首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrotermes termitaria are conspicuous features of savannah ecosystems in the Sudanian and Sahelian zones of West Africa. The mounds, alive or abandoned, are a major source of heterogeneity in the landscape. The purpose of the present study was to assess the impact of termitaria on tree community in a state forest of the Sudanian regional centre (Tiogo forest, Burkina Faso), under controlled burning and grazing experiments. A comparative inventory was carried out in a split-plot experiment (16 subplots of 2500 m2): 8 subplots where fire regime and grazing were controlled and 8 subplots exposed to grazing and with annual prescribed fire since 1992. All tree individuals (≥1.5 m) were recorded, both on termitaria and outside and their basal area at stump level was measured. A total of 61 observed (or 65.7 ± 2.4 estimated) tree species were recorded on 28 Macrotermes subhyalinus mounds (54 observed species or 60.8 ± 3.3 estimated), the immediate surroundings (44 observed and 59.0 ± 0.0 estimated species) and the rest of subplots (56 observed and 63.6 ± 0.0 estimated). Specific density was higher on mounds in comparison with the surroundings (P < 0.05). Results showed that termitaria played a key role in maintaining higher species diversity as compared to their surroundings (P < 0.05). Differences in species diversity between termitaria and immediate surroundings appeared more pronounced in disturbed plots (submitted to both fire and grazing). Some species, such as Tamarindus indica, Boscia senegalensis, Cadaba farinosa, Capparis sepiaria and Maerua angolensis are found solely on termitaria. Besides, the density of trees was significantly higher on termitaria compared to the surrounding (P < 0.05), as well as total basal area per unit of 100 m2 area (P < 0.05). We concluded that Macrotermes termitaria play an important role as a source of heterogeneity in this Sudanian savannah woodland ecosystem. This role is particularly important in ecosystems under stresses. Termitaria acted as refuge for tree vegetation. The density and dynamics of M. subhyalinus termitaria should, therefore, be taken into account in the global strategy of the forest resources management and conservation.  相似文献   

2.
A high incidence of Diplodia shoot blight (site means ranging 85-100%) was observed on recently planted red pine (Pinus resinosa) seedlings where mature red pine stands previously had been clearcut. An investigation of the potential of harvest debris as a source of inoculum of Diplodia pathogens then was conducted. Cones, bark, needles, stems from shoots bearing needles, and stems from shoots not bearing needles (both suspended above the soil and in soil contact) were collected from harvest debris left at sites where clearcutting occurred. Conidia were quantified, and their germination rate was assessed, and Diplodia species were identified using PCR. Conidia of Diplodia species were found at all study sites and conidia counts increased from samples collected from 6 to 18 months after harvest. Germinable conidia were obtained from debris collected 6 months to 5 years after harvest. Fewer conidia were obtained from debris collected at intervals of up to 4-5 years after harvest and the percentage of germinable conidia was lower after longer intervals following harvest. More conidia were obtained and a greater percentage germinated from debris collected above the soil than from debris in soil contact. The host substrate also influenced the number of conidia and the percentage that germinated. Planting red pine seedlings next to debris infested with Diplodia pathogens could provide a persistent source of inoculum. Results should prompt further consideration by land managers and researchers of the potential forest health risks, in addition to benefits, that may be associated with harvest debris.  相似文献   

