首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Beer consumers demand satisfactory and consistent foam stability; thus, it is a high priority for brewers. Beer foam is stabilized by the interaction between certain beer proteins, including lipid transfer protein 1 (LTP1), and isomerized hop alpha-acids, but destabilized by lipids. In this study it was shown that the wort boiling temperature during the brewing process was critical in determining the final beer LTP1 content and conformation. LTP1 levels during brewing were measured by an LTP1 ELISA, using antinative barley LTP1 polyclonal antibodies. It was observed that the higher wort boiling temperatures ( approximately 102 degrees C), resulting from low altitude at sea level, reduced the final beer LTP1 level to 2-3 microg/mL, whereas the lower wort boiling temperatures ( approximately 96 degrees C), resulting from higher altitudes (1800 m), produced LTP1 levels between 17 and 35 microg/mL. Low levels of LTP1 in combination with elevated levels of free fatty acids (FFA) resulted in poor foam stability, whereas beer produced with low levels of LTP1 and FFA had satisfactory foam stability. Previous studies indicated the need for LTP1 denaturing to improve its foam stabilizing properties. However, the results presented here show that LTP1 denaturation reduces its ability to act as a binding protein for foam-damaging FFA. These investigations suggest that wort boiling temperature is an important factor in determining the level and conformation of LTP1, thereby favoring satisfactory beer foam stability.  相似文献   

2.
The observation that the bitterest peptides from casein hydrolysates contain several proline residues led us to hypothesize that a proline-specific protease would be instrumental in debittering such peptides. To identify the desired proline-specific activity, a microbiological screening was carried out in which the chromogenic peptide benzyloxycarbonyl-glycine-proline-p-nitroanilide (Z-Gly-Pro-pNA) was used as the substrate. An Aspergillus niger (A. niger) strain was identified that produces an extracellular proline-specific protease with an acidic pH optimum. On the basis of sequence similarities, we conclude that the A. niger-derived enzyme probably belongs to the S28 family of clan SC of serine proteases rather than the S9 family to which prolyl oligopeptidases belong. Incubating the overexpressed and purified enzyme with bitter casein hydrolysates showed a major debittering effect. Reversed phase HPLC analysis revealed that this debittering effect is accompanied by a significant reduction of the number of hydrophobic peptides present.  相似文献   

3.
A monoclonal antibody (Mab; IFRN 1625) has been produced, which is specific for the most hydrophobic polypeptides responsible for foam stabilization. The binding characteristics of the Mab suggest that it is the conformation of certain hydrophobic polypeptides which is important for foam stabilization. An enzyme-linked immunosorbent assay (ELISA) for assessing the foam-positive form of the foam-stabilizing polypeptides in beer was developed using IFRN 1625. A good correlation was obtained between ELISA determination of foam-stabilizing polypeptides and an empirical means of determining foaming, that is, the Rudin head retention values, for a collection of beers of various foam qualities. Application of the ELISA to different stages of the brewing process showed that the amounts of foam-positive polypeptides increased during barley germination. During the brewing process the proportion of foam-positive polypeptides present after fermentation increased slightly, although a large amount was lost along with other beer proteins during subsequent steps, such as filtering. The present study demonstrates that the amounts of beer polypeptide present in a foam-positive form have a direct relationship with the foaming potential of beer, that their levels are altered by processing, and that there is potential for greater quality control.  相似文献   

4.
Beer foam stability is an important characteristic. It has been suggested that isoforms of protein Z, that is, protein Z4 and protein Z7, contribute to beer foam stability. We investigated the relationship between beer foam stability and protein Z4 and protein Z7 using their deficient mutants. As a protein Z4-deficient mutant, cv. Pirkka was used. Protein Z7 deficiency was screened in 1564 barley accessions in the world collection of Okayama University, Japan. The barley samples from normal, protein Z4-deficient, protein Z7-deficient, and double-deficient were genotyped in F(2) populations and then pooled based on the DNA marker genotypes of protein Z4 and protein Z7. For a brewing trial, F(5) pooled subpopulations were used. After malting and brewing, the foam stability was determined, and the results showed that the levels of foam stability in the four samples were comparable. Two-dimensional gel electrophoresis was used to investigate the proteome in these beer samples. The results showed that low molecular weight proteins, including lipid transfer protein (LTP2), in the deficient mutants were higher than those in the normal sample. Our results suggest that the contribution of protein Z4 and protein Z7 to beer foam stability was not greater than that of other beer proteins.  相似文献   

