首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
基于夏玉米冠层内辐射分布的不同层叶面积指数模拟   总被引:1,自引:1,他引:1  
为了模拟夏玉米冠层内各层叶面积指数垂直分布,光合有效辐射(photosynthetically active radiation, PAR)是研究作物群体光合作用和长势的重要特征参数,阐明冠层内PAR的垂直分布规律与冠层结构等参数之间的相关关系,可为遥感定量反演冠层结构参数提供模型基础。该文基于PAR在冠层内的辐射传输规律结合冠层结构模拟不同太阳高度角的PAR透过率垂直分布模型,并用地面冠层分析仪测量值进行验证,结果表明模型对封垄前玉米抽雄期冠层内PAR透过率垂直分布模拟精度较高。通过不同太阳高度角PAR透过率的垂直分布模型结合消光系数运用不同算法分别反演层叶面积指数(leaf area index, LAI),并与不同高度层LAI实测值进行比较。结果显示:Bonhomme& Chartier算法反演不同高度层LAI精度较高,上层均方根误差(root mean square error,RMSE)为0.18,中层RMSE为0.55,下层RMSE为0.09。不同太阳高度角反演结果存在差异,30°和45°高度角均能较好地反演下层LAI,RMSE分别为0.11与0.09;30°高度角反演中层LAI精度较高,RMSE为0.30;45°高度角反演上层LAI精度较高,RMSE为0.18。结果表明基于不同太阳高度角构建的层LAI反演模型更适于实现夏玉米不同高度层LAI的遥感估算。该研究可为模拟垄行结构冠层内LAI垂直分布提供参考。  相似文献   

2.
基于时间序列红外图像的玉米叶面积指数连续监测   总被引:2,自引:0,他引:2  
针对受田间变化光照影响冠层图像参数计算的精度及自动化程度仍然不高的问题,该文提出了一种基于冠层顶视单角度红外图像序列的玉米叶面积指数(leaf area index,LAI)获取方法。首先,在玉米整个生育期内获取冠层顶部垂直向下红外图像序列,针对冠层图像背景分割易受田间变化光照影响,提出了一种基于绿色植物"红边"现象和冠层图像背景正态分布模型的分割方法,方法计算简便精度高于支持向量机分割。在冠层参数解析阶段,根据玉米叶片球形分布假设,简化了顶视冠层图像的叶片投影函数(G函数),利用Beer-Lambert定律推导了图像冠层孔隙度计算叶面积指数的方法。试验结果表明:该方法与间接测量原理的商业化设备测量值具有较高的相关性,叶面积指数测量的决定系数为0.94。方法应用于2个不同年代品种冠层结构动态变化监测,能够准确反映冠层结构差异,建立了冠层孔隙度与植株干质量(R2=0.95,R2=0.94)植株鲜质量(R2=0.96,R2=0.89)的关系模型,该方法简化了玉米冠层结构参数测量过程,可为田间环境下冠层参数的自动连续监测提供了解决方案。  相似文献   

3.
农田表面温度是土壤、作物和大气之间进行水/热交换传输的重要参数,也是灌区遥感反演模型的重要参量。在利用热红外传感器连续获取农田表面温度数据时,由于作物的生长发育处于动态变化中,农田表面温度数据往往混合了作物冠层温度和土壤表面温度。为精准甄别和区分田间海量监测数据,该研究结合Logistic作物生长模型,通过考虑作物生长状态指标叶面积指数(Leaf Area Index,LAI)和作物冠层高度及其关键节点,构建了农田表面温度监测数据的甄别算法。以内蒙古永济试验站玉米和向日葵实测数据对算法进行验证,并利用解放闸灌域和吉林省长春试验站的玉米和向日葵田间观测数据进行校核。结果表明:考虑LAI和作物冠层高度并利用Logistic模型模拟的关键节点来建立甄别算法,能够为农田稀疏植被表面温度数据甄别提供高效判定。与人工测量值对比,冠层温度优化幅度在10%左右(相对误差),土壤表面温度优化幅度超过5%;甄别方法可以明显提升冠层和土壤表面温度的获取精度。甄别算法中校正因子数值需根据作物种植密度及LAI确定,其中玉米校正因子选择作物冠层温度校正因子0.9,土壤表面温度校正因子1.1;向日葵校正因子以叶面积指数最大值4为基础,选取冠层温度校正因子0.7,土壤表面温度校正因子1.2;在不同地区应用时,向日葵叶面积指数最大值每增加1,推荐冠层温度校正因子调高0.35,土壤表面温度校正因子调低0.18。研究结果为精量灌溉提供技术支撑,提高了农田监测数据的性能,为无人机遥感和卫星遥感数据的精量甄别提供算法和验证。  相似文献   

