐environment interactions were found for all cereal species. This was mainly due to three wheat varieties and one rye genotype being environmentally extremely unstable. The more resistant entries, however, showed a higher environmental stability of FHB resistance and tolerance to DON accumulation. Correlations between resistance traits and DON content were high in wheat (P = 0.01), with the most resistant varieties also accumulating less DON, but with variability in rye. In conclusion, the medium to large genotypic variation in wheat and rye offers good possibilities for reducing DON content in the grains by resistance selection. Large confounding effects caused by the environment will require multiple locations and/or years to evaluate FHB resistance and mycotoxin accumulation.  相似文献   

4.
Fusarium graminearum (FG) and F. verticillioides (FV) produce the mycotoxins deoxynivalenol (DON), zearalenone (ZEA) and fumonisins (FUM), respectively, in maize. The EU released limits for these toxins in food. Growing resistant varieties is one alternative to fulfill these limits. Quantification of mycotoxin concentrations is expensive and time consuming. If indirect selection based on cost efficient and fast ear rot rating is feasible, this could increase efficiency of selection. The objective of this study was to analyze correlations between mycotoxin concentrations and ear rot rating by inoculating three maturity groups (early, mid-late, late) each comprising about 50 inbred lines tested in Central and Southern Europe. In the early maturity group flint lines were more susceptible in all instances except ZEA than dent lines. Broad ranges and significant (P < 0.01) genotypic variances were detected, but also genotype × environment interaction variances were significant (P < 0.01). Heritabilities of ear rot rating were similar or higher than those of mycotoxin concentrations (0.61−0.93 and 0.56–0.89, respectively). Although high genotypic correlations between FUM and DON or ZEA were found (0.77; 0.76, respectively), separate testing of FV and FG and corresponding mycotoxins is necessary since genotypes resistant to FV were not necessarily resistant to FG and vice versa. Medium to high heritabilities and high genotypic correlations between ear rot and corresponding mycotoxin concentrations (0.87–0.99) suggest frequent identification of lines with reduced mycotoxin concentrations by ear rot rating. Assuming fixed budgets we conclude that indirect selection by applying cost efficient ear rot rating could increase selection intensity and therefore is more effective than direct selection for reduced mycotoxin concentrations.  相似文献   

5.
Sources of resistance to Fusarium spp. are needed to develop maize hybrids resistant to the accumulation of fungal mycotoxins in the grain. In a search for resistant germplasm in 1999 and 2000, a set of Argentinian maize populations was evaluated in Ottawa, Canada, for resistance to ear rots after inoculation with local isolates of Fusarium verticillioides and F. graminearum. Sixteen of these populations, varying in observed resistance levels, were re-evaluated in 2003 and 2004 in Pergamino, Argentina, using local isolates of the same fungi. Conidial suspensions of each fungal species were inoculated into the silk channel of primary ears. Disease severity was assessed after physiological maturity using a scale based on the percentage of visibly infected kernels. Genotype effect was more important than genotype-by-fungal species or genotype-by-fungal species-by-environment interaction effects. In addition, disease severity levels associated with each fungal species were positively correlated (P < 0.05) (r = 0.90, r = 0.81, r = 0.87 and r = 0.53, in Ottawa 1999 and 2000, and Pergamino 2003 and 2004, respectively). Populations ARZM 01107, ARZM 07138, ARZM 10041, ARZM 13031, ARZM 16002 and Pora INTA exhibited the highest and most stable resistance to both species. Considering that disease resistance exhibited low specificity to the environment and to the fungal species in evaluations conducted in a wide range of environments and with fungal isolates collected from different hemispheres, the most resistant populations are potential sources of genes for stable resistance to these Fusarium spp.  相似文献   

6.
F. Wilde    T. Miedaner 《Plant Breeding》2006,125(1):96-98
Fusarium head blight (FHB) results in yield losses and contamination of kernels by mycotoxins, particularly deoxynivalenol (DON). For minimizing DON content in grain, indirect selection methods would increase gains from selection compared to the costly and time‐consuming DON analysis. The aim of this study was to examine whether an early selection for fewer FHB symptoms would lead to a reduced DON content in grain after inoculation with Fusarium culmorum. Starting with a double‐cross derived population of about 1,100 genotypes, 30 F1:3 genotypes were selected for FHB rating in a two‐step selection in spring wheat with the non‐adapted resistance sources CM82036 and ‘Frontana’. In winter wheat, 30 F1:2 genotypes were selected out of a double‐cross derived population of about 600 F1 plants from crosses with German resistance sources (‘Dream’, G16‐92). Selected genotypes were grouped in three categories according to their FHB rating (low, moderate and high) and analysed afterwards for grain DON content. The three groups differed in their DON content illustrating that indirect selection should already be feasible in the earliest generations. Because of the wide genotypic ranges for DON contents within one grouping, a final DON analysis for selected materials is advisable to achieve full selection gain.  相似文献   

