首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
OBJECTIVE: To evaluate the respiratory effects occurring during administration of sevoflurane or isoflurane to the upper airway in dogs. STUDY DESIGN: A prospective, randomized study. ANIMALS: Twelve healthy adult beagles (6 males, 6 females). METHODS: At least 2 weeks after undergoing permanent tracheostomy, dogs were premedicated with acepromazine-buprenorphine, and anesthesia was induced with thiopental and maintained with alpha-chloralose. The upper airway was functionally isolated so that the inhalant could be administered to the upper airway while dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to the administration of sevoflurane or isoflurane at concentrations of 1.2, 1.8, and 2.4 times the minimal alveolar concentration (MAC) (administered in 100% O2 at a flow rate of 5 L/min) were recorded. Reflexes in response to administration of each anesthetic were also recorded following upper-airway administration of lidocaine. RESULTS: Respiratory reflexes elicited by upper-airway administration of each anesthetic were characterized by a dose-dependent increase in expiration time, with a resultant decrease in respiratory minute ventilation and increase in end-tidal PCO2. The magnitude of these responses was greater with isoflurane than with sevoflurane at 1.8 and 2.4 MAC. These reflexes were abolished after lidocaine nebulization into the upper airway. CONCLUSION: Isoflurane induces greater reflex inhibition of breathing than does sevoflurane when the anesthetic is inhaled into the upper airway at concentrations used for mask induction.  相似文献   

2.
The effects of fentanyl on the minimum alveolar concentration (MAC) of isoflurane and cardiovascular function in mechanically ventilated goats were evaluated using six healthy goats (three does and three wethers). Following induction of general anaesthesia with isoflurane delivered via a mask, endotracheal intubation was performed and anaesthesia was maintained with isoflurane. The baseline MAC of isoflurane (that is, the lowest alveolar concentration required to prevent gross purposeful movement) in response to clamping a claw with a vulsellum forceps was determined. Immediately after baseline isoflurane MAC determination, the goats received, on separate occasions, one of three fentanyl treatments, administered intravenously: a bolus of 0.005 mg/kg followed by constant rate infusion (CRI) of 0.005 mg/kg/hour (treatment LFENT), a bolus of 0.015 mg/kg followed by CRI of 0.015 mg/kg/hour (treatment MFENT) or a bolus of 0.03 mg/kg followed by CRI of 0.03 mg/kg/hour (treatment HFENT). Isoflurane MAC was redetermined during the fentanyl CRI treatments. Cardiopulmonary parameters were monitored. A four-week washout period was allowed between treatments. The observed baseline isoflurane MAC was 1.32 (1.29 to 1.36) per cent. Isoflurane MAC decreased to 0.98 (0.92 to 1.01) per cent, 0.75 (0.69 to 0.79) per cent and 0.58 (0.51 to 0.65) per cent following LFENT, MFENT and HFENT respectively. Cardiovascular function was not adversely affected. The quality of recovery from general anaesthesia was good, although exaggerated tail-wagging was observed in some goats following MFENT and HFENT.  相似文献   

3.
Twenty-four healthy adult cats were anesthetized with isoflurane in oxygen. Six cats (group 1) served as controls; onychectomy of the forefeet was performed in the other three groups. Saline was administered intravenously to group 1, and morphine, xylazine, and salicylate were administered to groups 2, 3, and 4, respectively. Mixed venous blood samples were drawn for catecholamine analysis before induction of anesthesia, after recovery from anesthesia, and 30 minutes and 60 minutes after administration of the analgesic agent. Plasma catecholamine concentrations were determined by high performance liquid chromatography. Isoflurane anesthesia alone induced a transient increase in epinephrine concentration. Norepinephrine and epinephrine concentrations increased significantly after onychectomy. Morphine and xylazine significantly decreased postoperative norepinephrine and epinephrine concentrations; salicylate did not.  相似文献   