4.
冬小麦叶面积指数(LAI, leaf area index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

5.
冬小麦叶面积指数高光谱遥感反演方法对比   总被引:26,自引:13,他引:13  
冬小麦叶面积指数(LAI,leafarea index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

6.
基于机器视觉的植物群体生长参数反演方法   总被引:1,自引:1,他引:1  
为实现植物群生长参数在线无损检测,采用机器视觉技术捕获植物群冠层图像,通过RGB空间超绿色-超红色指标(excess green minus excess red,ExG-ExR)、超绿色指标(excess green,ExG)和归一化差异指标(normalized difference indices,NDI)3种指标分割植物群冠层图像,提取植物群图像特征参数:覆盖率、冠层幅长和冠层幅宽,并结合人工测量植物群体参数:茎秆高度、茎直径、叶面数量、坐果数量和叶面指数(leaf area index,LAI)(拟合值),建立植物群5个生长参数的5种反演模型分别为覆盖率反演模型、冠层幅宽反演模型、冠层幅长反演模型、回归方程反演模型和均值反演模型。结果表明:采用ExG-ExR分割的植物群冠层区域与人工提取区域重合度大于99.5%,识别率大于98.2%,分割性能优于ExG+Otsu和NDI+Otsu分割方法。采用120幅反演模型验证图验证反演模型性能,结果表明植物群冠层覆盖率反演模型反演5个植物群生长参数时,其反演值与测量值间相关性决定系数大于0.958,性能优于冠层幅宽和幅长反演模型,而回归方程和均值反演模型在反演植物群5个生长参数时,都仅有2个参数反演性能优于覆盖率反演模型。茎秆高度、叶面数量、茎直径、坐果数量和LAI的反演模型反演值与测量值间线性相关决定系数最高分别为0.979、0.976、0.979、0.965和0.973,标准误差(standard error,SE)分别为10.55 cm、1.37、0.213 mm、0.672和0.055,其对应的反演模型分别为均值反演模型、覆盖率反演模型、覆盖率反演模型、覆盖率反演模型和均值反演模型。通过机器视觉技术及反演模型能够在线无损准确反演植物群生长参数,为温室环境调控及精准肥水一体灌溉控制系统提供具有代表性意义的决策依据。  相似文献   

7.
遥感信息与作物生长模型的区域作物单产模拟   总被引:10,自引:7,他引:3  
利用外部数据同化作物生长模型提高区域作物单产模拟精度是近年来的研究热点.该文以遥感反演的叶面积指数(LAI)作为结合点,以黄淮海粮食主产区典型县市夏玉米为研究对象,在区域尺度利用全局优化的复合形混合演化( SCE-UA)算法进行了遥感反演LAI信息同化EPIC (environmental policy integra...  相似文献   

8.
冠层温度(canopy temperature,Tc)是作物水分胁迫计算的基础。准确地剔除热红外图像中的土壤背景,可以提高作物水分的监测精度。该研究以4种水分处理的拔节期夏玉米为研究对象,借助无人机可见光和热红外图像,采用红绿比值指数(red-green ratio index,RGRI)法提取研究区域的面状玉米冠层温度的空间分布信息,并分析每幅热红外图像上冠层温度的累积频率。该并提出了两种改进作物水分胁迫指数(crop water stress index,CWSI)性能的方法,一是使用基于正态分布的不同统计分位数分割冠层温度,并基于不同统计分位数上的平均冠层温度计算CWSI (记为CWSITcf%)。二是基于冠层温度方差(canopy temperature variance,Var),将玉米冠层数据分为4个区间:区间Ⅰ,Tc≤40,Var≤10;区间Ⅱ,Tc≤40,10ar≤20;区间Ⅲ,35c  相似文献   

