首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 953 毫秒
1.
半干旱土添加有机改良剂后有机质的化学结构变化   总被引:1,自引:0,他引:1  
A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil.The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.  相似文献   

2.
Mine tailing soils created from the copper extraction in Touro Mine (Northwest Spain) are very degraded both physically and chemically. Three plots in this mine tailing were amended with Technosols in different proportions in each one to know if this mixture improved the physico-chemical characteristics of the mine soil and contaminated it with heavy metals. The Technosols were made of organic wastes, including mussel residues, wood fragments, sewage sludges and paper mill ashes. An unamended area was used as a control soil. Pseudototal and diethylenetriaminepentaacetic acid (DTPA)-extractable contents of Al, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in soil samples. The untreated soil had significant limitations for vegetation growth. All the Technosols improved the properties of the mine soil by increasing organic carbon and pH value, but they added Ni, Pb or Zn to the soil. It is advisable to check whether the heavy metal concentrations of the wastes are hazardous or not before adding to soils. It is also necessary to study the effect of these wastes over time and in more areas to conclude if they are actually favourable to restore degraded mine soils.  相似文献   

3.
An incubation experiment was conducted to investigate the microbial biomass associated Cu in four contrasting soils to which an alkaline stabilised sewage sludge cake was applied. The organisms of sludge-amended and control soils were killed using γ-irradiation technique, and the aqueous and acid-extractable Cu concentrations were determined. Addition of the sludge product increased significantly the concentration of both the aqueous and dilute HOAc-extractable Cu in all the irradiated soils compared to the non-sterilised sludge/soil mixtures, but the increase was more pronounced in the dilute acid-extractable Cu, indicating thatthe Cu rendered extractable in water and dilute acetic acid by γ-irradiation existed in the both soil liquidand solid phases. The additional increase in extractable Cu following the biocidal treatment is likely to bedue to release of Cu from the same fraction of soil microbial biomass.  相似文献   

4.
A long-term field experiment was carried out in the experiment farm of the Sao Paulo State University, Brazil, to evaluate the phytoavailability of Zn, Cd and Pb in a Typic Eutrorthox soil treated with sewage sludge for nine consecutive years, using the sequential extraction and organic matter fractionation methods. During 2005-2006, maize (Zea mays L.) was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. The treatments consisted of four sewage sludge rates (in a dry basis) : 0.0 (control, with mineral fertilization), 45.0, 90.0 and 127.5 t ha-1, annually for nine years. Before maize sowing, the sewage sludge was manually applied to the soil and incorporated at 10 cm depth. Soil samples (0-20 cm layer) for Zn, Cd and Pb analysis were collected 60 days after sowing. The successive applications of sewage sludge to the soil did not affect heavy metal (Cd and Pb) fractions in the soil, with exception of Zn fractions. The Zn, Cd and Pb distributions in the soil were strongly associated with humin and residual fractions, which are characterized by stable chemical bonds. Zinc, Cd and Pb in the soil showed low phytoavailability after nine-year successive applications of sewage sludge to the soil.  相似文献   

5.
The use of sewage sludge on agricultural land provides an alternative for its disposal. Therefore, the aim of the present study was to evaluate the feasibility of using industrial sewage sludge produced in Pakistan, as an agricultural fertilizer. The agricultural soil amended with 250 g kg^-1 sewage sludge with or without lime treatment was used for the growth of the common local grain crop, maize (Zea maize). The mobility of the trace and toxic metals in the sludge samples was assessed by applying a modified BCR sequential extraction procedure. The single extraction procedure was comprised of the application of a mild extractant (CaCl2) and water, for the estimation of the proportion of easily soluble metal fractions. To check the precision of the analytical results, the concentrations of trace and toxic metals in every step of the sequential extraction procedure were summed up and compared with total metal concentrations. The plant-available metal contents, as indicated by the deionized water and 0.01 mol L^-1 CaCl2 solution extraction fractions and the exchangeable fraction of the sequential extraction, decreased significantly (P 〈 0.05) with lime application because of the reduced metal availability at a higher pH, except in the cases of Cd and Cu, whose mobility was slightly increased. Sludge amendment enhanced the dry weight yield of maize and the increase was more obvious for the soil with lime treatment. Liming the sewage sludge reduced the trace and toxic metal contents in the grain tissues, except Cu and Cd, which were below the permissible limits of these metals. The present experiment demonstrates that liming was an important factor in facilitating the growth of maize in sludge-amended soil.  相似文献   

6.
半干旱退化土壤中施入城市垃圾的长期效应研究   总被引:1,自引:0,他引:1  
The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity;microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, β-glucosidase, and N-α-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg-1 soil with the highest MSW doses, compared to 4.30 g kg-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.  相似文献   

