首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ISSR分子标记技术在植物种质资源研究中的应用   总被引:12,自引:0,他引:12  
ISSR是在SSR基础上发展起来的一种分子标记技术,兼具SSR、RAPD、RFLP、AFLP等分子标记的优点.本文综述了ISSR分子标记技术在种质资源鉴定和指纹图谱构建、遗传多样性和亲缘关系、基因定位和分子标记辅助选择等方面的研究进展.  相似文献   

2.
ISSR分子标记是目前生物标记上新型的标记技术模式,通过引用设计简单的SSR技术,按照两端碱基础序列,实施高重复性操作,完成多信息的综合重组。在作物的种植鉴定、遗传定位、多样性区分上具有良好的标记作用,可以实现多态化的操作。针对ISSR分子标记技术的相关特点进行了分析,研究作物实验操作上,通过遗传育种技术领域的操作,完成作物遗传育种的整体应用操作过程。  相似文献   

3.
DNA分子标记在野生大豆遗传多样性研究中的应用进展   总被引:2,自引:1,他引:1  
为了研究陕西省不同居群野生大豆的遗传多样性,本研究归纳了几种常见DNA分子标记技术(RFLP、RAPD、AFLP、SSR、ISSR、SNP)的原理及特点,综述了不同DNA分子标记在野生大豆遗传多样性研究中的应用现状。分析了不同DNA分子标记在野生大豆遗传多样性研究上的优缺点,提出了SSR标记的发展前景,以及在研究野生大豆遗传多样性上存在的优势。  相似文献   

4.
林木研究中常采用的分子标记技术主要包括RFLP、RAPD、AFLP、SSR及ISSR等。本文综述了这些分子标记技术的原理、优缺点。归纳总结了分子标记在木兰科植物中的应用研究进展:(1)利用RAPD、RFLP、cpDNA基因系列测定(psbA-trnH、atpB-rbcL、matK、ndhF)等分子标记在分子水平上对一些群体、个体进行了亲缘关系和分类研究;(2)利用RAPD、SSR和ISSR标记对一些群体、个体进行了遗传结构和遗传多样性研究;(3)采用DAF和RAPD获得了厚朴的DNA指纹图谱。分子标记在木兰科植物的其它方面的应用还很少。今后,除了继续对上述方面进行深入系统的研究外,还应充分运用分子标记技术,开展木兰科植物的分子遗传图谱、分子标记辅助选择育种、保育生物学等方面的研究。  相似文献   

5.
蹇黎 《种子》2012,31(3):59-62
DNA分子标记技术在石蒜属植物的进化和系统发育分析、种质资源遗传多样性与亲缘关系鉴定、品种指纹图谱和遗传图谱的构建、目标性状基因定位与克隆等研究领域已广泛应用.本文综述了主要几种用于石蒜属植物的DNA分子标记技术( RAPD、AFLP、SSR、ISSR、EAT、SRAP、SNP)的基本特点、原理及其应用现状.  相似文献   

6.
DNA分子标记在茶种资源遗传多样性研究中的应用   总被引:1,自引:0,他引:1  
茶树是世界三大饮料作物之一,是山茶属植物中最重要的作物.作为一种重要的经济作物,茶树研究的重要内容之一就是对茶种资源的遗传多样性进行有效的评价,以便对其进行合理的保护和利用.DNA分子标记技术是遗传多样性研究的重要手段之一,主要包括RFLP、RAPD、AFLP、ISSR、SSR等,它们各具其优点,并在茶树种质资源遗传多样性研究中得到了广泛的应用.DNA分子标记技术以后在茶树其他方面的研究中也将扮演重要的角色.  相似文献   

7.
益智为中国著名南药,其野生资源日渐枯竭,已成为濒危药用植物,致使其种质资源多样性和保护研究显得尤为重要。本综述简要阐述了RAPD、AFLP、SSR和ISSR等4种基于PCR技术的分子标记的基本原理及其优缺点,并总结这些标记技术在南药益智药材鉴定、居群间的亲缘关系、遗传多样性等研究中的应用现状。最后,提出分子标记技术在南药益智研究中存在的主要问题,并对今后研究方向和前景进行展望。  相似文献   