7.
Small-grain winter cereal crops can be infected with Fusarium head blight (FHB) leading to mycotoxin contamination and reduction in grain weight and quality. Although a number of studies have investigated the genetic variation of genotypes within each small-grain cereal, a systematic comparison of the winter crops rye, triticale, durum and bread wheat for their FHB resistance, Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) contamination across species is still missing. We have therefore evaluated twelve genotypes each of four crops widely varying in their FHB resistance under artificial infection with one DON-producing F. culmorum isolate at constant spore concentrations and additionally at crop-specific concentrations in two environments. Rye and triticale were the most resistant crops to FHB followed by bread and durum wheat at constant and crop-specific spore concentrations. On average, rye accumulated the lowest amount of DON (10.08 mg/kg) in the grains, followed by triticale (15.18 mg/kg) and bread wheat (16.59 mg/kg), while durum wheat had the highest amount (30.68 mg/kg). Genotypic variances within crops were significant (p ≤ .001) in most instances. These results underline the differing importance of breeding for FHB resistance in the different crops.  相似文献   

8.
Gibberella ear rot (GER) caused by Fusarium graminearum is a destructive disease in maize of temperate regions resulting in yield reduction and contamination by the mycotoxins deoxynivalenol (DON) and zearalenone (ZON). We wanted to analyse whether prediction of DON and ZON concentrations is feasible either by GER severity ratings or by near‐infrared spectroscopy (NIRS). We analysed 80 and 102 lines developed by backcrossing doubled‐haploid lines from segregating populations to the resistant and susceptible parent, respectively, by artificial infection at three locations in Germany and France. Both backcross (BC) populations differed substantially in their means for all traits with significant (P < 0.01) genotypic variances. DON and ZON concentrations measured by immunotests were significantly (P < 0.01) correlated with each other and with GER severity within each BC population (0.6 ≤ r ≤ 0.9, P < 0.01). DON concentration measured by immunotest and NIRS significantly correlated (r ≈ 0.9, P < 0.01). In conclusion, DON and ZON concentrations could be reliably predicted by GER severity. Additional NIRS analysis of DON concentration might be useful for the positively selected fraction.  相似文献   

9.
Fusarium head blight (FHB) caused by Fusarium species, is among the most devastating wheat diseases, causing losses in numerous sectors of the grain industry through yield and quality reduction, and the accumulation of poisonous mycotoxins. A germplasm collection of spring and winter wheat, including nine reference cultivars, was tested for Type II FHB resistance and deoxynivalenol (DON) content. Genetic diversity was evaluated on the basis of Simple Sequence Repeat (SSR) markers linked to FHB resistance quantitative trait loci (QTLs) and Diversity Arrays Technology (DArT) markers. The allele size of the SSR markers linked to FHB resistance QTLs from known resistance sources was compared to a germplasm collection to determine the presence of these QTLs and to identify potentially novel sources of resistance. Forty-two accessions were identified as resistant or moderately resistant to Fusarium spread, and two also had very low DON concentrations. Genetic relationships among wheat accessions were generally consistent with their geographic distribution and pedigree. SSR analysis revealed that several resistant accessions carried up to four of the tested QTLs. Resistant and moderately resistant lines without any known QTLs are considered to be novel sources of resistance that could be used for further genetic studies.  相似文献   

10.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Schwabe), is an important wheat disease. In addition to head blight, F. graminearum also causes Fusarium seedling blight (FSB) and produces the mycotoxin deoxynivalenol (DON) in the grain. The objectives of this study were: (1) to compare the relationship between resistance of wheat lines to F. graminearum in the seedlings and spikes and (2) to determine whether the quantitative trait loci (QTL) for FSB were the same as QTLs for FHB resistance and DON level reported for the same population previously (Somers et al. 2003). There was no relationship between FSB infection and FHB index or DON content across the population. A single QTL on chromosome 5B that controlled FSB resistance was identified in the population; the marker WMC75 explained 13.8% of the phenotypic variation for FSB. This value implies that there may be other QTL with minor effects present, but they were not detected in the analysis. Such a QTL on chromosome 5B was not reported previously among the QTLs associated with FHB resistance and DON level in this population. However, because of recombination, some lines in the present study have Fusarium resistance for both seedling and head blight simultaneously. For example, DH line HC 450 had the highest level of resistance to FSB and FHB and was among the ten lines with lowest DON content. This line is a good candidate to be used as a parent for future crosses in breeding for Fusarium seedling resistance, together with breeding for head blight resistance. This approach may be effective in increasing overall plant resistance to Fusarium.  相似文献   

