首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.

Background

Rice plays an extremely important role in food safety because it feeds more than half of the world’s population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding.

Results

We characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding.

Conclusion

GNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.
  相似文献   

2.

Background

The improvement of rice yield is a crucial global issue, but evaluating yield requires substantial efforts. Rice yield comprises the following indices: panicle number (PN), grain number per panicle (GN), 1000-grain weight, and percentage of ripened grain. To simplify measurements, we analyzed one panicle weight (OPW) as a simplified yield index that integrates GN, grain weight, and percentage of ripened grain, and verified its suitability as a proxy for GN and grain weight in particular.

Results

Quantitative trait locus (QTL) analysis using 190 recombinant inbred lines derived from Koshihikari (large panicle and small grain) and Yamadanishiki (small panicle and large grain), japonica cultivars detected three QTLs on chromosomes 5 (qOPW5), 7 (qOPW7) and 11 (qOPW11). Of these, qOPW5 and qOPW11 were detected over two years. qOPW5 and qOPW7 increased OPW, and qOPW11 decreased it at Yamadanishiki alleles. A chromosome segment substitution line (CSSL) with a genomic segment from Yamadanishiki substituted in the Koshihikari genetic background harboring qOPW5 increased grain weight. qOPW11 had the largest genetic effect of QTLs, which was validated using a CSSL. Substitution mapping using four CSSLs revealed that qOPW11 was located in the range of 1.46 Mb on chromosome 11. The CSSL harboring qOPW11 decreased primary and secondary branch numbers, culm length, and panicle length, and increased PN.

Conclusions

In this study, three QTLs associated with OPW were detected. The CSSL with the novel and largest QTL, qOPW11, differed in some traits associated with both panicle and plant architecture, indicating different functions for the meristem in the vegetative versus the reproductive stages. qOPW5 coincided with an identified QTL for grain width and grain weight, suggesting that qOPW5 was affected by rice grain size. OPW can be considered a useful trait for efficient detection of QTLs associated with rice yield.
  相似文献   

3.

Background

Combining ability is a measure for selecting elite parents that make the highest contributions to hybrid performance. However, the genetic bases of combining ability and how they contributed to heterosis is seldomly known.

Results

We constructed a both NCII and NCIII population derived from an indica-japonica cross to study the relationship among parental performance, combining ability and hybrid performance of 11 agronomic traits. Among them, specific combining ability is more important to grain yield than parental performance and general combining ability. We performed linkage analyses to phenotypic values and combining ability of all 11 traits in Doubled haploid lines and its two backcross populations and identified 108 QTLs in total. Among these QTLs, four known loci, Sd1, Ghd7, Ghd8 and DEP1 contribute a lot to GCA effects of agronomic traits except grain yield and seed setting rate. Three QTLs, Ghd8, S5 and qS12, contribute a lot to SCA effects of grain yield and present overdominace.

Conclusions

Our study provides insights into the genetic bases of combining ability and heterosis and will promote the improvements of indica-japonica hybrid breeding.
  相似文献   

4.

Background

The DEFECTIVE IN OUTER CELL LAYER SPECIFICATION 1 (DOCS1) gene belongs to the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) subfamily. It has been discovered few years ago in Oryza sativa (rice) in a screen to isolate mutants with defects in sensitivity to aluminum. The c68 (docs1–1) mutant possessed a nonsense mutation in the C-terminal part of the DOCS1 kinase domain.

Findings

We have generated a new loss-of-function mutation in the DOCS1 gene (docs1–2) using the CRISPR-Cas9 technology. This new loss-of-function mutant and docs1–1 present similar phenotypes suggesting the original docs1–1 was a null allele. Besides the aluminum sensitivity phenotype, both docs1 mutants shared also several root phenotypes described previously: less root hairs and mixed identities of the outer cell layers. Moreover, our new results suggest that DOCS1 could also play a role in root cap development. We hypothesized these docs1 root phenotypes may affect gravity responses. As expected, in seedlings, the early gravitropic response was delayed. Furthermore, at adult stage, the root gravitropic set angle of docs1 mutants was also affected since docs1 mutant plants displayed larger root cone angles.

Conclusions

All these observations add new insights into the DOCS1 gene function in gravitropic responses at several stages of plant development.
  相似文献   

5.

Background

The drivers of species co-existence in local communities are especially enigmatic for assemblages of morphologically cryptic species. Here we characterize the colonization dynamics and abundance of nine species of Caenorhabditis nematodes in neotropical French Guiana, the most speciose known assemblage of this genus, with resource use overlap and notoriously similar external morphology despite deep genomic divergence.