9.
针对当前无人机热红外遥感提取冠层温度不准确、监测作物水分胁迫状况精度不高的问题,该研究以不同水分处理的拔节期夏玉米为研究对象,利用无人机获取试验区域热红外和可见光图像资料,分别采用Otsu算法、EXG-Kmeans算法和Otsu-EXG-Kmeans算法获取冠层区域图像,并对提取结果进行精度评价,而后采用最优算法求得对应作物水分胁迫指数(Crop Water Stress Index,CWSI),通过分析CWSI同土壤含水率相关关系以及CWSI日平均变化趋势来监测玉米水分亏缺状况。结果表明:1)相比于其他方法,Otsu-EXG-Kmeans算法对冠层温度提取精度更高(用户精度为95.9%),提取的冠层温度更接近实测温度(r=0.788),可以准确获取图像冠层温度。2)相比于冠层温度,CWSI与土壤含水率的相关性更高(r= -0.738),CWSI日平均变化趋势更符合实际情况,可更加精确地监测玉米缺水状况。该研究为无人机遥感精准监测作物水分胁迫状况提供参考。  相似文献   

10.
WOFOST模型同化时序HJ CCD数据反演叶面积指数   总被引:2,自引:1,他引:1  
为增强作物叶面积指数遥感反演的机理性并提高反演精度,在深入分析作物长势模型WOFOST机理的基础上,采用最小二乘法作为同化算法,以生长季内获取的时序HJCCD遥感数据作为外部数据源,反演冬小麦叶面积指数进行长势监测和估产应用。以河北省玉田县为试验区,以三要素法和实测LAI作为基准,模型模拟产量和LAI作为反演精度的度量指标,成熟期LAI估算误差由模型同化前的14.95%降至同化后的9.97%,产量误差由同化前的18.17%降为同化后的15.89%。叶面积指数的同化结果与实测数据具有较好的拟合度,表明该方法的具有一定可行性,为作物生长模型区域化应用提供了参考。  相似文献   

11.
采用SEPLS_ELM模型估算夏玉米地上部生物量和叶面积指数   总被引:2,自引:2,他引:0  
利用高光谱数据进行作物生长状况监测具有无损和高效的特点,是现代精准农业发展的必要手段。该研究以连续3 a(2018-2020)不同水氮供应下夏玉米营养生长期采集的212份植物样品(地上部生物量和叶面积指数)和高光谱实测数据为数据源,分别采用偏最小二乘回归(Partial Least Squares Regression,PLS)、极限学习机(Extreme Learning Machine,ELM)、随机森林(Random Forest,RF)和基于PLS叠加策略的叠加极限学习机算法(Stacked Ensemble Extreme Learning Machine based on the PLS,SEPLS_ELM)构建了夏玉米营养生长期地上部生物量和叶面积指数估算模型。结果表明:基于PLS和ELM构建的夏玉米地上部生物量和叶面积指数估算模型的精度均较低,前者验证集R2低于0.85、均方根误差高于550 kg/hm2,后者R2低于0.90、均方根误差高于0.40 cm2/cm2。相比之下,基于RF和SEPLS_ELM构建的夏玉米营养生长期地上部生物量和叶面积指数估算模型均有着较高的估算精度,SEPLS_ELM模型表现尤为突出,其地上部生物量和叶面积指数估算模型验证集的R2分别为0.955和0.969,均方根误差分别为307.3 kg/hm2和0.24 cm2/cm2,表明叠加集成模型能够充分利用高光谱数据并提高作物地上部生物量和叶面积指数估算精度。  相似文献   