8.
DNA分子标记技术在农作物品种鉴定上的应用   总被引:2,自引:0,他引:2  
李志勇  谢华峰  张力  赵磊 《种子科技》2010,28(10):19-21
文章概述了利用DNA分子标记技术(RFLP、RAPD、SSR、AFLP、ISSR和STS等)进行品种鉴定的原理、特点和研究概况,从DNA分子水平上进行品种鉴定具有准确可靠、成本低、自动化、不受环境影响等优点,DNA分子标记技术在品种鉴定方面具有广阔的应用前景。  相似文献   

9.
分子标记预测作物杂种优势的研究进展   总被引:4,自引:0,他引:4  
杂种优势育种是蔬菜作物的一种重要育种技术。国内外利用RFLP、RAPD、AFLP、SSR、ISSR等分子标记技术开展了作物杂种优势预测的方法研究,取得了富有启示性的研究结果。本文分析和述评了国内外作物杂种优势分子预测的遗传距离法、杂种优势类群法、QTL法认为基于QTL的杂种优势类群和遗传距离相结合的方法将是作物杂种优势预测研究今后的研究重点和热点,并最有可能在育种实践中得以应用。  相似文献   

10.
ISSR分子标记及其在植物分子生物学中的应用   总被引:3,自引:0,他引:3  
陈龙  王家良  杨贤松 《种子》2007,26(10):49-52
ISSR分子标记是在PCR基础上发展起来的一种DNA多态性检测技术。其基本原理就是在SSR的3’或5’端锚定1~4个核苷酸,然后对反向排列SSR间的一段DNA进行PCR扩增,而不是扩增SSR本身。ISSR分子标记通常为显性标记,呈孟德尔式遗传,具有简便、快速、稳定、DNA多态性高等优点。目前,在植物遗传多样性、系统发育、品种鉴定、基因定位、遗传作图等研究中已得到广泛的应用。  相似文献   

11.
水稻光温敏核不育系的ISSR和SSR遗传分析比较   总被引:25,自引:0,他引:25  
本研究应用ISSR和SSR技术建立了24个水稻光温敏核不育系的DNA指纹图谱,利用13个ISSR引物和20对SSR引物,分别获得174个多态性片段和62个多态性片段,平均每个ISSR引物检测到13.38个多态性片段,远远高于SSR引物的检测率。根据遗传距离进行的聚类分析表明,利用这两种标记所得的聚类结果十分相似,24个材料被聚为粳型,偏籼型和籼型三个类群,在籼型不育系类群内,又可明显的分成三个亚类群,其中7个安农S-1衍生的不育系聚为一类,与农垦58S衍生的不育系有明显的遗传差异。根据两种标记计算的遗传距离及其遗传关系,所得的结果仍有一些差异,但总体趋势是一致。研究结果表明,ISSR和SSR标记适用于构建DNA指纹图谱,进行分类鉴定和遗传分析。  相似文献   

12.
Genetic diversity of four new yellow single crosses, five new yellow three-way crosses, and five yellow inbred lines of maize (Zea mays L.) was studied using different molecular (SSR, ISSR, and RAPD) and biochemical markers (seed storage protein content). All markers were able to clearly separate the inbred lines in one cluster from the different types of hybrids. The correlation among the different types of molecular markers was moderately high according to the Mantel’s test (e.g. 0.67 between SSR and ISSR, 0.42 between SSR and RAPD, and 0.65 between ISSR and RAPD), indicating that the three techniques are efficient for evaluating genetic diversity in the maize genotypes. The correlation of biochemical markers (seed storage protein SDS-PAGE) with SSR, ISSR, and RAPD markers was 0.61, 0.74, and 0.48, respectively. It can be concluded that both molecular and biochemical markers are efficient to study the genetic diversity in maize. Among the different types of molecular markers, SSR is a more accurate marker-type because of its co-dominance and stability of results. It can also be said that biochemical and molecular markers are positively correlated and the correlation ranged between moderate to high. This could suggest using both marker types, separately or together, for genetic diversity studies in maize.  相似文献   