Methods

To characterize the dynamics and specificity of colonization and exploitation of ephemeral resource patches, we conducted manipulative field experiments and the largest sampling effort to date for Caenorhabditis outside of Europe. This effort provides the first in-depth quantitative analysis of substrate specificity for Caenorhabditis in natural, unperturbed habitats.

Results

We amassed a total of 626 strain isolates from nine species of Caenorhabditis among 2865 substrate samples. With the two new species described here (C. astrocarya and C. dolens), we estimate that our sampling procedures will discover few additional species of these microbivorous animals in this tropical rainforest system. We demonstrate experimentally that the two most prevalent species (C. nouraguensis and C. tropicalis) rapidly colonize fresh resource patches, whereas at least one rarer species shows specialist micro-habitat fidelity.

Conclusion

Despite the potential to colonize rapidly, these ephemeral patchy resources of rotting fruits and flowers are likely to often remain uncolonized by Caenorhabditis prior to their complete decay, implying dispersal-limited resource exploitation. We hypothesize that a combination of rapid colonization, high ephemerality of resource patches, and species heterogeneity in degree of specialization on micro-habitats and life histories enables a dynamic co-existence of so many morphologically cryptic species of Caenorhabditis.
  相似文献   

6.

Background

Rice (Oryza sativa L.) is the staple food for more than 3.5 billion people, mainly in Asia. Brown planthopper (BPH) is one of the most destructive insect pests of rice that limits rice production. Host-plant resistance is one of the most efficient ways to overcome BPH damage to the rice crop.

Results

BPH bioassay studies from 2009 to 2015 conducted in India and at the International Rice Research Institute (IRRI), Philippines, revealed that the cultivar CR2711–76 developed at the National Rice Research Institute (NRRI), Cuttack, India, showed stable and broad-spectrum resistance to several BPH populations of the Philippines and BPH biotype 4 of India. Genetic analysis and fine mapping confirmed the presence of a single dominant gene, BPH31, in CR2711–76 conferring BPH resistance. The BPH31 gene was located on the long arm of chromosome 3 within an interval of 475 kb between the markers PA26 and RM2334. Bioassay analysis of the BPH31 gene in CR2711–76 was carried out against BPH populations of the Philippines. The results from bioassay revealed that CR2711–76 possesses three different mechanisms of resistance: antibiosis, antixenosis, and tolerance. The effectiveness of flanking markers was tested in a segregating population and the InDel type markers PA26 and RM2334 showed high co-segregation with the resistance phenotype. Foreground and background analysis by tightly linked markers as well as using the Infinium 6 K SNP chip respectively were applied for transferring the BPH31 gene into an indica variety, Jaya. The improved BPH31-derived Jaya lines showed strong resistance to BPH biotypes of India and the Philippines.

Conclusion

The new BPH31 gene can be used in BPH resistance breeding programs on the Indian subcontinent. The tightly linked DNA markers identified in the study have proved their effectiveness and can be utilized in BPH resistance breeding in rice.
  相似文献   

7.

Background

Rice blast is the most serious disease afflicting rice and there is an urgent need for the use of disease resistance (R) genes in blast tolerance breeding programs. Pb1 is classified as a quantitative resistance gene and it does not have fungal specificity. Pb1-mediated resistance develops in the latter stages of growth. However, some cultivars, such as Kanto209 (K209), cultivar name Satojiman, despite possessing Pb1, do not exert resistance to rice blast during the reproductive stage.

Results

We found that the expression of WRKY45 gene downstream of Pb1 was weakly induced by rice blast inoculation at the full heading stage in K209. Genetic analysis using the SNP-based Golden Gate assay of K209 crossing with Koshihikari Aichi SBL (KASBL) found at least four regions related to the resistance in the rice genome (Chr8, Chr9, Chr7, Chr11). Mapping of QTL related to Chr7 confirmed the existence of factors that were required for the resistance of Pb1 in the 22 to 23 Mbp region of the rice genome.

Conclusion

We clarified how the K209 cultivar is vulnerable to the blast disease despite possessing Pb1 and found the DNA marker responsible for the quantitative resistance of Pb1. We identified the QTL loci required for Pb1-mediated resistance to rice panicle blast. Pb1 was negatively dependent on at least three QTLs, 7, 9 and 11, and positively dependent on one, QTL 8, in the K209 genome. This finding paves the way for creating a line to select optimal QTLs in order to make use of Pb1-mediated resistance more effectively.
  相似文献   

8.