5.
The foam stability of beer is one of the important key factors in evaluating the quality of beer. The purpose of this study was to investigate the relationship between the level of malt modification (degradation of protein, starch, and so on) and the beer foam stability. This was achieved by examining foam-promoting proteins using two-dimensional gel electrophoresis (2DE). We found that the foam stability of beer samples brewed from the barley malts of cultivars B and C decreased as the level of malt modification increased; however, the foam stability of cultivar A did not change. To identify the property providing the increased foam stability of cultivar A, we analyzed beer proteins using 2DE. We analyzed three fractions that could contain beer foam-promoting proteins, namely, beer whole proteins, salt-precipitated proteins, and the proteins concentrated from beer foam. As a result, we found that in cultivar A, some protein spots did not change in any of these three protein fractions even when the level of malt modification increased, although the corresponding protein spots in cultivars B and C decreased. We analyzed these protein spots by peptide mass finger printing using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. As a result, all of these spots were identified as barley dimeric alpha-amylase inhibitor-I (BDAI-I). These results suggest that BDAI-I is an important contributor to beer foam stability.  相似文献   

6.
Barley lipid transfer protein (LTP1) is a heat-stable and protease-resistant albumin that concentrates in beer, where it participates in the formation and stability of beer foam. Whereas the barley LTP1 does not display any foaming properties, the corresponding beer protein is surface-active. Such an improvement is related to glycation by Maillard reactions on malting, acylation on mashing, and structural unfolding on brewing. The structural stability of purified barley and glycated malt LTP1 toward heating has been analyzed. Whatever the modification, lipid adduction or glycation, barley LTP1s are highly stable proteins that resisted temperatures up to 100 degrees C. Unfolding of LTP1 occurred only when heating was conducted in the presence of a reducing agent. In the presence of sodium sulfite, the lipid-adducted barley and malt LTP1 displayed higher heat stability than the nonadducted protein. Glycation had no or weak effect on heat-induced unfolding. Finally, it was shown that unfolding occurred on wort boiling before fermentation and that the reducing conditions are provided by malt extract.  相似文献   

7.
Our study showed that sorghum and millet followed a similar pattern of changes when they were malted under similar conditions. When the malt from these cereals was mashed, both cereal types produced wide spectra of substrates (sugars and amino acids) that are required for yeast fermentation when malted at either lower or higher temperatures. At the germination temperatures of 20, 25, and 30 °C used in malting both cereal types, production of reducing sugars and that of free amino nitrogen (FAN) were similar. This is an important quality attribute for both cereals because it implies that variation in temperature during the malting of sorghum and millet, especially when malting temperature is difficult to control, and also reflecting temperature variations, experienced in different countries, will not have an adverse effect on the production and release of amino acids and sugars required by yeast during fermentation. Such consistency in the availability of yeast food (substrates) for metabolism during fermentation when sorghum and millet are malted at various temperatures is likely to reduce processing issues when their malts are used for brewing. Although sorghum has gained wide application in the brewing industry, and has been used extensively in brewing gluten-free beer on industrial scale, this is not the case with millet. The work described here provides novel information regarding the potential of millet for brewing. When both cereals were malted, the results obtained for millet in this study followed patterns similar to those of sorghum. This suggests that millet, in terms of sugars and amino acids, can play a role similar to that of sorghum in the brewing industry. This further suggests that millet, like sorghum, would be a good raw material for brewing gluten-free beer. Inclusion of millet as a brewing raw material will increase the availability of suitable materials (raw material sustainability) for use in the production of gluten-free beer, beverages, and other products. The availability of wider range of raw materials will not only help to reduce costs of beer production, but by extension, the benefit of reduced cost of production can be gained by consumers of gluten-free beer as the product would be cheaper and more widely available.  相似文献   