7.
碱稳定污泥污水对土壤可提取有机碳和铜的影响   总被引:4,自引:1,他引:4  
An incubation experiment was conducted to evaluate the potential for water contamination with sludge-derived organic substances and copper following land application of alkaline-stabilised sewage sludge. Two contrasting sludge-amended soils were studied. Both soils were previously treated with urban and ruralalkaline biosolids separately at sludge application rates of 0, 30 and 120 t ha-1 fresh product. The air-driedsoil/sludge mixtures were wetted with distilled water, maintained at 40 % of water-holding capacity and equilibrated for three weeks at 4 ℃ before extraction. Subsamples were extracted with either distilled wateror 0.5 mol L-1 K2SO4 solution. The concentrations of organic C in the aqueous and chemical extracts were determined directly with a total organic carbon (TOC) analyser. The concentrations of Cu in the twoextracts were also determined by atomic absorption spectrophotometry The relationship between the two extractable organic C fractions was examined, together with that between extractable organic C concentration and extractable Cu concentration. Application of alkaline biosolids increased the concentrations of soil mobile organic substances and Cu. The results are discussed in terms of a possible increase in the potential for leaching of sludge-derived organics and Cu in the sludge-amended soils.  相似文献   

8.
施用污泥后石灰性土壤中铜、锌、镉的植物有效性   总被引:2,自引:0,他引:2  
The toxicity of trace elements (TEs), such as copper (Cu), zinc (Zn), and cadmium (Cd), often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China. In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS. The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts, respectively. The results from the field experiment showed that the contents of total Zn, Cu, and Cd in the soils increased linearly with SS application rates. With increasing SS application rates, the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau, while there was no significant change of Cd content in the maize grains. The bioconcentration factors of the metals in the grains of wheat and maize were found to be in the order of Zn > Cu > Cd, but for the straw the order was Cd > Cu > Zn. It was also found that wheat grains could accumulate more metals compared with maize grains. The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.  相似文献   

9.
A field experiment with cotton was conducted on a well drained,calcareous,clay loamy Typic Xerochreph to investigate the utility of sewage sludge as a partial substitute for fertilizers and the influence of tis application on the basic soil properties and heavy metal concentrations.The experimental design was completely randomized blocks with five treatments replicated four times each.Sewage sludge came from the treatment plant of the municipality of Volos,Central Greece,with the following characteristics:organic matter content 36.6%,pH(H2O1:5)6.89,CaCO3 53.4g kg^-1,total N 265.g kg^-1,ttal P33.5g kg^-1,and total K 968mg kg^-1 soil.Heavy metal concentrations were Cd 5.24,Pb 442,Ni38,Cu 224,Zn1812,and Mn 260mgkg^-1 dry weight,respectively.The soil was high in potassium(K)and poor in available phosphorus(P).The results showed that sewage sludge application increased cotton yield and K and P concentrations in cotton leaves,Soil pH was reduced in the case of higher sewage sludge rate.Electrical conductivity,organic matter content,totalN,and avaiable P were significantly increased.Total concentrations of Zn,Pb,and Cu were slightly increased.DTPA-extractable Zn,Cu,and Mn were also significantly increased.Available forms of all heavy metals,except Cd,were significantly correlated with organic matter content in a positive way and negatively with soil pH.  相似文献   

10.
The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions. Humic acids (HAs) isolated by conventional procedures from CS, TS, and unamended (SO) and sludge amended soils were analysed for elemental (C, H, N, S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible, Fourier transform infrared and fluorescence spectroscopies. With respect to CS, TS had similar pH and total P and K contents, larger dry matter, total organic C, total N and C/N ratio and smaller ash content and electrical conductivity. Amendment with both CS and TS induced a number of modifications in soil properties, including an increase of pH, electrical conductivity, total organic C, total N, and available P. The CS-HA had greater O, total acidity, carboxyl, and phenolic OH group contents and smaller C and H contents than TS-HA. The CS-HA and TS-HA had larger N and S contents, smaller C, O and acidic functional group contents, and lower aromatic polycondensation and humification degrees than SO-HA. Amended soil-HAs showed C, H, N and S contents larger than SO-HA, suggesting that sludge HAs were partially incorporated into soil HAs. These effects were more evident with increasing number of sludge applications.  相似文献   

11.
There is a need to improve the way in which wastes, such as sewage sludges, are managed and a potential way to proceed would be to transform them into biochar. On the other hand, there is a growing interest in the use of soil biochemical properties as indicators of soil quality because they are sensitive to alterations in soil management. Thus, we have studied the effect of a biochar obtained from sewage sludge on soil biochemical properties in an organic soil using two doses of biochar and comparing these results with the control soil and with soils amended with the same two doses of unpyrolyzed sewage sludge. Microbial biomass C, soil respiration, net N mineralization and several enzyme activities (dehydrogenase, β-glucosidase, phosphomoesterase and arylsulphatase) were monitored. The geometric mean of enzyme activities (GMea) was used as a soil quality index. Individual biochemical properties showed a different response to the treatments, while GMea showed an increase in the quality of soils amended with the high biochar dose and a decrease in those amended with a high sewage sludge dose. The geometric mean of enzyme activities was a suitable index to condense the whole set of soil enzyme values in a single numerical value, which was sensitive to management practices.  相似文献   