Background

Host-plant resistance is the most desirable and economic way to overcome BPH damage to rice. As single-gene resistance is easily lost due to the evolution of new BPH biotypes, it is urgent to explore and identify new BPH resistance genes.

Results

In this study, using F2:3 populations and near-isogenic lines (NILs) derived from crosses between two BPH-resistant Sri Lankan rice cultivars (KOLAYAL and POLIYAL) and a BPH-susceptible cultivar 9311, a new resistance gene Bph33 was fine mapped to a 60-kb region ranging 0.91–0.97 Mb on the short arm of chromosome 4 (4S), which was at least 4 Mb distant from those genes/QTLs (Bph12, Bph15, Bph3, Bph20, QBph4 and QBph4.2) reported before. Seven genes were predicted in this region. Based on sequence and expression analyses, a Leucine Rich Repeat (LRR) family gene (LOC_Os04g02520) was identified as the most possible candidate of Bph33. The gene exhibited continuous and stable resistance from seedling stage to tillering stage, showing both antixenosis and antibiosis effects on BPH.

Conclusion

The results of this study will facilitate map-based cloning and marker-assisted selection of the gene.
  相似文献   

9.

Background

Male fertility is crucial for rice yield, and the improvement of rice yield requires hybrid production that depends on male sterile lines. Although recent studies have revealed several important genes in male reproductive development, our understanding of the mechanisms of rice pollen development remains unclear.

Results

We identified a rice mutant oslap6 with complete male sterile phenotype caused by defects in pollen exine formation. By using the MutMap method, we found that a single nucleotide polymorphism (SNP) variation located in the second exon of OsLAP6/OsPKS1 was responsible for the mutant phenotype. OsLAP6/OsPKS1 is an orthologous gene of Arabidopsis PKSA/LAP6, which functions in sporopollenin metabolism. Several other loss-of-function mutants of OsLAP6/OsPKS1 generated by the CRISPR/Cas9 genomic editing tool also exhibited the same phenotype of male sterility. Our cellular analysis suggested that OsLAP6/OsPKS1 might regulate pollen exine formation by affecting bacula elongation. Expression examination indicated that OsLAP6/OsPKS1 is specifically expressed in tapetum, and its product is localized to the endoplasmic reticulum (ER). Protein sequence analysis indicated that OsLAP6/OsPKS1 is conserved in land plants.

Conclusions

OsLAP6/OsPKS1 is a critical molecular switch for rice male fertility by participating in a conserved sporopollenin precursor biosynthetic pathway in land plants. Manipulation of OsLAP6/OsPKS1 has potential for application in hybrid rice breeding.
  相似文献   

10.
Air temperature (Ta) is commonly used for modeling rice phenology. However, since the growing point of rice is under water during the vegetative and the early part of the reproductive period, water temperature (Tw) is likely to have a greater influence on crop developmental rates than Ta during this period. To test this hypothesis, we monitored Tw, Ta, and crop phenology in three commercial irrigated rice fields in California, USA. Sampling locations were set up on along a transect from the water inlet into the field. (Water warms up as it moves into the field.) Ta averaged 22.7 °C across sampling locations within each field, but average seasonal Tw increased from 22 °C near the inlet to 23.4 °C furthest away from the inlet. Relative to Tw furthest from the inlet, low Tw near the inlet delayed time to panicle initiation (PI 5 days) and heading (HD 8 days) and the appearance of one yellow hull on the main stem panicle (R7 9 days). Using Tw instead of Ta when the active growing point is under water until booting (midway between PI and HD) in a thermal time model improved accuracy (root-mean-square error, RMSE) for predicting time to PI by 2.5 days and HD by 1.6 days and R7 by 1.8 days. This model was further validated under more typical field conditions (i.e., not close to cold water inlets) in six locations in California. Under these conditions, average Tw was 2.6 °C higher than Ta between planting and booting, primarily due to higher daily maximum Tw values. Using Tw in the model until booting improved RMSE by 1.2 days in predicting time to HD. Using Tw instead of Ta during this period could improve the accuracy of rice phenology models.  相似文献   

11.

Background

Fixed arrays of single nucleotide polymorphism (SNP) markers have advantages over reduced representation sequencing in their ease of data analysis, consistently higher call rates, and rapid turnaround times. A 6 K SNP array represents a cost-benefit “sweet spot” for routine genetics and breeding applications in rice. Selection of informative SNPs across species and subpopulations during chip design is essential to obtain useful polymorphism rates for target germplasm groups. This paper summarizes results from large-scale deployment of an Illumina 6 K SNP array for rice.