8.
In beer, the development of a solvent-like stale flavor is associated with the formation of furfuryl ethyl ether. The synthesis rate of this important flavor compound is proportional to the concentration of furfuryl alcohol in beer. This study shows that furfuryl alcohol in beer is mainly formed by Maillard reactions initiated during wort boiling and malt production. A mechanism for its formation from alpha-(1,4)-oligoglucans and amino acids in wort and beer is proposed. During wort boiling, a quadratic relationship was found between the wort extract concentration, on the one hand, and the increase of furfuryl alcohol and furfural, on the other. The reduction of furfural by yeast during fermentation further increases the furfuryl alcohol content. In pale beers, the furfuryl alcohol concentration is essentially determined by the thermal load on wort during brewing operations. In dark beers, a considerable fraction of furfuryl alcohol may, however, come from the dark malts used. These results lead to important practical conclusions concerning the control over furfuryl ethyl ether in beer.  相似文献   

9.
Purification and structural characterization of LTP1 polypeptides from beer   总被引:6,自引:0,他引:6  
We report on the purification of lipid transfer proteins (LTP) from barley seeds and beer with the aim of investigating the chemical modifications that occur during the brewing process. In seeds, the well-known LTP of 9 kDa (LTP1) has been found together with a second form named LTPb that displays comparable amino acid composition but was not fully sequenced. These two forms have been recovered in beer with marked chemical modifications including disulfide bond reduction and rearrangement and especially glycation by Maillard reaction. The glycation is heterogeneous with variable amounts of hexose units bound to LTPs. Circular dichroism shows that glycated LTP1 having all their disulfide bridges reduced are totally unfolded. These results provide a first basis for understanding how barley LTPs become foam-promoting agents during the malting and brewing process.  相似文献   

10.
Foam stability is an important quality trait of beer. Our previous results of two-dimensional gel electrophoresis (2DE) analyses of beer proteins implied a relationship between barley dimeric alpha-amylase inhibitor-1 (BDAI-1) and beer foam stability as judged by the NIBEM-T analyzer. To develop a novel prediction method of beer foam stability under different conditions of barley cultivar and malt modification, multiple linear regression analysis was applied. The spot intensities of major beer proteins on 2DE gel were quantified and used as explanatory variables. The foam stabilities of 25 beer samples each brewed from malt with different malt modification in one of the three cultivars (cultivars A, B, and C) were explained by the spot intensities of BDAI-1 at the 5% significance level ( r = 0.421). Furthermore, two other major protein spots (b0 and b5) were observed on the 2DE gels of Japanese commercial beer samples with different foam stability. Then, multiple regression for foam stability was calculated using these three spot intensities as explanatory variables. As a result, 72.1% of the beer foam stability in 25 beer samples was explained by a novel multiple regression equation calculated using spot b0 and BDAI-1 as positive explanatory variables and spot b5 as a negative variable. To verify the validity of the multiple regression equation and the explanatory variables, the beer foam stability in practical beer samples was analyzed. As a result, 81.5% of the beer foam stability in 10 Japanese commercial beer samples was also explained by using spot b0 and BDAI-1 as positive explanatory variables and spot b5 as a negative variable. Mass spectrometry analyses followed by database searches revealed that protein spots b0 and b5 were identified as protein Z originated from barley and thioredoxin originated from yeast, respectively. These results confirm that BDAI-1 and protein Z are foam-positive factors and identify yeast thioredoxin as a possible novel foam-negative factor.  相似文献   

