首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Di-(2-ethylhexyl) phthalate(DEHP) is a high-molecular-weight phthalate ester(PAE) that has been widely used in the manufacture of polyvinylchloride and contributes to environmental pollution.The objectives of the present study were to isolate a DEHP degrader that can utilize DEHP as a carbon source and to investigate its capacity to biodegrade DEHP in both liquid culture and soil.A bacterial strain WJ4 was isolated from an intensively managed vegetable soil,which was contaminated with PAEs.The strain WJ4 was affiliated to the genus Rhodococcus and was able to remove DEHP from soil effectively.A period of only 7 d was required to degrade about 96.4%of DEHP(200 mg L-1) in the liquid culture,and more than 55%of DEHP(1.0 g kg-1) in the artificially contaminated soil was removed within 21 d.Furthermore,Rhodococcus sp.strain WJ4 had a strong ability to degrade DEHP without additional nutrients in liquid minimal medium culture and DEHP-contaminated soil and to degrade the homologue of DEHP in both liquid culture and soil.Strain WJ4 represents a novel tool for removing PAEs from contaminated soils and it may have great potential for application in the remediation of environmental pollution by PAEs.  相似文献   

2.
To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyang,Northeast China,where the irrigation with petroleum wastewater had lasted for more than fifty years,and then groundwater irrigation instead of wastewater irrigation was applied due to the gradually serious PAHs pollution in soil.Soil chemical properties,including PAHs and nutrients contents,and soil microbial characteristics,including microbial biomass carbon,substrateinduced respiration,microbial quotient(qM),metabolic quotient(qCO2),dehydrogenase(DH),polyphenol oxidase(PO),urease(UR) and cellulase(CE) in surface and subsurface were determined.Total organic C,total N,total P,and available K were significantly different between the sites studied.The PAHs concentrations ranged from 610.9 to 6362.8 μg kg-1 in the surface layers(0-20 cm) and from 404.6 to 4318.5 μg kg-1 in the subsurface layers(20-40 cm).From the principal component analysis,the first principal component was primarily weighed by total PAHs,total organic C,total N,total P and available K,and it was the main factor that influencing the soil microbial characteristics.Among the tested microbial characteristics,DH,PO,UR,CE,qM and qCO2 were more sensitive to the PAHs stress than the others,thus they could serve as useful ecological assessment indicators for soil PAHs pollution.  相似文献   

3.
退化喀斯特植被恢复与土壤微生物特征的关系   总被引:10,自引:0,他引:10  
The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions.  相似文献   

4.
Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse conditions, have not been well studied. In this study, two greenhouse vegetable soils, which were collected from Xinji (XJ) and Hangzhou (HZ), China, were maintained at 30% and 75% water-holding capacity (WHC), or five cycles of 75% WHC followed by a 7-day dry-down to 30% WHC (DW). Soil inorganic N content increased during incubation. Net N mineralization (Nmin), microbial activity, and microbial biomass were significantly higher in the DW treatment than in the 30% and 75% WHC treatments. The higher water content (75% WHC) treatment had higher Nmin, microbial activity, and microbial biomass than the lower water content treatment (30% WHC). Multivariate analyses of community-level physiological profile (CLPP) and phospholipid fatty acid (PLFA) data indicated that soil moisture regime had a significant effect on soil microbial community substrate utilization pattern and microbial community composition. The significant positive correlation between Nmin and microbial substrate utilization or PLFAs suggested that soil N mineralization had a close relationship with microbial community.  相似文献   

5.
Soil microorganisms are major drivers of soil carbon(C) cycling;however,the response of these microorganisms to climate change remains unclear.In the present study,we investigated how 18 months of multifactor climate treatments(warmed air temperature by 3℃ and decreased or increased precipitation manipulation by 30%) affected soil microbial biomass C and nitrogen(N),community substrate utilization patterns,and community composition.Decreased and increased precipitation significantly reduced microbial biomass C by 13.5% and 24.9% and microbial biomass N by 22.9% and 17.6% in unwarmed plots,respectively(P0.01).Warming enhanced community substrate utilization by 89.8%,20.4%,and 141.4% in the natural,decreased,and increased precipitation plots,respectively.Particularly,warming significantly enhanced the utilization of amine and carboxylic acid substrates among all precipitation manipulation plots.Compared with the natural air temperature with natural precipitation treatment,other treatments affected fungal community richness by -0.9% to 33.6% and reduced the relative abundance of the dominant bacterial and fungal groups by 0.5% to 6.8% and 4.3% to 10.7%,respectively.The warming and/or precipitation manipulation treatments significantly altered Zygomycota abundance(P0.05).Our results indicate that climate change drivers and their interactions may cause changes in soil microbial biomass C and N,community substrate utilization patterns,and community composition,particularly for the fungal community,and shifts in the microorganism community may further shape the ecosystems function.  相似文献   