3.
We tested the effects of species and spacing of nurse trees on the growth of Hopea odorata, a dipterocarp tree indigenous to Southeast Asia, in a two-storied forest management system in northeast Thailand. Eucalyptus camaldulensis, Acacia auriculiformis, and Senna siamea were planted as nurse trees in 1987 at spacings of 4 m × 8 m, 2 m × 8 m, 4 m × 4 m, and 2 m × 4 m in the Sakaerat Silvicultural Research Station of the Royal Forest Department, Thailand. Seedlings of H. odorata were planted in the nurse tree stands at a uniform spacing of 4 m × 4 m and in control plots (no nurse trees) in 1990. Stem numbers of some nurse trees were thinned by half in 1994. The stem diameter and height of all trees were measured annually until 1995 and again in 2007. The mean annual increment (MAI) in volume was estimated as 8.2–10.1 m3 ha−1 year−1 for E. camaldulensis and 0.9–1.2 m3 ha−1 year−1 for S. siamea, smaller than reported elsewhere. This suggests that the site properties were not suitable for them. The MAI of A. auriculiformis was 7.9–9.8 m3 ha−1 year−1, within the reported range. Survival rates of H. odorata in the S. siamea stands and the control plots decreased rapidly during the first 2 years but then stayed constant from 1992. In contrast, survival rates of H. odorata in the E. camaldulensis and A. auriculiformis stands were initially high (>70%), but then decreased after 1995. Stem diameter, tree height, and stand basal area of H. odorata were large in both the S. siamea stands and the control plots from then. The growth of H. odorata was largest in the 2 m × 8 m S. siamea stands. In contrast, it was restricted in the E. camaldulensis and A. auriculiformis stands owing to strong shading by their canopies. Thinning by 50% tended to facilitate the growth of H. odorata temporarily in the E. camaldulensis and A. auriculiformis stands. The stand basal areas of nurse trees and of H. odorata showed a trade-off. These results suggest that the growth of H. odorata was maximized in the S. siamea stands. We assume, however, that the growth of H. odorata could be improved even in the E. camaldulensis and A. auriculiformis stands by frequent or heavy thinning.  相似文献   

4.
Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

5.
Infestations of Essigella californica following the installation of post-thinning fertilizer trials in Pinus radiata plantations provided an opportunity to examine the impact of repeated defoliation over a period of 8 years (1997–2005). Replicated treatments (n = 4) of nil fertilizer (control), N (300 kg ha−1) as urea, P (80 kg ha−1) and S (45 kg ha−1) as superphosphates were applied immediately after thinning at three sites and this was followed by a second application of NPS fertilizers 6 years later with N applied at 300 kg ha−1 as urea and ammonium sulphate and P at 80 or 120 kg ha−1. Defoliation of untreated P. radiata gradually increased to 50% over a period of 8 years. Basal area growth was negatively correlated with average defoliation for two consecutive post-fertilizer periods of 6 and 2 years. Growth responses to fertilizer varied considerably between sites but the largest improvement in growth was due to NPS fertilizer, this increased basal area by 30–80%. Application of N fertilizer raised total N levels in foliage and increased defoliation with a commensurate loss in growth under conditions of deficiencies of S or P. Repeated infestations gradually increased the percentage of trees with severe defoliation (>80% loss of foliage) indicating that nutrient-deficient trees have a reduced capacity for foliage recovery between episodes of peak infestation. In contrast, treatment with N fertilizer in combination with S- and P-corrected deficiencies of these nutrients, raised levels of total N in foliage and reduced defoliation to approximately 20%. Basal area growth responses to NPS fertilizers reflected improved nutrition as well as reduced insect damage. The reduction in defoliation under conditions of balanced tree nutrition was most likely due to enhanced needle retention following correction of P deficiency as well as greater availability of nutrients enabling a more vigorous recovery of P. radiata after an episode of E. californica activity. Treatment with fertilizer therefore reduced the long-term impact of aphid damage and improved growth of P. radiata.  相似文献   

6.
The net primary productivity of Bruguiera parviflora dominated mangrove forest at Kuala Selangor, Malaysia was estimated from the average yearly biomass increment and litter production. The average yearly biomass increment in saplings and trees was 0.58 and 16.51 t ha−1, respectively, and the annual amount of total litter production was 10.35 t ha−1. The biomass increment in saplings and trees was not significantly different (t-test, p > 0.05) in 2 successive years and the estimated net primary productivity was 27.44 t ha−1 year−1. The ratio (2.65:1) of net primary productivity and litterfall suggests that this mangrove forest is at a juvenile stage.  相似文献   