4.
OBJECTIVE: To compare induction and recovery characteristics and cardiopulmonary effects of isoflurane and sevoflurane in bald eagles. Animals-17 healthy adult bald eagles. PROCEDURES: Anesthesia was induced with isoflurane or sevoflurane delivered in oxygen via a facemask in a crossover design with 4 weeks between treatments. Eagles were intubated, allowed to breathe spontaneously, and instrumented for cardiopulmonary measurements. Time to induction, extubation, and recovery, as well as smoothness of recovery, were recorded. RESULTS: Administration of sevoflurane resulted in a significantly quicker recovery, compared with isoflurane. Temperature, heart rate, and respiratory rate significantly decreased over time, whereas systolic (SAP), diastolic (DAP), and mean arterial blood pressure (MAP) significantly increased over time with each treatment. Temperature, heart rate, SAP, DAP, and MAP were significantly higher with isoflurane. Blood pH significantly decreased, whereas PaCO(2) significantly increased over time with each treatment. Bicarbonate and total carbon dioxide concentrations significantly increased over time with each treatment; however, there was a significant time-treatment interaction. The PaO(2) and arterial oxygen saturation increased over time with isoflurane and decreased over time with sevoflurane with a significant time-treatment interaction. Six eagles developed cardiac arrhythmias with isoflurane, as did 4 with sevoflurane anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Isoflurane and sevoflurane administration resulted in smooth, rapid induction of and recovery from anesthesia similar to other species. Isoflurane administration resulted in tachycardia, hypertension, and more arrhythmias, compared with sevoflurane. Sevoflurane was associated with fewer adverse effects and may be particularly beneficial in compromised bald eagles.  相似文献   

5.
OBJECTIVE: To determine the effect of IV administration of perzinfotel on the minimum alveolar concentration (MAC) of isoflurane in dogs. Animals-6 healthy sexually intact male Beagles. PROCEDURES: Dogs were instrumented with a telemetry device that permitted continuous monitoring of heart rate, arterial blood pressure, and body temperature. Dogs were anesthetized with propofol (4 to 6 mg/kg, IV) and isoflurane for 30 minutes before determination of MAC of isoflurane. Isoflurane MAC values were determined 4 times, separated by a minimum of 7 days, before and after IV administration of perzinfotel (0 [control], 5, 10, and 20 mg/kg). Bispectral index and percentage hemoglobin saturation with oxygen (SpO(2)) were monitored throughout anesthesia. RESULTS: Isoflurane MAC was 1.32 +/- 0.14%. Intravenous administration of perzinfotel at 0, 5, 10, and 20 mg/kg decreased isoflurane MAC by 0%, 24%, 30%, and 47%, respectively. Perzinfotel significantly decreased isoflurane MAC values, compared with baseline and control values. The bispectral index typically increased with higher doses of perzinfotel and lower isoflurane concentrations, but not significantly. Heart rate, body temperature, and SpO(2) did not change, but systolic, mean, and diastolic arterial blood pressures significantly increased with decreases in isoflurane MAC after administration of perzinfotel at 10 and 20 mg/kg, compared with 0 and 5 mg/kg. CONCLUSIONS AND CLINICAL RELEVANCE: IV administration of perzinfotel decreased isoflurane MAC values. Improved hemodynamics were associated with decreases in isoflurane concentration.  相似文献   

6.
OBJECTIVE: To compare the effects of acupuncture (AP), electroacupuncture (EA), and transcutaneous cranial electrical stimulation (TCES) with high-frequency intermittent currents on the minimum alveolar concentration (MAC) of isoflurane and associated cardiovascular variables in dogs. ANIMALS: 8 healthy adult female Beagles. PROCEDURE: Each dog was anesthetized with isoflurane on 4 occasions, allowing a minimum of 10 days between experiments. Isoflurane MAC values were determined for each dog without treatment (controls) and after treatment with AP and EA (AP points included the Large Intestine 4, Lung 7, Governing Vessel 20, Governing Vessel 14, San Tai, and Baihui) and TCES. Isoflurane MAC values were determined by use of noxious electrical buccal stimulation. Heart rate, mean arterial blood pressure (MAP), arterial blood oxygen saturation (Spo2) measured by use of pulse oximetry, esophageal body temperature, inspired and expired end-tidal isoflurane concentrations, end-tidal carbon dioxide concentration, and bispectral index (BIS) were monitored. Blood samples were collected for determination of plasma cortisol concentration. RESULTS: Mean +/- SD baseline MAC of isoflurane was 1.19 +/- 0.1%. Acupuncture did not significantly change MAC of isoflurane. Treatments with EA and TCES significantly lowered the MAC of isoflurane by 10.1% and 13.4%, respectively. The Spo2, heart rate, MAP, BIS, esophageal body temperature, and plasma cortisol concentration were not significantly different after AP, EA, TCES, and control treatments at any time interval. CONCLUSIONS AND CLINICAL RELEVANCE: Use of EA and TCES decreased MAC of isoflurane in dogs without inducing adverse hemodynamic effects. However, the reduction in isoflurane MAC by EA andTCES treatments was not considered clinically relevant.  相似文献   