11.
The influence of hydrophobic polypeptides concentrated in beer foam, together with the composition of iso-alpha acids and the content of malto-oligosaccharides in beer on foam stability, has been investigated. The objective was to find out whether a shortage of one of these positive contributors to foam stability could be compensated for by an increased presence of another or whether optimum levels of each contributor is necessary. For that purpose, an image analysis method to evaluate beer foam quality was developed. The foam collapse time was the parameter chosen to group beers according to their foam stability. Profiles of hydrophobic polypeptides that concentrate in beer foam, iso-alpha acids, and malto-oligosaccharides of 14 beer brands were acquired by high-performance liquid chromatography. Principal component analysis (PCA) was performed to show the relationship between beer brands and its composition. Beers that contained propylene glycol alginate as a foam enhancer showed high foam stability except for one beer, which had a low content of hydrophobic polypeptides, thereby highlighting the requirement of threshold levels of hydrophobic polypeptides to obtain stable foam. The data of samples that were devoid of a foam additive were subjected to a discriminant statistical analysis. Foam stability declined in proportion to decreases in hydrophobic polypeptides and to a lesser extent to decreases in iso-alpha-acid contents. Apparently, the content of malto-oligosaccharides were found to have no major influence on foam stability. The model of discriminate analysis was found to explain 100% of the variance in data with 85.2% success in classifying all samples according to the model, suggesting that foam stability is mainly governed by the beer constituents evaluated in this study.  相似文献   

12.
The influence of malting and brewing processes on the chemical and structural modifications occurring on LTP1 was investigated by mass spectrometry and circular dichroism. Proteins were first purified from malt, and samples were collected at various steps of beer processing performed on two barley cultivars. The levels of LTP1 found in malt were not significantly different from the amounts in barley seed. However, in malt, both LTP1b, a post-translational form of LTP1, and a third isoform named LTP1c were isolated. Moreover, both of these proteins were found to be heterogeneously glycated but still exhibited an alpha-helix structure. Both glycated LTP1 and LTP1b were recovered during mashing. It was also shown that glycated LTP1 was unfolded during heat treatment of wort boiling, which is in agreement with the denatured form previously isolated from beer.  相似文献   

13.
The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.  相似文献   

14.
In the present study, foam-forming and -stabilizing properties of potato proteins were studied using whipping and sparging tests. The soluble potato proteins are mainly composed of patatin and protease inhibitors. The whipping tests showed that less foam was formed from untreated patatin than from the protease inhibitors, but patatin foam was much more stable. The foam-forming properties of patatin could be strongly improved by partial unfolding of the protein. Whipping tests, at both low (0.5 mg/mL) and high (10 mg/mL) protein concentration, also indicated that foams made with an ethanol-precipitated protein isolate were more stable than those made with beta-casein and beta-lactoglobulin. More generally, it can be concluded that when proteins are used as a foaming agent, a high concentration is required, because the protein available is inefficiently used. Also, there are several variables that may all, in different ways, affect both foam formation (amount of foam, bubbles size distribution) and foam stability. These variables include the type and concentration of protein, solvent conditions (pH, I), and the method used to make the foam.  相似文献   

15.
The fates of more than 300 pesticide residues were investigated in the course of beer brewing. Ground malt artificially contaminated with pesticides was brewed via steps such as mashing, boiling, and fermentation. Analytical samples were taken from wort, spent grain, and beer produced at certain key points in the brewing process. The samples were extracted and purified with the QuEChERS (Quick Easy Cheap Effective Rugged and Safe) method and were then analyzed by LC-MS/MS using a multiresidue method. In the results, a majority of pesticides showed a reduction in the unhopped wort and were adsorbed onto the spent grain after mashing. In addition, some pesticides diminished during the boiling and fermentation. This suggests that the reduction was caused mainly by adsorption, pyrolysis, and hydrolysis. After the entire process of brewing, the risks of contaminating beer with pesticides were reduced remarkably, and only a few pesticides remained without being removed or resolved.  相似文献   