6.
Microbial adaptation to salinity can be achieved through synthesis of organic osmolytes,which requires high amounts of energy;however,a single addition of plant residues can only temporarily improve energy supply to soil microbes.Therefore,a laboratory incubation experiment was conducted to evaluate the responses of soil microbes to increasing salinity with repeated additions of plant residues using a loamy sand soil with an electrical conductivity in saturated paste extract(ECe) of 0.6 dS m-1.The soil was kept non-saline or salinized by adding different amounts of NaCl to achieve ECe of 12.5,25.0 and 50.0 dS m-1.The non-saline soil and the saline soils were amended with finely ground pea residues at two rates equivalent to 3.9 and 7.8 g C kg-1 soil on days 0,15 and29.The soils receiving no residues were included as a control.Cumulative respiration per g C added over 2 weeks after each residue addition was always greater at 3.9 than 7.8 g C kg-1 soil and higher in the non-saline soil than in the saline soils.In the saline soils,the cumulative respiration per g C added was higher after the second and third additions than after the first addition except with3.9 g C kg-1 at ECe of 50 dS m1.Though with the same amount of C added(7.8 g C kg-1),salinity reduced soil respiration to a lesser extent when 3.9 g C kg-1 was added twice compared to a single addition of 7.8 g C kg-1.After the third residue addition,the microbial biomass C concentration was significantly lower in the soils with ECe of 25 and 50 dS m1 than in the non-saline soil at3.9 g C kg-1,but only in the soil with ECe of 50 dS m-1 at 7.8 g C kg-1.We concluded that repeated residue additions increased the adaptation of soil microbial community to salinity,which was likely due to high C availability providing microbes with the energy needed for synthesis of organic osmolytes.  相似文献   

7.
盐胁迫和AM真菌对生菜生长的效应   总被引:3,自引:0,他引:3  
郑义艳  冯固 《土壤学报》2006,43(6):966-971
试验设不接种、接种Glomus intraradices(BEG141)、接种Glomus mosseae(BEG167)3个接种处理,每个接种处理下再设电导率(EC)为607μScm^-1(低盐)、1236μScm^-1(中盐)、1866μScm^-1(高盐)等3个不同盐水平处理。试验结果表明:随着土壤EC值的增加,生菜生物量降低,但在低盐胁迫下,非菌根植株降低幅度大于菌根植株。与不接种处理相比,在低盐和中盐条件下,接种菌根真菌的植株体内NO3^-含量、植株地上部干重增加;同一土壤盐水平下,接种处理的植株磷、叶绿素含量高于不接种处理的;在低盐下,接种处理的植株的根系可溶性糖含量高于不接种处理的,但在1236和1866μScm^-1的盐度下,接种处理的植株根系可溶性糖含量低于不接种处理的。说明在施肥过量引起的次生盐渍化土壤中,AM真菌侵染对生菜在低盐胁迫下的生长存在促进作用,而在高盐胁迫下,使其生长受到抑制。  相似文献   

8.
Variations in temperature and moisture play an important role in soil organic matter (SOM) decomposition. However, relationships between changes in microbial community composition induced by increasing temperature and SOM decomposition are still unclear. The present study was conducted to investigate the effects of temperature and moisture levels on soil respiration and microbial communities involved in straw decomposition and elucidate the impact of microbial communities on straw mass loss. A 120-d litterbag experiment was conducted using wheat and maize straw at three levels of soil moisture (40%, 70%, and 90% of water-holding capacity) and temperature (15, 25, and 35°C). The microbial communities were then assessed by phospholipid fatty acid (PLFA) analysis. With the exception of fungal PLFAs in maize straw at day 120, the PLFAs indicative of Gram-negative bacteria and fungi decreased with increasing temperatures. Temperature and straw C/N ratio significantly affected the microbial PLFA composition at the early stage, while soil microbial biomass carbon (C) had a stronger effect than straw C/N ratio at the later stage. Soil moisture levels exhibited no significant effect on microbial PLFA composition. Total PLFAs significantly influenced straw mass loss at the early stage of decomposition, but not at the later stage. In addition, the ratio of Gram-negative and Gram-positive bacterial PLFAs was negatively correlated with the straw mass loss. These results indicated that shifts in microbial PLFA composition induced by temperature, straw quality, and microbial C sources could lead to changes in straw decomposition.  相似文献   