7.
Circulatory and respiratory function was monitored in nonmedicated, spontaneously breathing horses (n = 7) immediately before, during, and 1 hour after 85 +/- 4.1 (X +/- SEM) minutes of constant 1.57% isoflurane in O2 anesthesia. Comparison of values during anesthesia with those obtained while horses were awake revealed a significant (P less than 0.05) decrease in arterial blood pressure that was related to a slight, but insignificant, decrease in cardiac output and peripheral vascular resistance. Although isoflurane anesthesia and recumbency resulted in a significant (P less than 0.05) decrease in stroke volume, cardiac output did not decrease significantly because heart rate tended to increase. Isoflurane and recumbency also significantly (P less than 0.05) increased PaCO2, peak expiratory gas flow, total expiratory time, and PCV and significantly decreased PaO2, minute expired ventilation, and the ratio of peak inspired to expired gas flow. Differences imposed by isoflurane anesthesia were reversed by 1.5 hour after anesthesia.  相似文献   

8.
A new volatile anaesthetic agent delivery system was tested in 15 horses undergoing scheduled surgical procedures. The delivery system consisted of a laptop computer (with dedicated software), a computer-controlled syringe driver (loaded with liquid isoflurane) connected to the inspiratory arm of a large-animal circle breathing system and a respiratory gas monitor, providing isoflurane end-tidal concentrations (ET(measured)) every 20 s to the computer. Following induction and connection to the breathing system, mechanical ventilation was started. The bodyweight (BW), fresh gas flow, breathing system and ventilator volume, and end-tidal isoflurane target (ET(target)) were entered into the computer. Using Lowe's equation, the software calculated the prime dose to be delivered by the syringe driver over 2 min. After this, the system delivered each minute the amount of isoflurane as determined by the following equation: Isoflurane (mL) = {2 × λ(B/G) × (200 × BW(0.75)) × (ET(target) - ET(measured)) + (fresh gas flow - (BW(0.75) × 0.07)) × (ET(measured))}/206. A fresh gas flow of 4 L oxygen min(-1) was administered until the inspired fraction of oxygen reached 0.7, and was then decreased. A target of 1.5% end-tidal isoflurane was initially used and subsequently adjusted to the clinical requirements. The system performance was evaluated using the median prediction error (MDPE) and the median absolute performance error (MDAPE), which were -3.6% and 5.29%, respectively. It was concluded that this system was useful to achieve end-tidal target-controlled infusion of isoflurane during equine anaesthesia.  相似文献   

9.
HistoryA four year old male neutered Domestic Short Hair cat presented for general anaesthesia for hind limb orthopaedic surgery. The cat had been anaesthetized four days previously with propofol and isoflurane and made an uneventful recovery.Physical Examination and ManagementOn pre-anaesthetic examination the cat had a temperature of 38.9 °C and was otherwise healthy. After a premedication of acepromazine and pethidine, anaesthesia was induced with thiopental and maintained with isoflurane in oxygen 50% and nitrous oxide 50%. Increases in heart rate, respiratory rate, end tidal carbon dioxide tension and temperature were observed, occurring sequentially, from 110 to 175 minutes after anaesthetic induction. Despite ceasing all warming measures and attempting to cool the patient, body temperature continued to rapidly rise, reaching 42.5 °C and limb rigidity was observed. Isoflurane administration was stopped and esmolol was administered. Cardiac arrest occurred. Cardio-pulmonary cerebral resuscitation was commenced and a lateral thoracotomy was performed to allow cardiac compressions and internal defibrillation. Atropine, adrenaline, glucose and dopamine were administered and cold saline was instilled into the thoracic cavity.Follow-upResuscitation was unsuccessful and the cat died.ConclusionsA presumptive diagnosis of malignant hyperthermia was made. Malignant hyperthermia should be considered, even if prior exposure to volatile inhalational anaesthesia was uneventful, and prompt and aggressive therapy instituted.  相似文献   