Results

Design of the Illumina Infinium 6 K SNP chip for rice, referred to as the Cornell_6K_Array_Infinium_Rice (C6AIR), includes 4429 SNPs from re-sequencing data and 1571 SNP markers from previous BeadXpress 384-SNP sets, selected based on polymorphism rate and allele frequency within and between target germplasm groups. Of the 6000 attempted bead types, 5274 passed Illumina’s production quality control. The C6AIR was widely deployed at the International Rice Research Institute (IRRI) for genetic diversity analysis, QTL mapping, and tracking introgressions and was intensively used at Cornell University for QTL analysis and developing libraries of interspecific chromosome segment substitution lines (CSSLs) between O. sativa and diverse accessions of O. rufipogon or O. meridionalis. Collectively, the array was used to genotype over 40,000 rice samples. A set of 4606 SNP markers was used to provide high quality data for O. sativa germplasm, while a slightly expanded set of 4940 SNPs was used for O. sativa X O. rufipogon populations. Biparental polymorphism rates were generally between 1900 and 2500 well-distributed SNP markers for indica x japonica or interspecific populations and between 1300 and 1500 markers for crosses within indica, while polymorphism rates were lower for pairwise crosses within U.S. tropical japonica germplasm. Recently, a second-generation array containing ~7000 SNP markers, referred to as the C7AIR, was designed by removing poor-performing SNPs from the C6AIR and adding markers selected to increase the utility of the array for elite tropical japonica material.

Conclusions

The C6AIR has been successfully used to generate rapid and high-quality genotype data for diverse genetics and breeding applications in rice, and provides the basis for an optimized design in the C7AIR.
  相似文献   

12.
13.
14.

Background

Emerging infectious diseases threaten naïve host populations with extinction. Chytridiomycosis, an emerging infectious disease of amphibians, is caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd) and has been linked to global declines in amphibians.

Results

We monitored the prevalence of Bd for four years in the Northern leopard frog, Rana pipiens, which is critically imperiled in British Columbia (BC), Canada. The prevalence of Bd initially increased and then remained constant over the last three years of the study. Young of the year emerging from breeding ponds in summer were rarely infected with Bd. Some individuals cleared their Bd infections and the return rate between infected and uninfected individuals was not significantly different.

Conclusions

The BC population of R. pipiens appears to have evolved a level of resistance that allows it to co-exist with Bd. However, this small population of R. pipiens remains vulnerable to extinction.
  相似文献   

15.

Background

Interspecific hybridisation is common between many plant species and causes rapid changes in a variety of plant characters. This may pose problems for herbivores because changes in recognition characters may be poorly correlated with changes in quality characters. Many studies have examined different systems of hybrids and herbivores in attempts to understand the role of hybridisation in the evolution of plant resistance. The results from different systems are variable. Studies of hybrids between Salix caprea (L., Salicaceae) and S. repens show that they are intermediate between the two parental species in most resistence characters. However, a plants herbivore resistence depends also on its biotic and abiotic environment. Important biotic factors that may influence plant growth and plant chemistry include the interactions between different herbivores that occur through their exploitation of common host plants. Although the effects on plants of previous herbivory are likely to be strongly affected by environmental conditions, they are also species-specific. Damage may therefore have different effects on hybrids than on their parental species, and this could influence the performance of herbivores on pure and hybrid species of plants. To evaluate the effects of hybridisation on insect performance, the development and survival rates of Phratora vitellinae (L. 1758, Coleoptera: Chrysomelidae) larvae on pure S. repens, pure S. caprea and Fl hybrids of the two species was monitored. Further, to examine the effect of herbivorous mammals on the performance of the larvae, plants were damaged to simulate winter foraging by voles or spring leaf stripping by moose.

Results

The results show that development rates were highest on S. repens and equally low on S. caprea and the Fl hybrid. In addition, development of the plants treated to simulate mammalian herbivore damage was slower than that of corresponding controls.

Conclusions

The results of this experiment suggest that P. vitellinae has a higher development rate, and thus probably higher performance, on species with high concentrations of phenolic glucosides. Therefore, it would be of adaptive benefit for P. vitellinae females to have an ovipositional preference for S. repens, compared to S. caprea and intermediate preference for Fl hybrids. The faster development observed on S. repens supports the hypothesis that P. vitellinae obtains additional adaptive benefits from phenolic glucosides beyond protection against predators. Therefore, it is important to consider further factors, such as damage caused by other herbivores, when studying this hybrid complex.
  相似文献   

16.