9.
Investigating the effects of residue chemical composition on soil labile organic carbon(LOC) will improve our understanding of soil carbon sequestration.The effects of maize residue chemical composition and soil water content on soil LOC fractions and microbial properties were investigated in a laboratory incubation experiment.Maize shoot and root residues were incorporated into soil at 40%and 70% ?eld capacity.The soils were incubated at 20?C for 150 d and destructive sampling was conducted after 15,75,and 150 d.Respiration,dissolved organic carbon(DOC),hot-water extractable organic carbon(HEOC),and microbial biomass carbon(MBC)were recorded,along with cellulase and β-glucosidase activities and community-level physiological pro?les.The results showed that the cumulative respiration was lower in root-amended soils than in shoot-amended soils,indicating that root amendment may be bene?cial to C retention in soil.No signi?cant differences in the contents of DOC,HEOC and MBC,enzyme activities,and microbial functional diversity were observed between shoot- and root-amended soils.The high soil water content treatment signi?cantly increased the cumulative respiration,DOC and HEOC contents,and enzyme activities compared to the low soil water content treatment.However,the soil water content treatments had little in?uence on the MBC content and microbial functional diversity.There were signi?cantly positive correlations between LOC fractions and soil microbial properties.These results indicated that the chemical composition of maize residues had little in?uence on the DOC,HEOC,and MBC contents,enzyme activities,and microbial functional diversity,while soil water content could signi?cantly in?uence DOC and HEOC contents and enzyme activities.  相似文献   

10.
中国北方森林坡向对土壤细菌和从枝菌根真菌群落的影响   总被引:1,自引:0,他引:1  
The effects of slope aspects on soil biogeochemical properties and plant communities in forested environments have been studied extensively; however, slope aspect influence on soil microbial communities remains largely unexamined, despite the central role of soil biota in ecosystem functioning. In this study, the communities of both soil bacteria and arbuscular mycorrhizal fungi (AMF) were investigated using tagged pyrosequencing for three types of slope aspects (south-facing aspect, north-facing aspect and flat area) in a boreal forest of the Greater Khingan Mountains, China. The bacterial and AMF community composition differed with slope aspects. Bacterial diversity was the lowest on the north-facing aspect, and AMF diversity was the lowest on the flat area. Aspects also had a significant impact on soil pH and available phosphorus (P) and shrubby biomass. Soil pH and understory shrub biomass were significantly correlated with bacterial communities, and soil available P and shrub biomass showed significant correlations with AMF communities. Our results suggested that slope aspects affected bacterial and AMF communities, mediated by aspect-induced changes in plant community and soil chemical properties (e.g., pH and available P), which improved the knowledge on the effects of forest slope aspects on aboveground and belowground communities.  相似文献   

11.
分别以小麦、燕麦、毛葱、芹菜、白菜与黄瓜伴生或套作,研究了不同栽培模式对黄瓜根际土壤酶活性及细菌群落结构的影响,为连作土壤环境修复提供理论依据。结果表明:小麦/黄瓜、燕麦/黄瓜伴生,毛葱/黄瓜套作显著提高了根际土壤过氧化氢酶活性(P0.05);芹菜/黄瓜套作和小麦/黄瓜伴生显著提高了根际土壤过氧化物酶活性(P0.05);芹菜/黄瓜套作显著提高了根际土壤脲酶活性(P0.05);不同栽培模式均显著提高了各时期根际土壤转化酶活性(P0.05)。PCR-DGGE分析结果显示,不同栽培模式在一定程度上提高了黄瓜根际土壤细菌群落结构多样性。DGGE条带测序显示,黄瓜根际土壤细菌大多与不可培养的细菌种属具有较高的同源性,测序比对推测,主要分属于-变形菌纲(Alphaproteobacteria)、-变形菌纲(Betaproteobacteria)、鞘脂杆菌纲(Sphingobacteria)和芽单胞菌纲(Gemmatimonadetes)四个纲。本研究说明不同栽培模式对土壤酶活性和土壤细菌群落结构均产生一定影响,改变了土壤环境,其中小麦与黄瓜伴生栽培模式效果较好。  相似文献   