10.
Objective To compare morphine with tramadol for the management of early postoperative pain following ovariohysterectomy after pyometra in dogs. Study design Prospective randomized blinded clinical trial. Animals Thirty female dogs, 2–14 years old. Methods Animals were randomly divided into two equal groups. Group 1 received 0.2 mg kg?1 of morphine IV and group 2 received 2 mg kg?1 of tramadol IV after the induction of anesthesia. The dogs were premedicated with acepromazine, and anesthesia was induced with intravenous midazolam and ketamine. Isoflurane was used for the maintenance of anesthesia. The variables measured were: analgesia; sedation; cardiac and respiratory rates; arterial blood pressure; end‐tidal isoflurane and carbon dioxide (Pe ′CO2); oxyhemoglobin saturation (SpO2); plasma catecholamines; serum cortisol and glucose concentrations; pH and blood gases. The animals were monitored for 6 hours after the administration of the analgesic agent. Results There were no differences between the two groups with regard to analgesia, sedation, SpO2, pH and blood gases, cardiovascular variables, glucose, catecholamine and cortisol concentrations. Forty minutes postopioid administration, the end‐tidal isoflurane concentration was significantly lower in the morphine‐treated group as compared to the tramadol group. At 30 minutes following opioid injection, Pe ′CO2 was significantly higher in the morphine group than in the tramadol group. Two dogs in the tramadol group and one in the morphine group were given morphine postoperatively because of increasing pain scores. Conclusion and clinical relevance Morphine and tramadol, administered preemptively can be used safely in dogs to control early pain after ovariohysterectomy without significant adverse effects.  相似文献   

11.
ObjectiveTo evaluate the efficacy and cardiopulmonary effects of ketamine–midazolam for chemical restraint, isoflurane anesthesia and tramadol or methadone as preventive analgesia in spotted pacas subjected to laparoscopy.Study designProspective placebo-controlled blinded trial.AnimalsA total of eight captive female Cuniculus paca weighing 9.3 ± 0.9 kg.MethodsAnimals were anesthetized on three occasions with 15 day intervals. Manually restrained animals were administered midazolam (0.5 mg kg–1) and ketamine (25 mg kg–1) intramuscularly. Anesthesia was induced and maintained with isoflurane 30 minutes later. Tramadol (5 mg kg–1), methadone (0.5 mg kg–1) or saline (0.05 mL kg–1) were administered intramuscularly 15 minutes prior to laparoscopy. Heart rate (HR), respiratory rate, mean arterial pressure (MAP), peripheral oxygen saturation (SpO2), end-tidal CO2 partial pressure (Pe′CO2), end-tidal concentration of isoflurane (Fe′Iso), pH, PaO2, PaCO2, bicarbonate (HCO3?), anion gap (AG) and base excess (BE) were monitored after chemical restraint, anesthesia induction and at different laparoscopy stages. Postoperative pain was assessed by visual analog scale (VAS) for 24 hours. Variables were compared using anova or Friedman test (p < 0.05).ResultsChemical restraint was effective in 92% of animals. Isoflurane anesthesia was effective; however, HR, MAP, pH and AG decreased, whereas Pe′CO2, PaO2, PaCO2, HCO3? and BE increased. MAP was stable with tramadol and methadone treatments; HR, Fe′Iso and postoperative VAS decreased. VAS was lower for a longer time with methadone treatment; SpO2 and AG decreased, whereas Pe′CO2, PaCO2 and HCO3? increased.Conclusions and clinical relevanceKetamine–midazolam provided satisfactory restraint. Isoflurane anesthesia for laparoscopy was effective but resulted in hypotension and respiratory acidosis. Tramadol and methadone reduced isoflurane requirements, provided postoperative analgesia and caused hypercapnia, with methadone causing severe respiratory depression. Thus, the anesthetic protocol is adequate for laparoscopy in Cuniculus paca; however, methadone should be avoided.  相似文献   

12.
Isoflurane was compared with halothane as an anesthetic agent for emergency colic surgery in a series of 38 juvenile and adult horses. After presurgical stabilization with fluids and supportive medications, anesthesia was induced by intravenous xylazine and/or diazepam followed by ketamine. Anesthesia was maintained with isoflurane or halothane in oxygen with controlled ventilation. Heart rates (HR), arterial blood gases, mean arterial pressures (MAP), rate pressure products (RPP), requirements for cardiovascular support medications, and recovery times to standing were compared using nonparametric methods. Cardiopulmonary responses to isoflurane and halothane anesthesia were generally comparable although some temporal differences were observed. Higher HR (p less than 0.02) and lower PaCO2 levels (p less than 0.01) were identified during the course of isoflurane anesthesia. Recovery times to standing were significantly shorter (0.02 less than p less than 0.05) after isoflurane than halothane anesthesia.  相似文献   