12.
Relation between crop growth parameters of sesame (Sesamum indicum) and the physical environment within the crop canopy at different sowing dates was studied during the summer seasons of 1999 and 2000. The maximum leaf growth rate (LGR) and leaf area index (LAI) was obtained from February 19 sown crop. About 34.4% variation in LGR could be explained through the variation in the physical environmental elements within the crop canopy. The LAI was depressed in the later months of sowing. The February 19 sown crop produced significantly, the highest dry matter production (DMP) in all the stages of crop growth. The regression model indicated that the crop growth rate (CGR) was adversely affected by the ambient temperature and photosynthetic active radiation (PAR) within the crop canopy. Crops sown on 19 February and 1 March produced statistically similar yields. The cultivar Rama produced higher yields than B-67 and Kanke-1. Regression models suggested that the temperature profile and PAR within the crop canopy produced 69 and 39% variation in yield, respectively.  相似文献   

13.
不同品种夏玉米光谱特征差异及其与农学参量相关性研究   总被引:2,自引:0,他引:2  
研究测定了不同品种夏玉米在六个典型生育期地上部分全氮、叶绿素含量、干生物量、叶面积指数(LAI)以及冠层光谱反射率,利用不同方法比较了不同品种玉米光谱特征的差异,系统分析了单波段反射率、可见光和近红外波段组合而成的8种常见植被指数与相应时期不同农学参量的相关性。结果表明:不同品种夏玉整个生育期不同品种冠层在可见光范围内反射率差异一直没有达到显著水平,苗期和拔节期在近红外区域反射率也无显著差异,从孕穗期到乳熟期在近红外区域反射率差异增大,普遍呈显著性差异。采用F检验法可以准确地反映不同品种在不同波段反射率的差异。常见光谱植被指数从拔节期到孕穗期绝大部分都可以准确反映不同品种夏玉米的农学参量,以GRVI最佳,它不仅可以区分不同品种夏玉米在中后期的长势,又可以准确拟合这段时期作物的农学参量。  相似文献   

14.
通过玉米水分控制试验,测定不同水分条件下各生育期叶片气孔导度、叶面积指数和冠层光谱反射率等,以分析玉米叶片气孔导度的变化规律及其与光谱植被指数的相关性,从而建立基于光谱植被指数和土壤湿度的叶片气孔导度模型。结果表明:玉米在可见光区和近红外中、长波区的反射率随着土壤水分的降低而上升,但叶片气孔导度(Gs)、叶面积指数(LAI)、比值植被指数(RVI)和归一化植被指数(NDVI)随着土壤水分的下降而降低;玉米NDVI和RVI与单叶片和冠层气孔导度均呈极显著指数函数关系(P〈0.01),且对单叶片气孔导度的拟合效果优于对冠层导度的拟合效果,而经土壤湿度订正的RVI监测模型优于NDVI监测模型。表明通过测定冠层反射光谱率可实时、迅速地定量监测玉米叶片的气孔导度,为大面积作物气孔导度估算奠定基础。  相似文献   

15.
基于t分布函数的玉米群体三维模型构建方法   总被引:3,自引:3,他引:0  
为利用少量实测数据快速构建能够反映因品种、环境条件、栽培管理措施等因素产生形态结构差异的玉米群体三维模型,提出基于t分布函数的玉米群体三维模型构建方法。通过实测数据构建主要株型参数的t分布函数,在其约束下生成群体内各植株主要株型参数,通过构造株型参数相似性度量函数调用玉米器官三维模板资源库中的器官几何模板,结合人工交互或图像提取的各植株生长位置与植株方位平面角2组群体结构信息生成玉米群体几何模型。利用三维数字化仪获取的玉米群体田间原位三维数字化数据所构建玉米群体计算得到的LAI与该方法构建玉米群体计算得到的LAI进行对比验证,结果表明:该方法所生成玉米群体叶面积指数与原位三维数字化数据所构建玉米群体计算得到的LAI相比,误差在±2%以内,可以满足面向可视化计算的玉米结构功能分析研究需求。方法可为玉米株型优化设计、耐密性鉴定、品种适应性评价等虚拟试验研究提供技术手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号