12.
The effects of the arbuscular mycorrhizal (AM) fungi, Glomus intraradices and G. versiforme, on growth and zinc (Zn) uptake were investigated in trifoliate orange (Poncirus trifoliata) seedlings exposed to low-Zn soil. Low-Zn decreased growth, levels of leaf chlorophyll, soluble protein and sugar, and soil enzymatic activities, and pH in 0–2 cm rhizosphere soil. Low-Zn soil also decreased mineral nutrients (including Zn) concentrations in the shoots and roots. Glomus intraradices especially, significantly enhanced plant biomass, leaf soluble protein and sugar concentrations, root viability, acid phosphatase, catalase, invertase and urease activities, and easily extractable glomalin content in 0–2 cm and 2–4 cm rhizosphere soil. It also increased concentrations of Zn, phosphorus, potassium and magnesium in the shoots and roots, while decreased the soil pH. Arbuscular mycorrhizal fungi, especially G. intraradices, has the potential to improve growth and Zn uptake of triofoliate orange seedlings grown in low-Zn soil.  相似文献   

13.
为了解盐碱胁迫对黄瓜嫁接苗根际土壤细菌和真菌群落结构的影响,本研究以2种耐盐碱砧木‘华砧108’(T1)、‘神力铁木砧’(T2)和2种盐碱敏感砧木‘辉太郎’(S1)、‘京欣砧6号’(S2)为试材,自根苗作为对照,以混合盐(盐分摩尔比为NaHCO_3∶Na_2SO_4∶NaCl∶Na_2CO_3=4∶2∶2∶0.15)浓度为100 mmol·L~(-1)、pH 9.0的处理液处理20 d、30 d、40 d(定植30 d、40 d、50 d),利用PCR-DGGE技术,研究了盐碱胁迫对不同砧木嫁接的黄瓜幼苗根际土壤微生物群落结构和丰度的影响。结果表明,耐盐碱的砧木品种T1、T2根际土壤真菌DGGE图谱条带数显著高于盐碱敏感的S2和自根苗对照CK,并且耐盐碱的品种T2土壤细菌的Shannon-Wiener指数与均匀度指数均显著高于盐碱敏感的品种S1、S2和自根苗对照CK。耐盐碱品种T1的细菌16S rDNA基因拷贝数在定植50 d时显著高于盐碱敏感的品种及自根苗;在定植40 d时,耐盐碱的砧木T2真菌ITS基因拷贝数显著高于盐碱敏感的品种以及黄瓜自根苗;定植50 d时,耐盐碱的砧木真菌ITS基因拷贝数显著高于盐碱敏感的品种,但与自根苗差异不显著。不同耐盐碱性砧木嫁接黄瓜幼苗根际土壤微生物群落结构组成和丰度存在差异。以上研究表明,随着盐碱胁迫时间的增加,耐盐碱性不同的砧木嫁接苗根际土壤微生物群落丰度与结构多样性产生了较大差异,间接改变了土壤微生态环境,致使土壤微生物数量和丰富度也发生改变。耐盐碱的砧木品种可能通过改善土壤微环境来加强其自身的耐盐碱特性。  相似文献   