13.
The objective of the study was to examine the relationship between the ‘depth’ of anaesthesia - as determined by clinical signs - and the bispectral index (BIS). Electroencephalograms (EEG)s were recorded in 8 female and 8 castrated male, healthy Norwegian landrace pigs undergoing isoflurane anaesthesia, from which the bispectral index (BIS) was calculated. Isoflurane was delivered in pure oxygen at end-tidal concentrations of 1.6, 1.9, 2.2 and 2.5%, in randomised order, for 30 min after which the EEG was recorded over a 5 min period. Anaesthetic depth was evaluated on a visual analogue scale (VAS) by an experienced anaesthetist. The 95% confidence interval for the mean correlation coefficient between BIS and VAS was calculated to be -0.52–0.30. Confidence intervals (95%) for the mean change in the BIS obtained during the conscious state and that obtained during anaesthesia at different isoflurane concentrations was also calculated. There was a significant decrease in the BIS recorded during consciousness and after 1.6% isoflurane anaesthesia, and between readings after inhalation of 2.2% and 2.5% isoflurane. This indicates that BIS does not accurately reflect ‘depth’ at surgical levels of isoflurane anaesthesia in the pig, and is of no use for this purpose.  相似文献   

14.
OBJECTIVE: To determine the effect of two doses of fentanyl, administered transdermally, on the minimum alveolar concentration (MAC) of isoflurane in cats. STUDY DESIGN: Prospective, randomized study. ANIMALS: Five healthy, spayed, female cats. METHODS: Each cat was studied thrice with at least 2 weeks between each study. In study 1, the baseline isoflurane MAC was determined in triplicate for each cat. In studies 2 and 3, isoflurane MAC was determined 24 hours after placement of either a 25 or 50 microg hour(-1) fentanyl patch. In each MAC study, cats were instrumented to allow collection of arterial blood and measurement of arterial blood pressure. Twenty-four hours prior to studies 2 and 3, a catheter was placed and secured in the jugular vein and either a 25 or 50 microg hour(-1) fentanyl patch was placed in random order on the left thorax. Blood samples for plasma fentanyl determination were collected prior to patch placement and at regular intervals up to 144 hours. After determination of MAC in studies 2 and 3, naloxone was administered as a bolus dose (0.1 mg kg(-1)) followed by an infusion (1 mg kg(-1) hour(-1)) and MAC redetermined. RESULTS: The baseline isoflurane MAC was 1.51 +/- 0.21% (mean +/- SD). Fentanyl (25 and 50 micro g hour(-1)) administered transdermally significantly reduced MAC to 1.25 +/- 0.26 and 1.22 +/- 0.16%, respectively. These MAC reductions were not significantly different from each other. Isoflurane MAC determined during administration of fentanyl 25 micro g hour(-1) and naloxone (1.44 +/- 0.16%) and fentanyl 50 micro g hour(-1) and naloxone (1.51 +/- 0.19%) was not significantly different from baseline MAC (1.51 +/- 0.21%). CONCLUSIONS AND CLINICAL RELEVANCE: Fentanyl patches are placed to provide long-lasting analgesia. In order to be effective postoperatively, fentanyl patches must be placed prior to surgery. Plasma fentanyl concentrations achieved intraoperatively decrease the need for potent inhalant anesthetics in cats.  相似文献   