Background

Harvest index (HI) in rice is defined as the ratio of grain yield (GY) to biomass (BM). Although it has been demonstrated that HI is significantly related to yield and is considered as one of the most important traits in high-yielding rice breeding, HI-based high-yielding rice breeding is difficult due to its polygenic nature and insufficient knowledge on the genetic basis of HI. Therefore, searching for rice varieties with high HI and mapping genes associated with high HI can facilitate marker-assisted breeding for high HI in rice.

Results

Yuexiangzhan, a popular indica cultivar with good reputation of high HI was crossed with Shengbasimiao, an indica cultivar with lower HI to develop a recombinant inbred line population, and QTL mapping for HI and its component traits was conducted. In total, five QTLs for HI, three QTLs for GY, and six QTLs for BM were detected in two-year experiments. Among the three GY QTLs, one co-located with the HI QTL on chromosome 8, while the other two co-located with the two tightly-linked BM QTLs on chromosome 3. The co-located QTLs in each of the chromosomal regions produced additive effects in the same direction. Particularly, the HI QTL on chromosome 8, qHI-8, could be detected across two years and explained 42.8% and 44.5% of the phenotypic variation, respectively. The existence of qHI-8 was confirmed by the evaluation of the near isogenic lines derived from a residual heterozygous line, and this QTL was delimitated to a 1070 kb interval by substitution mapping.

Conclusion

In the present study, the detected GY QTLs overlapped with both HI QTL and BM QTL, suggesting a positive relationship between GY and HI or BM, respectively. With an understanding of the genetic basis for grain yield, harvest index and biomass, it is possible to achieve higher yield through enhancing HI and BM by pyramiding the favorable alleles for the two traits via marker-assisted selection (MAS). As qHI-8 has a large phenotypic effect on HI and expresses stably in different environments, it provides a promising target for further genetic characterization of HI and MAS of high HI in rice breeding.
  相似文献   

17.

Background

Cadmium (Cd) accumulation in rice followed by transfer to the food chain causes severe health problems in humans. Breeding of low Cd accumulation varieties is one of the most economical ways to solve the problem. However, information on the identity of rice germplasm with low Cd accumulation is limited, particularly in indica, and the genetic basis of Cd accumulation in rice is not well understood.

Results

Screening of 312 diverse rice accessions revealed that the grain Cd concentrations of these rice accessions ranged from 0.12 to 1.23?mg/kg, with 24 accessions less than 0.20?mg/kg. Three of the 24 accessions belong to indica. Japonica accumulated significantly less Cd than indica (p < 0.001), while tropical japonica accumulated significantly less Cd than temperate japonica (p < 0.01). GWAS in all accessions identified 14 QTLs for Cd accumulation, with 7 identified in indica and 7 identified in japonica subpopulations. No common QTL was identified between indica and japonica. The previously identified genes (OsHMA3, OsNRAMP1, and OsNRAMP5) from japonica were colocalized with QTLs identified in japonica instead of indica. Expression analysis of OsNRAMP2, the candidate gene of the novel QTL (qCd3–2) identified in the present study, demonstrated that OsNRAMP2 was mainly induced in the shoots of high Cd accumulation accessions after Cd treatment. Four amino acid differences were found in the open reading frame of OsNRAMP2 between high and low Cd accumulation accessions. The allele from low Cd accumulation accessions significantly increased the Cd sensitivity and accumulation in yeast. Subcellular localization analysis demonstrated OsNRAMP2 expressed in the tonoplast of rice protoplast.

Conclusion

The results suggest that grain Cd concentrations are significantly different among subgroups, with Cd concentrations decreasing from indica to temperate japonica to tropical japonica. However, considerable variations exist within subgroups. The fact that no common QTL was identified between indica and japonica implies that there is a different genetic basis for determining Cd accumulation between indica and japonica, or that some QTLs for Cd accumulation in rice are subspecies-specific. Through further integrated analysis, it is speculated that OsNRAMP2 could be a novel functional gene associated with Cd accumulation in rice.
  相似文献   

18.

Background

Pollen tube formation and growth are crucial steps that lead to seed production. Despite the importance of pollen tube growth, the molecular mechanisms implicated in its spatial and temporal control are not fully known. In this study, we found an uclacyanin gene, OsUCL8, that regulates pollen intine deposition and pollen tube growth.