13.
It is important to couple phenotypic analysis with genetic diversity for germplasm conservation in gene bank collections. The use of molecular markers supports the study of genetic marker-trait associations of biological and agronomic interest on diverse genetic material. In this report, 19 Greek traditional sweet cherry cultivars and two international cultivars, which were used as controls, were grown in Greece and characterized for 17 morpho-physiological traits, 15 simple sequence repeat (SSR) loci and 10 inter simple sequence repeat (ISSR) markers. To our knowledge, this is the first report on molecular genetic diversity studies in sweet cherry in Greece. Principal component analysis (PCA) of nine qualitative and eight quantitative morphological parameters explain over 77.33% of total variability in the first five axes. The SSR markers yielded a combined matching probability ratio (MPR) of 9.569 × e−12. The 15 SSR loci produced a total of 92 alleles. Ten ISSR primers generated 91 bands, with an average of 9.1 bands per primer. Expected heterozygosity (gene diversity) values of 15 SSR loci and 10 ISSR markers averaged at 0.683 and 0.369, respectively. Based on stepwise multiple regression analysis (MRA), SSR alleles were found associated with harvest time and fruit polar diameter. Furthermore, three ISSR markers were correlated with fruit harvest and soluble solids and four ISSR markers were correlated with fruit skin color. Stepwise MRA identified six SSR alleles associated with harvest time with a high correlation (P < 0.001), with linear associations with high F values. Hence, data analyzed by the use of MRA could be useful in marker-assisted breeding programs when no other genetic information is available.  相似文献   

14.
应用SSR和ISSR标记分析栽培香稻品种的遗传多样性   总被引:27,自引:0,他引:27  
本研究利用24对SSR引物和36个ISSR引物,分析33份来源于亚洲10个国家的香稻品种的遗传多样性。分别获得93条和181条多态性片段,每个SSR座位可检测3~8个等位基因,平均为4.23个;每个ISSR引物可检测3~8个多态性位点,平均为5.03个。根据SSR和ISSR标记计算的品种间遗传相似系数分别在0.294~0.884之间和0.595~0.867之间。聚类分析表明,利用两种标记所得的聚类结果基本上一致,与品种所处的3种气候类型变化基本相符。进一步证实SSR和ISSR标记是研究水稻种质资源分类有效的工具。  相似文献   

15.
The genetic relationship among 42 genotypes of finger millet collected from different geographical regions of southern India was investigated using random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR), and simple sequence repeats (SSR) markers. Ten RAPD primers produced 111 polymorphic bands. Five ISSR primers produced a total of 61 bands. Of these, 23 bands were polymorphic. The RAPD and ISSR fingerprints revealed 71.3 and 37.4% polymorphic banding patterns, respectively. Thirty-six SSR primers yielded 83 scorable alleles in which 62 were found to be polymorphic. Out of 36 SSR primers used, 14 primers (46.6%) produced polymorphic bands. The SSR primer UGEP7 produced a maximum number of six alleles. Mean polymorphic information content (PIC) of RAPD, ISSR and SSR were 0.44, 0.28, and 0.14, respectively. Molecular variances among the population were 2, 11, and 1% for RAPD, ISSR, and SSR markers, respectively. SSR produced 99% molecular variance within individuals. RAPD and ISSR markers produced a low level of molecular variance within individuals. The STRUCTURE (model-based program) analysis revealed that the 42 finger millet genotypes could be divided into a maximum of four subpopulations. Based on the Bayesian statistics, each RAPD and SSR marker produced three subpopulations (K=3), while ISSR marker showed four subpopulations (K=4). This study revealed that RAPD and SSR markers could narrow down the analysis of population structure and it may form the basis for finger millet breeding and improvement programs in the future.  相似文献   