7.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

8.
Oxidative damage is an established outcome of chronic stress. Thus, the present study was designed to investigate the modulatory role of ethanolic extract of Evolvulus alsinoides (EA) in terms of oxidative alterations at peripheral and central level in rats subjected to chronic unpredictable stress (CUS). CUS exposure for 7 days reduced Cu, Zn superoxide dismutase and catalase activity with increase in glutathione peroxidase activity and lipid peroxidation, while decrease in reduced glutathione level in blood plasma, frontal cortex and hippocampus regions of brain. Oral administration of EA extract at 200 mg/kg p.o. normalized these stress induced oxidative alterations with an efficacy similar to that of melatonin. Further, EA extract was taken up for detailed chemical investigation. Two new flavonol-4′-glycoside, kaempferol 4′-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (3) and kaempferol 4′-O-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside (5) were isolated, along with eight known compounds (1, 2, 4 and 610). The structures of new compounds were established by detailed spectroscopic studies, while known compounds were characterized by direct comparison of their reported NMR data. All these compounds were evaluated for their in vitro antioxidant activity. Compounds 3, 5, 9 and 10 at 100 and 200 μg/ml showed significant in vitro antioxidant activity. Therefore, EA may hold great potential in preventing clinical deterioration in stress induced oxidative load and related disorders.  相似文献   

9.
A new secoiridoid named chinensisol (1) along with twenty known compounds were isolated from the 95% ethanol extract of Cortex fraxini. Their structures were elucidated on the basis of NMR, MS, IR and UV spectral evidences. The quinone reductase (QR) inducing activities of the compounds were evaluated and the results showed that compounds 1, 9 and 14 had moderate QR inducing activities with CD values (concentration required to double the specific activity of QR) of 72.4 ± 7.7, 34.3 ± 3.3 and 42.0 ± 0.4 μM respectively.  相似文献   

10.
We used an isotopic approach to evaluate the effects of three afforestation methods on the ecophysiology of an Aleppo pine plantation in semiarid Spain. The site preparation methods tested were excavation of planting holes (H), subsoiling (S), and subsoiling with addition of urban solid refuse to soil (S + USR). Five years after plantation establishment, trees in the S + USR treatment were over three times larger than those in the S treatment, and nearly five-fold larger than those planted in holes. Differences in tree biomass per hectare were even greater due to disparities in initial planting density and pine tree mortality among treatments. Pine trees in the S + USR treatment showed higher foliar P concentration, δ13C and δ15N than those in the S or H treatments. Foliar δ15N data proved that trees in the S + USR treatment utilized USR as a source of nitrogen. Foliar δ13C and δ18O data suggest that improved nutrient status differentially stimulated photosynthesis over stomatal conductance in the pine trees of the S + USR treatment, thus enhancing water use efficiency and growth. In the spring of 2002, trees in the S + USR treatment exhibited the most negative predawn water potentials of all the treatments, indicating that the rapid early growth induced by USR accelerated the onset of intense intra-specific competition for water. The results of this study have implications for the establishment and management of Aleppo pine plantations on semiarid soils. Planting seedlings at low density and/or early thinning of pine stands are strongly recommended if fast tree growth is to be maintained beyond the first few years after USR addition to soil. Foliar C, O and N isotope measurements can provide much insight into how resource acquisition by trees is affected by afforestation techniques in pine plantations under dry climatic conditions.  相似文献   

11.
In the year 2000, large areas of forest in Sweden, mainly 30-50 year old Pinus sylvestris (L.) stands, were attacked by the fungus Gremmeniella abietina (Lagerb.) Morelet. The aims of this study were to investigate: (i) the relationship between G. abietina-induced tree crown transparency (CT) and P. sylvestris (L.) tree mortality; (ii) the influence of CT levels on stem growth; (iii) the recovery of the crown; and (iv) the association of CT and colonization by Tomicus piniperda (L.). Thirty-five permanent sample plots were established in five P. sylvestris stands (38-46 years old), infested by G. abietina, and 23 plots in four reference stands, not obviously infested.During the 5 years following the attack, the total mortality amounted to 454 trees ha−1 and 7.8 m2 ha−1, on average, in the five infested stands, corresponding to 42% of the trees and 34% of the basal area at the time of the attack. Most of the mortality occurred within 2 years of the attack. The mortality of individual trees (2002-2005) was found to be related to the crown transparency (CT), the position of needle loss within the crown and the tree diameter at breast height. Based on our modeling, the probability of mortality was substantially increased if the initial CT-value was higher than 85%.Growth reductions were detected for individual trees with an initial CT of >c. 40%. In contrast, trees with a low initial CT (<c. 40%) were not affected and even exhibited increased growth. In the five infested stands, the reductions in basal area and volume increment were estimated to be 26-58%, and, 42-73%, respectively, during the five growing seasons after the attacks.The trees in the infested stands that were still alive in spring 2005 had started to recover in terms of CT. Breeding of T. piniperda on the P. sylvestris (L.) stems occurred almost exclusively on stems with a CT > 90%.The data from this study suggest that when a P. sylvestris (L.) stand has been attacked by G. abietina, trees with a CT above 80% should be felled; the remaining trees will have a high probability of survival and resistance to successful breeding by the T. piniperda.  相似文献   