14.
ABSTRACT

The need for salinity resistance in turfgrass is increasing because of the enhanced use of effluent and other low-quality water for turfgrass irrigation. Although most turfgrasses form an arbuscular mycorrhizal fungus (AMF) symbiosis, there is little information on the mycorrhization of turfgrass species. Therefore, the aim of this study was to determine the effects of three AMF species, Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, and Glomus deserticola Trappe & John, and a mixture thereof on the growth, productivity, and nutrient uptake of two species of cool-season turfgrasses, Challenger Kentucky bluegrass (Poa pratensis L.) and Arid tall fescue (Festuca arundinacea Schreb.), and to relate the effects to colonization of the roots by mycorrhiza to assess the dependency of the plants (mycorrhizal dependency [MD]). Following the experimental period (4 months) and measurements, the mycorrhizal inoculated plants had significantly greater biomass production compared to that of non-inoculated plants. MD and shoot mineral contents (particularly P) differed among turfgrass hosting AMF, and the highest value (13%) occurred for P. pratensis and F. arundinacea seedlings colonized with G. intraradices and G. deserticola, respectively. The P content was highest for the F. arundinacea/mixed AMF combination compared to other treatments. We confirmed that mycorrhizal inoculation (P. pratensis/G. intraradices and F. arundinacea/mixed AMF combinations) enhanced plant productivity and nutrient uptake (especially P) even under non-optimum conditions.  相似文献   

15.
由尖孢镰刀菌引起的黄瓜枯萎病是设施黄瓜生产的主要障碍之一,丛枝菌根真菌(AM真菌)可以和包括黄瓜在内约80%的维管植物的根系形成菌根共生体,适宜的共生体组合对于寄主的生长与抗病性的提高十分有益。为明确Glomus versiforme与Glomus intraradices两种AM真菌对"津绿3号"黄瓜苗期枯萎病的防治效果。试验采用盆钵培养的方法,研究了两种AM真菌对幼苗生长及其根系3种抗病相关酶活性的影响。结果表明:两种AM真菌均可促进黄瓜幼苗的生长,并能减轻病害,但以G.versiforme的促生及生防作用更显著,接种G.versiforme处理的黄瓜幼苗株高、茎粗、叶面积及干重均显著大于对照,该处理的幼苗病情指数较对照降低26.6%。菌根化黄瓜幼苗抗病性的提高一方面与接种病原菌Fusarium oxysporum f.sp.cucumerinum前幼苗生长健壮有关;另一方面与根系抗病相关酶活性的提前诱导有关。接种F.oxysporum f.sp.cucumerinum前,G.versiforme处理的黄瓜幼苗壮苗指数显著高于G.intraradices处理与对照,分别为G.intraradices处理与对照的1.19倍与1.22倍;G.versiforme处理的黄瓜幼苗根系几丁质酶、β-1,3-葡聚糖酶与PAL酶分别比对照提前2 d、7 d、7 d被诱导,且酶活性分别为对照的1.44倍、2.16倍和92.00倍。  相似文献   

16.
Abstract. A field experiment was undertaken to assess the effectiveness of a combined treatment, involving addition of Aspergillus niger -treated sugar beet (SB) residue in the presence of rock phosphate and mycorrhizal inoculation of seedlings with Pisolithus tinctorius . The aim was to improve the physical, chemical, biochemical and biological properties of a degraded semiarid Mediterranean soil. Short-term effects of such improvements on the establishment of Cistus albidus L. seedlings were evaluated. Eight months after planting, macronutrients (NPK), total carbohydrates, water-soluble C, water-soluble carbohydrates, microbial biomass C and enzyme activities (dehydrogenase, urease, protease, acid phosphatase and β-glucosidase) measured in the rhizosphere soil of C. albidus were increased greatly by addition of fermented SB residue. Soil structural stability improved only with the fermented SB addition (about 79% higher in the amended soils than in the non-amended soils). The mycorrhizal inoculation was the most effective treatment in improving the growth of C. albidus plants, but only slightly improved soil quality. Growth of inoculated plants was about 33% greater than plants grown in the amended soil and about 131% greater than control plants. The combined benefit of mycorrhizal inoculation of seedlings and addition of fermented SB residue to soil on plant growth was similar to that of the treatments applied individually.  相似文献   