15.
ObjectiveTo determine the dose of phenylephrine, norepinephrine and dopamine necessary to maintain mean arterial pressure (MAP) within 70–80 mmHg during administration of isoflurane, isoflurane and vatinoxan and isoflurane, vatinoxan and dexmedetomidine at three plasma concentrations.Study designRandomized crossover experimental study.AnimalsA group of five adult healthy neutered male cats.MethodsInstrumentation occurred during anesthesia with isoflurane in oxygen. Isoflurane end-tidal concentration was set to 1.25 × minimum alveolar concentration (MAC). Phenylephrine, norepinephrine or dopamine was administered to maintain MAP 70–80 mmHg. A target-controlled infusion system was used to administer vatinoxan at a target plasma concentration of 1 μg mL–1 and three dexmedetomidine concentrations (5, 10 and 20 ng mL–1). Isoflurane concentration was altered to maintain an equivalent 1.25 MAC. Heart rate, arterial blood pressure, central venous pressure, pulmonary artery pressure, pulmonary artery occlusion pressure, body temperature, arterial and mixed venous blood gas, cardiac output and drug concentrations were measured at baseline (isoflurane alone), during vatinoxan administration, and during administration of vatinoxan and dexmedetomidine at the three target concentrations.ResultsMAP < 70 mmHg was observed with vatinoxan alone and in the dopamine treatment with dexmedetomidine concentrations ≤ 10 ng mL–1. Norepinephrine and phenylephrine maintained MAP 70–80 mmHg during vatinoxan and dexmedetomidine ≤ 10 ng mL–1. As the target dexmedetomidine concentration increased, the dose of norepinephrine and phenylephrine needed to maintain MAP 70–80 mmHg decreased; no treatment was necessary to maintain MAP > 70 mmHg at the 20 ng mL–1 target dexmedetomidine concentration in most cats.Conclusions and clinical relevanceNorepinephrine and phenylephrine, but not dopamine, are effective to prevent hypotension in isoflurane-anesthetized cats administered dexmedetomidine and vatinoxan.  相似文献   

16.
Two experiments were carried out to investigate the effect of sampling techniques on the plasma concentrations of pituitary and adrenocortical hormones in ferrets (Mustela putorius furo). In the first experiment blood was collected on two occasions from 29 ferrets which were either manually restrained or anaesthetised with isoflurane. In the second experiment eight intact ferrets were fitted with jugular catheters and blood was collected on four occasions, just before and as soon as possible after they had been manually restrained or anaesthetised with medetomidine or isoflurane; blood was also collected 10 and 30 minutes after the induction of anaesthesia. Medetomidine anaesthesia had no effect on the plasma concentrations of pituitary and adrenocortical hormones. Isoflurane anaesthesia resulted in a significant increase in the plasma concentration of alpha-melanocyte-stimulating hormone (alpha-MSH) directly after the induction of anaesthesia. Manual restraint resulted in a significant increase in the plasma concentrations of cortisol and adrenocorticotrophic hormone (ACTH) and a decrease in the plasma concentration of alpha-MSH.  相似文献   

17.
Different structurally related phenylpiperidine opioids exhibit different isoflurane-sparing effects in cats. Because minimum alveolar concentration (MAC) in cats is affected only by very high plasma concentrations of some phenylpiperidine opioids, we hypothesized these effects are caused by actions on nonopioid receptors. Using a prospective, randomized, crossover design, six cats were anesthetized with isoflurane, intubated, ventilated, and instrumented. Isoflurane MAC was measured in triplicate using a tail-clamp and bracketing technique. A computer-controlled intravenous infusion using prior pharmacokinetic models targeted plasma concentrations of 60 ng/ml fentanyl, 10 ng/ml sufentanil, or 500 ng/ml alfentanil, and isoflurane MAC was measured in duplicate. Next, naltrexone 0.6 mg/kg was administered to cats hourly during the opioid infusion, and isoflurane MAC was measured in duplicate. Blood was collected during MAC determinations to measure opioid concentrations. Responses were analyzed using repeated measures ANOVA with significance at p < .05. Alfentanil and sufentanil decreased isoflurane MAC by 16.4% and 6.4%, respectively, and these effects were completely reversed by naltrexone. Fentanyl had no significant effect on isoflurane MAC. Alfentanil and sufentanil modestly reduce isoflurane MAC via agonist effects on opioid receptors. However, these effects are too small to justify clinical use of phenylpiperidine opioids as single agents to reduce MAC in cats.  相似文献   