12.
Contrasting responses of Eucalyptus trees to K fertilizer applications have been reported on soils with low K contents. A complete randomized block experiment was set up in Brazil to test the hypothesis that large atmospheric deposits of NaCl in coastal regions might lead to a partial substitution of K by Na in Eucalyptus physiology and enhance tree growth. Treatments with application of 1.5, 3.0, 4.5 kmol K ha−1 (K1.5, K3.0, K4.5, respectively) as KCl, 3.0 kmol K ha−1 applied as K2SO4, 3.0 kmol Na ha−1 (Na3.0) as NaCl commercialized for cattle feeding, and a mixture of 1.5 kmol K + 1.5 kmol Na ha−1 (K1.5 + Na1.5) were compared to a control treatment (C) with no K and Na applications. All the plots were fertilized with large amounts of the other nutrients.  相似文献   

13.
We examined water use by maturing Eucalyptus regnans, growing with or without an mid-storey stratum of Acacia spp. (Acacia dealbata or A. melanoxylon), for >180 consecutive days. Study sites were located in the Upper Yarra catchment area in south-eastern Australia. Depending on their contribution to stand basal area, mid-storey Acacia spp. increased total stand water use by up to 30%. Monthly water use in such stands reached more than 640,000 L ha−1 (compared to 545,000 L ha−1 in stands where acacias were absent) in early spring. Water use was curvilinearly related to sapwood area of Acacia spp. and logistically related to sapwood area of E. regnans. Water use of all three species showed a strong relation to daily maximum air temperatures. Distinct and simple relationships provide clear guides to the likely impacts of climate change and forest management on water yield. We compared a traditional up-scaling approach, from individual tree water use to stand water use, to a new approach that incorporates variation in temperature. Development of this approach can lead to greater precision of stand water use estimates – and in turn catchment water yield – under current climate change scenarios, which predict a rise in air temperatures of 0.6–2.5 °C by 2050 for the study area. Our temperature-dependent approach suggests that under conditions of non-limiting water availability, stand water use will rise by 2% for every 0.25 °C increase in maximum air temperatures during winter, and possibly more than that during summer.  相似文献   

14.
The purpose of this study was to compare carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests. The study site was located in the lower mountain area of central Taiwan, where both moso bamboo and China fir were rich. In addition, moso bamboo and China fir forests were surveyed on 12 and 19 plantations, respectively. We predicted carbon sequestration based on the allometric model for moso bamboo and China fir forests and compared the relationships between characteristics of bamboo forests and elevation. The results showed that mean diameter at breast height (DBH), culms per hectare and aboveground biomass were not clearly affected by elevation, whereas a negative correlation (R = −0.600, p = 0.039) between mean DBH and stand density was found for moso bamboo forests. Moreover, the aboveground carbon storage was higher for China fir forests than for moso bamboo (99.5 vs. 40.6 Mg ha−1). However, moso bamboo is an uneven-aged stand which is only composed of 1-5-year-old culms, while China fir is an even-aged stand and the age range is from 15 to 54 years, such that, per year, the mean aboveground carbon sequestration is 8.13 ± 2.15 and 3.35 ± 2.02 Mg ha−1 for moso bamboo and China fir, respectively. On the other hand, the mean carbon sequestration of China fir decreases with increasing the age class. Furthermore, the ratio of moso bamboo to China fir is 2.39 and a T-test showed that the aboveground carbon levels were significantly different between these two species; thus, moso bamboo is a species with high potential for carbon sequestration.  相似文献   