17.
The interactive impact of earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) on the degradation of oxytetracycline (OTC) in soils was studied under greenhouse conditions. Treatments included maize plants inoculated vs. not inoculated with AM fungi and treated with or without earthworms at low (1 mg kg−1 soil DM) or high (100 mg kg−1 soil DM) OTC rates. The root colonization rate, the hyphal density of mycorrhizae, the residual OTC concentration in soils, catalase, dehydrogenase, urease, soil microbial biomass C, Shannon–Wiener index (H) for microbial communities from T-RFLP profiles were measured at harvest. The results indicated that earthworms and AM fungi would individually or interactively enhance OTC decomposition and significantly decreased the residual OTC concentration at both high and low OTC rates. Both earthworms and AM fungi could promote the degradation of OTC by increasing soil microbial biomass C at both high and low OTC rates. The effect of soil enzyme activity and soil microbial diversity on OTC decomposition was different between high and low OTC rates. Hyphomicrobium and Bacillus cereus were dominant bacteria, and Thielavia and Chaetomium were dominant phyla of fungi at all occasions. Earthworm activity stimulated the growth of Hyphomicrobium and Thielavia, while AM fungi may stimulate Bcereus, Thielavia and Chaetomium, resulting in greater OTC decomposition. The interaction between earthworms and AM fungi in affecting the degradation of OTC may be attributed to different mechanisms, depending on soil microbial biomass, function (enzyme activity) and communities (the abundance of Hyphomicrobium, B. cereus, Thielavia and Chaetomium) in the soil.  相似文献   

18.
灌后通气处理对温室黄瓜生长和品质的影响   总被引:4,自引:0,他引:4  
Rhizosphere aeration, irrigation with aerated water, and post-irrigation aeration would positively impact crop growth and yield. The objective of this study was to determine the effect of 4 post-irrigation aeration levels on plant growth, yield, irrigation-use efficiency (IUE), and fruit market and nutritional quality of greenhouse cucumber under subsurface drip irrigation (SDI) and furrow irrigation (FI). The post-irrigation aeration levels were 0.00, 0.50, 0.75, and 1.00 times half the estimated porosity of the plot rhizosphere. The experimental design was a two-faetor split-plot in randomized complete blocks with irrigation (FI and SDI) as the main treatments and 4 aeration levels as the sub-treatments. Ridge and furrow main plots (2.4 m ~ 2.4 m) with 4 ridges were replicated 5 times. Each of the 4 ridges (1.44 m2 in area) in the main plots was used as a sub-treatment plot. The results showed that post-irrigation aeration enhanced greenhouse cucumber plant growth, yield, IUE, and fruit market and nutritional quality. These parameters generally increased with increasing aeration levels under both FI and SDI. The aeration effect was generally higher under SDI than FI, and the IUE under SDI was almost twice that under FI. Further investigation would be required to elucidate the plant physiological mechanisms and soil processes responsible for the observed effects.  相似文献   

19.
供硫和丛枝菌根真菌对洋葱生长和品质的影响   总被引:1,自引:1,他引:1  
以珍珠岩为植物的生长基质盆栽试验,分别供给0.1、1.75和4 mmol/L三个不同硫水平的Long Ashton营养液,研究接种丛枝菌根真菌Glomus versiform对洋葱(Allium cepa L.)生长和品质的影响。结果表明,接种丛枝菌根真菌显著的改善了宿主植物的磷营养水平,促进了洋葱的生长;而硫处理对洋葱生长的影响差异不显著,但随着供硫水平的提高植株地上部全硫含量和有机硫含量显著增加。接种菌根真菌对洋葱硫营养的影响受外界供硫水平的影响,在供硫0.1 mmol/L时降低了洋葱植株的硫含量;而在供硫1.75和4 mmol/L时显著改善了洋葱的硫营养状况,宿主植物的酶解丙酮酸(enzyme produced pyruvic acid, EPY)的含量也显著增加。说明丛枝菌根真菌能够帮助宿主植物吸收外界环境中硫营养成分,改善洋葱的硫营养状况及品质。  相似文献   

20.
AM真菌对烟苗生长及某些生理指标的影响   总被引:6,自引:0,他引:6  
在低浓度营养液条件下,利用漂浮育苗技术培育烟苗,于播种期、小十字期、生根期分别接种不同的AM真菌,研究了它们对烟苗生长、营养和某些生理指标的影响。结果表明,越早接种AM真菌,其侵染率越高;播种期接种,侵染率达到39.2%~59.6%。AM真菌的菌根效应因菌种(株)不同而异,接种球囊霉真菌(BEG-141)后,显著增加烟苗干重、磷含量、氮磷钾吸收量、叶绿素含量,以及根系硝酸还原酶、超氧化物歧化酶和几丁质酶活性。表明在漂浮育苗技术中,播种期接种适宜的AM真菌是培育壮苗的有效措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号