12.
Abstract

Forms of metals in soils control their availability to plants and animals and affect the environment differently. To evaluate shifts of metal forms as affected by organic amendments, a sequential extraction procedure was used to fractionate calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), and zinc (Zn) in two Hawaii soils amended with three organic wastes. The designated forms are water‐soluble, exchangeable, sorbed, organically bound, carbonate, and residual fractions. The soils, a Mollisol (Waimanalo series) and an Ultisol (Paaloa series), were incubated at 25°C±2°C at field capacity with either chicken manure, sewage sludge, or green manure (cowpea leaves) at 0, 5, and 20 Mg#lbha‐1 for one or five months. Organically bound metals decreased with time because of organic matter decomposition. Iron was mostly residual, but water‐soluble Fe also increased in the acid Paaloa soil. Unlike Fe, most forms of Ca and Mg were transformed to the exchangeable form in 5 months. There was no significant change of Mn forms during the 5‐month incubation. Virtually all organically bound Zn shifted to carbonate and residual forms in the neutral Mollisol (pH 6.2), but shifted to carbonate and exchangeable forms in the acid Ultisol (pH 4.5). The solubilities and exchangeabilities of the five metals in the two soils treated with sewage sludge were not significantly different from those treated with cowpea green manure or chicken manure during the 5‐month incubation. The results suggest that the additions of sewage sludge, chicken manure, or cowpea green manure to Hawaii soils at 20 Mg#lbha‐1 do not have environmentally significant impacts in terms of Ca, Mg, Fe, Mn, and Zn. On the other hand, the amendments may decrease Ca and Mg deficiencies in highly weathered, nutrient‐poor soils such as Ultisols and Oxisols of the tropics.  相似文献   

13.
The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewatered (CDS) sewage sludge on soil microbiological properties, an experiment was conducted at field sites for more than one year (401 d) when applied to two Mediterranean degraded soils (loam and loamy sand soils). All three types of sewage sludge had a significant effect on measured parameters. I...  相似文献   

14.
An experiment was conducted to examine the accumulation and mobility of heavy metals (Zn and Cu) at different depths in three types of arable soils (Brown Lowland soil, Andosol, and Brown Forest soil) amended with cattle and pig farmyard manures for 5 years. Nitric-perchloric acid digestion was performed for the determination of the total amounts of heavy metals, and 0.1 M hydrochloric acid extraction was performed for the determination of the amounts of soluble heavy metals. Results of the soil analysis indicated that pig farmyard manure application resulted in serious contamination of arable soils with Zn and potentially Cu. Especially, the Brown Forest soil displayed a high ability to accumulate heavy metals on the soil surface. Total-Zn concentration in surface soils was considerably affected by the holding capacity of soluble-Zn traction. Although the Andosol amended with pig farmyard manure showed higher concentrations of heavy metals related to the higher ability of retention on a weight basis, the soil did not contribute to high heavy metal accumulation because of its low bulk density. Heavy metals were easily leached in sandy soils such as Brown Lowland soil, and Cu was potentially stable compared with Zn. We suggest that long-term pig farmyard manure application to the Brown Lowland soil and Andosol with a light soil texture is associated with a higher risk of groundwater pollution than the application to the Brown Forest soil.  相似文献   

15.
Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover.High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste-contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine tailings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine tailings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.  相似文献   

16.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

17.
A valuable feature of sewage sludge used for restoring degraded soils is its supplying capacity for C, N and P. A series of laboratory incubation experiments to quantify the release of N and P from raw (dried) and co-composted urban sewage sludges applied to mine dump soil were conducted. The effect of application dose (0–100 g kg−1) and incubation time (0–30 day) on N and P mineralization as well as the process modelling were carried out by Response Surface Methodology. Models fitted revealed significant interaction effects between factors involved in soil-sludge dynamics, which accounted for 26% total variance in N-mineralization. The response models were used to predict nutrient releases required in properly formulating sludge management guidelines, viz. maximum simultaneous value for extractable inorganic forms of N and P achieved 11 and 18 days after applying 100 g kg−1 of co-compost and dried sludge, respectively. Addition of sludges resulted into mineralization of 18% total N and up to 15% total P, while chemical and biochemical properties of the amended soil were improved paralleling organic matter mineralization. Compared to dried sludge, co-composting sludge lead to a decline of up to 30% and 65% in the availability in soil of N and P, respectively, but at expenses of C losses of only 7%, illustrating that co-composting was superior in turning sludge into an environmentally safe soil amendment.  相似文献   

18.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号