16.
Molecular markers provide novel tools to differentiate between the various grades of Basmati rice, maintain fair-trade practices and to determine its relationship with other rice groups in Oryza sativa. We have evaluated the genetic diversity and patterns of relationships among the 18 rice genotypes representative of the traditional Basmati, cross-bred Basmati and non-Basmati (indica and japonica) rice varieties using AFLP, ISSR and SSR markers. All the three marker systems generated higher levels of polymorphism and could distinguish between all the 18 rice cultivars. The minimum number of assay-units per system needed to distinguish between all the cultivars was one for AFLP, two for ISSR and five for SSR. A total of 171 (110 polymorphic), 240 (188 polymorphic) and 160 (159 polymorphic) bands were detected using five primer combinations of AFLP, 25 UBC ISSR primers and 30 well distributed, mapped SSR markers, respectively. The salient features of AFLP, ISSR and SSR marker data analyzed using clustering algorithms, principal component analysis, Mantel test and AMOVA analysis are as given below: (i) the two traditional Basmati rice varieties were genetically distinct from indica and japonica rice varieties and invariably formed a separate cluster, (ii) the six Basmati varieties developed from various indica × Basmati rice crosses and backcrosses were grouped variably depending upon the marker system employed; CSR30 and Super being more closer to traditional Basmati followed by HKR228, Kasturi, Pusa Basmati 1 and Sabarmati, (iii) AFLP, ISSR and SSR marker data-sets showed moderate levels of positive correlation (Mantel test, r = 0.42–0.50), and (iv) the partitioning of the variance among and within rice groups (traditional Basmati, cross-bred Basmati, indica and japonica) using AMOVA showed greater variation among than within groups using SSR data-set, while reverse was true for both ISSR and AFLP data-sets. The study emphasizes the need for using a combination of different marker systems for a comprehensive genetic analysis of Basmati rice germplasm. The high-level polymorphism generated by SSR, ISSR and AFLP assays described in this study shall provide novel markers to differentiate between traditional Basmati rice supplies from cheaper cross-bred Basmati and long-grain non-Basmati varieties at commercial level.The first two authors have equal contribution  相似文献   

17.
用微卫星DNA标记分析苎麻品种的亲缘关系   总被引:20,自引:2,他引:18  
用3种微卫星标记分别分析了20个苎麻品种的DNA。每种标记方法都能在苎麻品种间产生多态性的谱带。ISSR每个检测单位产生的DNA条带最多,平均每个引物对扩增出8个DNA条带;其次是RAMP。虽然SSR每个检测单位产生的条带数最少,但其扩增图谱中,87.0%的条带是多态性条带,高于ISSR和RAMP。ISSR和RAMP扩增图谱中多态带的频率分别  相似文献   

18.
19.
Summary The aim of this study was to investigate the efficiency of ISSR, SSR, and SAMPL marker systems in detecting genetic polymorphism among 30 winter rye inbred lines and to compare the results of cluster analysis performed on data from these marker systems using different statistical methods and coefficients. Each marker system was able to discriminate among the materials analyzed with the lowest value of average genetic similarity (GS) obtained with ISSR markers (0.2888) and the highest with SAMPLs (0.5381). EST-derived SSRs turned out to be less efficient in detecting genetic diversity than those from genomic libraries (average GS values 0.3814 and 0.3221, respectively). The average GS value for combined SSR data was 0.3569. The lack of correlations between similarity and cophenetic matrices obtained with various methods systems suggests that different marker systems should be used simultaneously for a genetic diversity study to exploit as many sources of polymorphisms as possible.  相似文献   

20.
In this study, two microsatellite-based methodologies (SSR and ISSR) were evaluated for potential use in fingerprinting and determination of the similarity degree between 41 commercial cultivars of apple previously characterised using RAPD and AFLP markers. A total of 13 SSR primer sets was used and 84 polymorphic alleles were amplified. Seven ISSR primers yielded a total of 252 bands, of which 176 (89.1%) were polymorphic. Except for cultivars obtained from somatic mutations, all cultivars were easily distinguishable employing both methods. The similarity coefficient between cultivars ranged from 0.20 to 0.87 for SSR analysis and from 0.71 to 0.92 using the ISSR methodology. Dendrograms constructed using UPGMA cluster analysis revealed a phenetic classification that emphasises the existence of a narrow genetic base among the cultivars used, with the Portuguese cultivars revealing higher diversity. This study indicates that the results obtained based on the RAPD, AFLP, SSR and ISSR techniques are significantly correlated. The marker index, based on the effective multiplex ratio and expected heterozygosity, was calculated for both analyses (MI = 1.7 for SSR and MI = 8.4 for ISSR assays) and the results obtained were directly compared with previous RAPD and AFLP data from the same material. The SSR and ISSR markers were found to be useful for cultivar identification and assessment of phenetic relationships, revealing advantages, due to higher reproducibility, over other commonly employed PCR-based methods, namely RAPD and AFLP. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号