15.
Agave cupreata is harvested from tropical dry forests, oak forests, and other habitats by rural communities in the Chilapa region of Guerrero, Mexico to make mescal, a traditional and culturally important liquor. Local management systems use various techniques to regulate Agave harvest and encourage regeneration, including the exclusion of cattle. This study examines the impacts of cattle exclusion and of the different habitat types on the population structure and density of A. cupreata. Sampling was conducted in pastures, oak forest, tropical dry forest, and mixed oak-tropical dry forest using 54 transects of 1000 m2, where Agave was counted by size-class and measurements were taken of the vegetation and physical environment. Transects were divided between areas with cattle present and cattle excluded in all four habitats except for oak forest, where all areas were open to cattle. Agave density per 1000 m2 was highest in pasture (148 ± 5, mean ± SE), followed by oak forest (100 ± 4), tropical dry forest (88 ± 5) and mixed oak-dry forest (81 ± 2). The size-class structures of Agave populations were also significantly different between vegetation types, with oak forest supporting higher seedling densities but lower numbers of juveniles. A regression subset selection algorithm showed that one of the most important factors influencing Agave populations was the presence of cattle, which can reduce densities by trampling and grazing on seedlings and floral stalks. Cattle presence significantly lowered Agave densities in the smaller size classes in all vegetation types but did not significantly alter size-class structure. Total Agave density per 1000 m2 was significantly higher in transects where cattle were absent (148 ± 4) than where cattle were present (81 ± 1). In all areas sampled, the high number of juveniles relative to other size-classes suggests that Agave populations are successfully regenerating in the Chilapa region, and the higher Agave densities in fenced areas suggest that local management techniques are effectively increasing Agave yields. These results highlight the potential for sustainable management of Agave to conserve forest habitats while also providing important income from mescal to local communities in the region.  相似文献   

16.
Natural regeneration is an important process to reverse the loss of forests. Understanding the process of natural regeneration is crucial for achieving sustainable forest management. In this study, we examined the effects of seed and pollen dispersal in naturally regenerated populations of Castanopsis fargesii. Genetic variation in six populations along two successional series (three successional stages in each series: early, pre-climax, and climax) was assayed using RAPD (random amplified polymorphic DNA) markers. High genetic variability was observed as measured with Shannon's information index. A majority of genetic variation was distributed within populations (Φst = 0.1271) and significant isolation by distance existed among populations. A contrasting pattern of genetic variation along these two series was observed, representing different scenarios of natural regeneration processes. The ratio of the number of migrants between the mature populations to the number of migrants from the mature to immature populations was estimated as 1.146 ± 0.099 to 1.981 ± 0.164, implying that comparable seed and pollen dispersal might exist at a fine spatial scale (∼2 km2). The results suggest the critical role of seed dispersal in shaping genetic composition and diversity in the second-growth forests. Barriers to seed dispersal from a variety of genetic sources could result in low genetic diversity in naturally regenerated populations. Management that facilitates the connectivity of newly regenerated stands with mature forests could be effective for natural regeneration given the predominant role of short-distance dispersal of seeds in this species.  相似文献   

17.
The efficiency with which trees convert photosynthetically active radiation (PAR) to biomass has been shown to be consistent within stands of an individual species, which is useful for estimating biomass production and carbon accumulation. However, radiation use efficiency (?) has rarely been measured in mixed-species forests, and it is unclear how species diversity may affect the consistency of ?, particularly across environmental gradients. We compared aboveground net primary productivity (ANPP), intercepted photosynthetically active solar radiation (IPAR), and radiation use efficiency (? = ANPP/IPAR) between a mixed deciduous forest and a 50-year-old white pine (Pinus strobus L.) plantation in the southern Appalachian Mountains. Average ANPP was similar in the deciduous forest (11.5 Mg ha−1 y−1) and pine plantation (10.2 Mg ha−1 y−1), while ? was significantly greater in the deciduous forest (1.25 g MJ−1) than in the white pine plantation (0.63 g MJ−1). Our results demonstrate that late-secondary hardwood forests can attain similar ANPP as mature P. strobus plantations in the southern Appalachians, despite substantially less annual IPAR and mineral-nitrogen availability, suggesting greater resource-use efficiency and potential for long-term carbon accumulation in biomass. Along a 260 m elevation gradient within each forest there was not significant variation in ?. Radiation use efficiency may be stable for specific forest types across a range of environmental conditions in the southern Appalachian Mountains, and thus useful for generating estimates of ANPP at the scale of individual watersheds.  相似文献   