Findings

The overexpression of OsUCL8 led to a striking irregularity in pollen tube growth and pollination and thus affected the seed setting rate in rice; many pollen tubes appeared to lose the ability to grow directly into the style. Conversely, plants with OsUCL8 knocked out and plants overexpressing miR408, a negative regulator of OsUCL8, had vigorous pollens with a higher germination rate. We further demonstrated that OsUCL8 mainly affects pollen intine formation. The addition of Vitamin B1 (VB1) significantly contributed to the germination of OXUCL8 pollen grains, suggesting that OsUCL8 could be associated with VB1 production. Using a yeast two-hybrid system, we revealed that OsUCL8 interacts with the protein OsPKIWI, a homolog of the Arabidopsis FNRL protein. We thus hypothesized that OsUCL8 might regulate the production of VB components by interacting with OsPKIWI. This study revealed a novel molecular mechanism of pollen tube growth regulation.

Conclusions

The rice plantacyanin family member OsUCL8 plays an important role in pollen tube formation and growth and, in turn, regulates fertility and the seed setting rate.
  相似文献   

19.

Background

Rice blast, caused by the ascomycete Magnaporthe oryzae (Mo), imposes a major constraint on rice productivity. Managing the disease through the deployment of host resistance requires a close understanding of race structure of the pathogen population.

Results

The host/pathogen interaction between isolates sampled from four Mo populations collected across the rice-producing regions of China was tested using two established panels of differential cultivars. The clearest picture was obtained from the Chinese cultivar panel, for which the frequency of the various races, the race diversity index, the specific race isolate frequency, and the frequency of the three predominant races gave a consistent result, from which it was concluded that the pathogen population present in the southern production region was more diverse than that in the northeastern region. The four blast resistance genes Pi1, Pik, Pik-m, and Piz all still remain effective in the southern China rice production area, as does Pi1 in the northeastern region. The effectiveness of Pita, Pik-p, Piz, and Pib is restricted to single provinces. The distinctive resistance profile shown by the Chinese differential cultivar set implied the presence of at least five as yet unidentified blast resistance genes.

Conclusions

The Chinese differential cultivar set proved to be more informative than the Japanese one for characterizing the race structure of the rice blast pathogen in China. A number of well characterized host resistance genes, in addition to some as yet uncharacterized ones, remain effective across the major rice production regions in China.
  相似文献   

20.

Background

Rice blast (caused by Magnaporthe oryzae) is one of the most destructive diseases of rice. While many blast resistance (R) genes have been identified and deployed in rice cultivars, little is known about the R gene-mediated defense mechanism. We used a rice transgenic line harboring the resistance gene Piz-t to investigate the R gene-mediated resistance response to infection.

Results

We conducted comparative proteome profiling of the Piz-t transgenic Nipponbare line (NPB-Piz-t) and wild-type Nipponbare (NPB) inoculated with M. oryzae at 24, 48, 72 h post-inoculation (hpi) using isobaric tags for relative and absolute quantification (iTRAQ) analysis. Comparative analysis of the response of NPB-Piz-t to the avirulent isolate KJ201 and the virulent isolate RB22 identified 114 differentially expressed proteins (DEPs) between KJ201-inoculated NPB-Piz-t (KJ201-Piz-t) and mock-treated NPB-Piz-t (Mock-Piz-t), and 118 DEPs between RB22-inoculated NPB-Piz-t (RB22-Piz-t) and Mock-Piz-t. Among the DEPs, 56 occurred commonly in comparisons KJ201-Piz-t/Mock-Piz-t and RB22-Piz-t/Mock-Piz-t. In a comparison of the responses of NPB and NPB-Piz-t to isolate KJ201, 93 DEPs between KJ201-Piz-t and KJ201-NPB were identified. DEPs in comparisons KJ201-Piz-t/Mock-Piz-t, RB22-Piz-t/Mock-Piz-t and KJ201-Piz-t/KJ201-NPB contained a number of proteins that may be involved in rice response to pathogens, including pathogenesis-related (PR) proteins, hormonal regulation-related proteins, defense and stress response-related proteins, receptor-like kinase, and cytochrome P450. Comparative analysis further identified 7 common DEPs between the comparisons KJ201-Piz-t/KJ201-NPB and KJ201-Piz-t/RB22-Piz-t, including alcohol dehydrogenase I, receptor-like protein kinase, endochitinase, similar to rubisco large subunit, NADP-dependent malic enzyme, and two hypothetical proteins.

Conclusions

Our results provide a valuable resource for discovery of complex protein networks involved in the resistance response of rice to blast fungus.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号