11.
Fusarium head blight (FHB) in wheat and triticale leads to contamination of the grain with the mycotoxin deoxynivalenol (DON) that is harmful to animal and man. A fast, low-cost, and reliable method for quantification of the DON content in the grain is essential for selection. We analysed 113 wheat and 55 triticale genotypes for their symptom development on spikes, Fusarium exoantigen (ExAg) and DON content in the grain after artificial inoculation with a highly aggressive isolate of F. culmorum in three (wheat) and six (triticale) location-by-year combinations. Additionally, in triticale the amount of Fusarium damaged kernels (FDK) was assessed. ExAg content was analysed by a newly developed Fusarium-specific plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) and DON content by an immunoassay. A moderate disease severity resulted in an ExAg content of 0.87 optical density (OD) units in wheat and 1.02 OD in triticale. DON content ranged from 12.0 to 105.2 mg kg–1 in wheat and from 24.2 to 74.0 mg kg–1 in triticale. Genotypic and genotype-by-environment interaction variances were significant (P < 0.01). Coefficient of phenotypic correlation between DON content analysed by the immunoassay and ExAg content was r = 0.86 for wheat and r = 0.60 for triticale. The highest correlation between DON content and symptom rating was found by FHB rating in wheat (r = 0.77) and by FDK rating in triticale (r = 0.71). In conclusion, selection for reduced FHB symptoms should lead to a correlated selection response in low fungal biomass and low DON content in the grain.  相似文献   

12.
Summary Fusarium head blight infection causes severe yield losses and contamination of the grain with mycotoxins in triticale (× Triticosecale Wittmack) grown in temperate and semihumid areas. In a two-year experiment thirty-six genotypes were inoculated separately with two isolates of Fusarium graminearum differing fivefold in their in vitro deoxynivalenol (DON) production and the effect on various traits was studied. All traits were significantly affected by head blight. The two isolates differed considerably in their aggressiveness resulting in a mean reduction of grain weight per spike of almost 25% and 50%, respectively. Inter-annual correlation was high for average disease rating (r=0.63, P<-0.01) and low for the other traits. Therefore, disease rating, averaged from two to three records, was regarded a suitable criterion for screening purposes. The effect of isolates on genotypes was not stable over years. The mean DON content of five genotypes with diverse resistance levels was 68 mg kg-1. In vitro DON production of the two isolates used for inoculation did not correspond to their aggressiveness and DON contamination of the grain.  相似文献   

13.
The European corn borer (ECB, Ostrinia nubilalis Hübner) is a major pest of maize (Zea mays L.) in North America and Europe. In this study, we mapped and characterized QTL affecting the resistance to the first (ECB1) and second generation (ECB2) of ECB and plant height with the aid of 164 SNP and 88 SSR markers. A total of 144 testcross (TC) progenies of double haploid (DH) lines developed from a cross of two parental lines from the Stiff Stalk germplasm pool were tested at six different locations in the USA under both natural and artificial infestation with ECB larvae. Resistance to ECB1 and ECB2 was assessed by measuring leaf feeding and stalk breakage, respectively, using a visual rating scale from 1 (severe damage) to 9 (no damage). Genotypic variance among the TC progenies was significant for all traits. Heritabilities were moderately high (0.69) for stalk breakage and plant height (0.75), but only moderate for leaf feeding (0.43). For stalk breakage, three QTL were detected that together explained 36% of the genetic variance, whereas for leaf feeding only one QTL was mapped, which explained 25% of the genotypic variance. For plant height, two QTL were identified, explaining 20% of the genotypic variance. The QTL for leaf feeding and stalk breakage mapped by us were located in chromosomal regions adjacent to those reported for other maize germplasm and therefore might be suitable candidates for marker-assisted selection (MAS) during line development.  相似文献   