18.
A new resveratrol dimer, roxburghiol A (1) together with eleven known compounds were isolated from the roots of Shorea roxburghii. Their structures were identified on the basis of spectroscopic evidence and physicochemical properties. All isolated compounds were evaluated for their cytotoxicity (KB and HeLa cells). Compounds 8 and 9 showed potent cytotoxicity against both KB and HeLa cell lines with IC50 values of 6.5, 8.5 and 8.7, 10.1 μg/mL, respectively.  相似文献   

19.
The exotic invasive insect, hemlock woolly adelgid (Adelges tsugae Annand), is causing mortality in eastern hemlocks (Tsuga canadensis [L.] Carr.) throughout the eastern U.S. Because hemlocks produce dense shade, and are being replaced by hardwood species that produce less shade, their loss may increase understory light levels. In the southern Appalachians, increases in light could increase stream temperatures, threatening species such as brook trout (Salvelinus fontinalis). We studied changes in light and stream temperature with eastern hemlock decline at a headwater southern Appalachian brook trout stream. Our results indicate that stream light levels have increased significantly with adelgid infestation. Leaf-on light levels are currently significantly higher (P < 0.02) in plots containing high basal areas of hemlock (mean global site factor (GSF)(SE) = 0.267(0.01)) compared with plots containing no hemlock (mean GSF(SE) = 0.261(0.01)), suggesting that increases in light have occurred with hemlock decline. The Normalized Difference Vegetation Index (NDVI), a remotely sensed metric of vegetation density, decreased with hemlock decline from 2001 to 2008. In 2001, NDVI showed no relationship (R2 = 0.003; F = 0.14; P = 0.71) with hemlock basal area, but by 2008, there was a significant negative relationship (R2 = 0.352; F = 19.55; P < 0.001) between NDVI and hemlock basal area. A gap experiment showed that light levels may increase by up to 64.7% more (mean increase in GSF = 27.5%) as hemlocks fall, creating gaps in the canopy. However, stream temperatures did not increase with hemlock decline during the study period, and we found that ground water inputs have a stronger influence on water temperature than light levels at this site. Linear regression showed a significant negative relationship between water temperature and proximity to ground water sources (R2 = 0.451; F = 13.14; P = 0.002), but no relationship between water temperature and light levels (R2 < 0.02; P > 0.05). In addition, by comparing light levels between plots containing hemlock and those containing only hardwoods, we found that if hemlocks are replaced by hardwoods, light levels under an all-hardwood canopy (mean GSF(SE) = 0.240(0.005)) are unlikely to be higher than they are under the current forest (mean GSF(SE) = 0.254(0.007)). These results suggest that loss of hemlock along southern Appalachian headwater streams could have short-term impacts on light levels, but that long-term changes in light levels, increases in water temperature, and adverse effects on brook trout may be unlikely.  相似文献   

20.
Two new benzofuran derivatives, 2-(4′-hydroxybenzyl)-5,6-methylenedioxy-benzofuran () and 2-(4′-hydroxybenzoyl)-5,6-methylenedioxy-benzofuran (), along with 8 known compounds were isolated from 60% EtOH extract of the fibrous roots of Liriope spicata var. prolifera. Their structures were elucidated on the basis of extensive spectroscopic analysis. In an in vitro bioactive assay, the two new benzofuran derivatives showed anti-inflammatory activity. Compounds 1 and 2 exhibited significant inhibitory activity against neutrophil respiratory burst stimulated by phorbol 12-myristate 13-acetate (PMA) with IC50 value of 4.15 ± 0.07 and 5.96 ± 0.37 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号