18.
OBJECTIVE: To determine the cardiac anesthetic index (CAI) of isoflurane in green iguanas and whether butorphanol affected the CAI. DESIGN: Prospective randomized controlled trial. ANIMALS: 7 healthy mature iguanas. PROCEDURE: In 5 iguanas, CAI was determined after induction of anesthesia with isoflurane alone, and in 5 iguanas, CAI was determined after induction of anesthesia with isoflurane and IM administration of butorphanol (1 mg/kg [0.45 mg/lb]). Three iguanas underwent both treatments. Animals were equilibrated for 20 minutes at 1.5 times the minimum alveolar concentration (MAC) of isoflurane and observed for evidence of cardiovascular arrest. If there was no evidence of cardiovascular arrest, end-tidal isoflurane concentration was increased by 20%, and animals were allowed to equilibrate for another 20 minutes. This process was repeated until cardiovascular arrest occurred or vaporizer output could no longer be consistently increased. The CAI was calculated by dividing the highest end-tidal isoflurane concentration by the MAC. RESULTS: None of the iguanas developed cardiovascular arrest and all survived. Mean +/- SD highest end-tidal isoflurane concentration during anesthesia with isoflurane alone (9.2 +/- 0.60%) was not significantly different from mean concentration during anesthesia with isoflurane and butorphanol (9.0 +/- 0.43%). The CAI was > 4.32. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the CAI of isoflurane in green iguanas is > 4.32 and not affected by administration of butorphanol. Isoflurane appears to be a safe anesthetic in green iguanas.  相似文献   

19.
This study was undertaken to evaluate the effect of 3 different doses of epidurally administered morphine sulphate on the minimum alveolar concentration (MAC) of isoflurane in healthy cats. Five 4-year-old, spayed female cats weighing 4.7 ± 0.8 kg were allocated randomly to receive one of 3 doses of morphine on each study day. The 3 doses of morphine were 0.05, 0.1 and 0.2 mg/kg bwt and each cat was studied 3 times so that each cat received all doses. On each study day, cats were anaesthetised with isoflurane and instrumented. The MAC of isoflurane was determined in triplicate and morphine sulphate was administered via an epidural catheter chronically implanted prior to the study. Maximum MAC reduction was determined over the following 2 h. At the end of the study cats were allowed to recover. There was a significant reduction in MAC of isoflurane, with all doses of epidural morphine (P<0.05). The maximum reduction in MAC of isoflurane after 0.05 mg/kg bwt, 0.10 mg/kg bwt and 0.20 mg/kg bwt morphine was 21.4 ± 9.796, 30.8 ± 9.696, and 30.2 ± 6.8%, respectively, with no significant difference between doses. Systolic, mean and diastolic blood pressure, heart rate, respiratory rate and arterial pH decreased significantly whereas arterial carbon dioxide tension increased significantly after morphine administration (P<0.05). The means for all variables returned to pre-morphine values when the end-tidal isoflurane concentration was reduced to the new MAC point. In conclusion, epidural morphine decreased the concentration of isoflurane required to prevent movement in response to noxious mechanical stimulation to the tail base. A similar effect may be seen clinically allowing lower doses of isoflurane to be used to provide surgical anaesthesia for procedures involving the hind limbs, pelvis and tail.  相似文献   

20.
OBJECTIVE: To characterize the effects of ketamine administration on the cardiovascular and respiratory systems and on acid-base balance and to record adverse effects of ketamine in isoflurane-anesthetized dogs. ANIMALS: 6 healthy adult mongrel dogs. PROCEDURE: Dogs were anesthetized with isoflurane (1.25 times the individual minimum alveolar concentration) in oxygen, and ketamine was administered IV to target pseudo-steady-state plasma concentrations of 0, 0.5, 1, 2, 5, 8, and 11 microg/mL. Isoflurane concentration was reduced to an equipotent concentration. Cardiovascular, respiratory, and acid-base variables; body temperature; urine production; and adverse effects were recorded before and during noxious stimulation. Cardiac index, stroke index, rate-pressure product, systemic vascular resistance index, pulmonary vascular resistance index, left ventricular stroke work index, right ventricular stroke work index, arterial oxygen concentration, mixed-venous oxygen concentration, oxygen delivery, oxygen consumption, oxygen extraction ratio, alveolar-arterial oxygen partial pressure gradient, and venous admixture were calculated. Plasma ketamine and norketamine concentrations were measured. RESULTS: Overall, ketamine administration improved ventilation, oxygenation, hemodynamics, and oxygen delivery in isoflurane-anesthetized dogs in a dosedependent manner. With the addition of ketamine, core body temperature was maintained or increased and urine production was maintained at an acceptable amount. However, at the higher plasma ketamine concentrations, adverse effects such as spontaneous movement and profuse salivation were observed. Myoclonus and dysphoria were observed during recovery in most dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Infusion of ketamine appears to be a suitable technique for balanced anesthesia with isoflurane in dogs. Plasma ketamine concentrations between 2 to 3 microg/mL elicited the most benefits with minimal adverse effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号