14.
The European com borer (ECB) Ostrinia nubilalis H. is a major pest in World maize Zea mays L. production. Objectives of this study were to (1) investigate the genotypic variance and covariance in testcrosses of European flint and dent inbreds for ECB resistance and agronomic traits, and (2) estimate the correlation between line per se and testcross performance for ECB resistance traits. A total of 16 flint and 24 dent inbreds and their testcrosses with two testers from the opposite germplasm pool were evaluated in four and three German environments, respectively. Using artificial infestation with ECB larvae, resistance was assessed by damage rating of stalks, tunnel length in dissected stalks, and relative yield of infested plots compared with protected plots. Yield losses due to ECB damage in testcross hybrids amounted to 40%. Significant genotypic variances between flint and dent lines and high heritabilities were found for damage rating of stalks for both line per se and testcross performance. Heritabilities were low or intermediate for tunnel length and relative grain yield. Correlations between line per se and testcross performance were tight for the damage rating of stalks and moderate for tunnel length and relative yield in both flint and dent germplasm. For damage rating of stalks, per se performance of lines tested in a few environments can be used to predict their testcross performance. In contrast, assessment of testcross performance for tunnel length and relative yield requires evaluating testcrosses with several testers in multi-environment trials.  相似文献   

15.
Mediterranean corn borer (MCB) (Sesamia nonagrioides Lef) and European corn borer (ECB) (Ostrinia nubilalis Hbn) are the most important biotic stresses of maize in Europe. The first selection program to improve stalk resistance to MCB was carried out in the maize population EPS12. It has shown that selection was effective to improve stalk resistance to MCB and ECB, while yield was not significantly diminished. The objective of this research was to determine if correlated changes in EPS12 occurred due to selection for resistance to MCB. Cycles of selection per se and testcrosses to three testers were evaluated under MCB and ECB artificial infestation at two different Spanish locations during 2 years. Selection has significantly reduced cob damage, days to silking, plant and ear height, and 100-kernel weight; meanwhile early vigor was increased. These changes could rather be a consequence of unconscious selection and/or the genetic correlation of these traits with resistance than a consequence of genetic drift.  相似文献   

16.
Fusarium head blight (FHB) remains a serious problem that causes yield and grain quality losses, and mycotoxin accumulation in wheat production in western Japan. A 3-year field trial with artificial FHB inoculation was conducted to evaluate varietal characteristics of FHB resistance among 31 wheat cultivars/lines cultivated in western Japan, including one standard line. Severity of FHB, frequency of Fusarium-damaged kernels (FDK), deoxynivalenol concentration (DON), nivalenol concentration (NIV), and grain yield showed significant differences among years and among cultivars/lines. Interaction between years and cultivars/lines was also significant in these traits, but F values were larger for cultivars/lines than for the interaction. Correlation analysis showed that cultivars/lines with lower FHB severities tended to have lower FDK, DON and NIV, and a higher yield. Resistance to kernel infection (RKI), residuals calculated by regressing FDK against FHB severity, and resistance to mycotoxin accumulation (RTA), residuals calculated by regressing DON + NIV against FDK, also differed significantly among cultivars/lines. These results indicated that varietal differences in response to FHB symptom development, RKI and RTA exist among wheat cultivars/lines in western Japan. Such information is important to aid producers in controlling the disease and for breeders to improve FHB resistance and reduce mycotoxin accumulation in commercial wheat cultivars.  相似文献   

17.
Breeding wheat and rye for resistance to Fusarium diseases   总被引:6,自引:1,他引:6  
T. Miedaner 《Plant Breeding》1997,116(3):201-220
Fusarium culmorum and F. graminearum Groups 1 and 2 cause seedling blight, crown rot, foot rot and head blight in wheat and rye that may affect grain yield and quality for baking and feeding. This review starts with an analysis of Fusarium populations with regard to their genetic variation for aggressiveness, mycotoxin production, and isolate-by-host genotype interaction. To assess resistance in the different host growth stages, quantitative inoculation and disease assessment techniques are necessary. Based on estimated population parameters, breeding strategies are reviewed to improve Fusarium resistance in wheat and rye. Epidemiological and toxicological aspects of Fusarium resistance that are important for resistance breeding are discussed. F. culmorum and F. graminearum display large genetic variation for aggressiveness in isolate collections and in naturally occurring populations. The production of mycotoxins, especially deoxynivalenol and its derivatives, is a common trait in these populations. Significant isolate-by-host genotype interactions were not found across environments in wheat and rye. Artificial infections in the field are indispensable for improving Fusarium crown rot, foot rot and head blight resistance in wheat and rye. For a reliable disease assessment of large populations, disease severity ratings were found to be the most convenient. The differentiation of host resistance is greatly influenced by an array of nongenetic factors (macro-environment, microclimate, host growth stage, host organ) that show significant interactions with host genotype. Selection for environmentally stable resistance has to be performed in several environments under a maximum array of different infection levels. Selection in early growth stages or on one plant organ does not in most cases allow prediction of resistance in adult-plant stages or another plant organ. Significant genetic variation for resistance exists for all Fusarium-incited diseases in breeding populations of wheat and rye. The patho-systems studied displayed a prevalence of additive gene action with no consistent specific combining ability effects and thus rapid progress can be expected from recurrent selection. In wheat, intensive testing of parental genotypes allows good prediction of the mean head blight resistance after crossing. Subsequent selection during selfing generations enables the use of transgression towards resistance. In hybrid breeding of winter rye, the close correlation between foot rot resistance of inbred lines and their GCA effects implies that selection based on the lines per se should be highly effective. This is not valid for F. culmorum head blight of winter rye caused by a greater susceptibility of the inbred lines compared to their crosses. For both foot rot and head blight resistance, a high correlation between the resistance to F. graminearum and F. culmorum was found in wheat and rye. Mycotoxin accumulation occurs to a great extent in naturally and artificially infected plant stands. The correlation between resistance traits and mycotoxin contents are medium and highly dependent on the environment. Further experiments are needed to clarify whether greater resistance will lead to a correlated reduction of the mycotoxin content of the grains under natural infection.  相似文献   

18.
Fusarium culmorum head blight infections may lead to accumulation of toxic metabolites in winter rye grain. To estimate the correlation between resistance traits, fungal colonization and accumulation of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON) and zea-ralenone (ZEA), 27 winter rye single-cross hybrids were artificially inoculated in 1992 and 1993. Resistance traits were head blight rating and grain weight of the inoculated relative to the non-inoculated plots. Fungal colonization was determined by the analysis of ergosterol (ERG) content in the grain. Head blight rating and relative grain yield showed a medium to high disease severity and ERG indicated a considerable fungal colonization of the kernels with a mean of 85 mg/kg in 1992 and 66 mg/kg in 1993. DON content among genotypes ranged from 0.7–28 mg/kg in 1992 and from 11 to 35 mg/kg in 1993. 3-AcDON and ZEA contents were low in both years with overall means of 1.1 and 0.09 mg/kg, respectively. Across both years, considerable genotypic variation was found for head blight rating, relative grain weight, and ERG content with medium to high heritabilities (0.6–0.7). For the mycotoxin contents, however, genotype-year interaction variance was the most important source of variation. The correlations between relative grain weight and DON, 3-AcDON, or ZEA were low in 1992 (r ~ 0.3), but considerably higher in 1993 (r ~ 0.7, P = 0.01). In contrast, correlation between relative grain weight and ERG was significant in both years (r ~ 0.5, P = 0.01). In F. culmorum head blight infections, DON, 3-AcDON and ZEA contents appear to be affected, at least partially, by different environmental factors than resistance traits and fungal colonization.  相似文献   

19.
Stenocarpella maydis and Fusarium graminearum affect grain yield and quality as a result of mycotoxins produced. A negative association of yield with resistance to cob rots has been reported. The objectives of this study were therefore to investigate the influence of cob characteristics on the response to F. graminearum and S. maydis disease reaction and evaluate the prospects of direct selection for high‐yielding and resistant maize hybrids. In this study, the pathogens were directly introduced to the cob through toothpick inoculation. Correlation of husk cover to disease severity of each pathogen, separately toothpick inoculated, was significant (P < 0.01). However, the low r values (<0.45) of traits associated with the response to inoculation by S. maydis and F. graminearum imply that indirect selection would not be beneficial for obtaining the type of resistance shown under inoculation. Several hybrids combined good yields with at least moderate resistance to both pathogens.  相似文献   

20.
Forty-five Musa clones, including endemic and introduced cultivars plus hybrids, were evaluated for resistance against the banana weevil, Cosmopolites sordidus, in a field trial in Uganda. The predominant groups of staple crops, East African highland bananas (Musa spp. AAA) and plantains (Musaspp. AAB), as well as plantain-derived hybrids (AAB × AA), showed the highest levels of susceptibility to this pest. These were followed by dessert bananas (Musa spp. AAA), exotic bananas (Musa spp. ABB) and finally diploids of M. acuminata (AA). Hybrids of banana origin were highly resistant. Some East African highland cultivars, especially brewing types (e.g., Kabula, Bagandeseza, Ediirira), showed intermediate levels of resistance. Among the non-highland bananas, high levels of resistance were observed in Yangambi-Km5 (AAA), Cavendish (AAA), Gros Michel (AAA), Kayinja (ABB, Pisang Awak subgroup), Ndiizi (AB, Ney Poovan subgroup)and Kisubi (Ney Poovan subgroup). The highest resistance was observed in banana hybrids TMB2×7197-2, TMB2×8075-7 and the wild banana Calcutta-4 (AA). These were considered the best sources of resistance for a weevil resistance-breeding programme with the two hybrids commonly used as improved male parents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号