16.
Although hardly any polyunsaturated fatty acids (PUFAs) are present in the endproduct, the ingredients used for the production of beer contain a high concentration of PUFAs, such as linolic and linolenic acid. These compounds are readily oxidized, resulting in the formation of lipid-derived products that reduce the taste and quality of beer enormously. During mashing relatively high amounts of PUFAs are exposed to atmospheric oxygen at a relatively high temperature. This makes mashing a critical step in the brewing process with regard to the formation of lipid-derived off-taste products. F1 phytoprostane (PPF1) changes in antioxidant capacity and monohydroxy fatty acids (OH-FAs) were used as markers for the detection of oxidative damage to fatty acids during mashing. The pattern of OH-FA formation indicates that enzymatic oxidation of PUFAs is more important than nonenzymatic oxidation during the mashing process. Nevertheless, substantial nonenzymatic radical formation is evident from the increase of specific OH-FAs and PPF1s. It was found that a low oxygen tension reduces oxidative damage and gives a high antioxidant capacity of the mashing mixture. This indicates that mashing should be done under low oxygen pressure.  相似文献   

17.
Alpha-amylase, a major human salivary protein, and IB8c, a representative of the proline-rich proteins, were obtained by isolation from saliva and by solid-phase synthesis, respectively. The interactions between these proteins and condensed tannins isolated from grape seeds were studied at different protein and tannin concentrations by measuring their aggregation. Pectic polysaccharides were isolated from wine, and their effect on protein tannin aggregation was assessed. The results presented in this study showed that the most acidic fractions of arabinogalactan proteins have the ability to inhibit the formation of aggregates between the grape seed tannins and the two different salivary proteins. Rhamnogalacturonan II has the same ability toward alpha-amylase but not IB8c under the conditions of the present study. Polysaccharides show effects at concentrations at which they are present in wine, which could mean an influence in wine astringency. The interaction between condensed tannins and alpha-amylase is differently affected by ionic strength when compared with IB8c.  相似文献   

18.
Foam-stabilizing properties and cling formation patterns of iso-alpha-acids and reduced iso-alpha-acids were investigated using an unhopped lager beer. Unhopped beer was dosed with iso-alpha-acid (Iso), rho-iso-alpha-acid (Rho), tetrahydro-iso-alpha-acid (Tetra), and hexahydro-iso-alpha-acid (Hexa), separately, over a range of concentrations from 2 to 10 ppm. A uniform foam was created by Inpack 2000 Flasher Head and was measured by a NIBEM Foam Stability Tester (NIBEM-TPH) followed by a NIBEM Cling Meter (NIBEM-CLM) to determine the relationship between the concentration and NIBEM-30 and the cling formation ability of each compound. The foam-stabilizing power was determined to be Tetra, Hexa, Iso, and Rho from the strongest to weakest. Linear regression models were created using the NIBEM-TPH data set, and on the basis of 95% confidence intervals, the foam stability of Tetra or Hexa became significantly larger than that of Iso when 2.4 or 4.2 ppm of Tetra or Hexa was used as a replacement for Iso, respectively. Cling formation patterns could be categorized into three groups: "ring", "mesh", and "powdery". The control beer had the lowest foam stability and did not yield any foam cling.  相似文献   

19.
The fungal protease EPg222 obtained from Penicillium chrysogenum Pg222 isolated from dry-cured ham, was assayed for proteolytic activity in a meat model system based on sterile pieces of pork loins for 32 days. Treated samples showed a significative reduction of total high ionic strength-soluble proteins during the incubation period, as compared with a control incubated without enzyme, both on the surface and in the depth. SDS-PAGE analysis of this protein fraction showed higher hydrolysis of the main myofibrillar proteins H-meromyosin, actin, and tropomyosin in treated samples. Non-protein and amino acidic nitrogen were detected in higher amounts in enzyme-added than in control pieces of loins, both on the surface and in the depth. Thus, addition of enzyme EPg222 to whole pieces of meat results in an increase of protein hydrolysis. The effect of this enzyme could be of great interest for stimulating proteolysis in whole dry-cured meat pieces.  相似文献   

20.
We examined the malting and brewing performances of a lipoxygenase‐1 (LOX‐1) null line of barley (Hordeum vulgare L.). The LOX‐normal malt and the LOX‐null malt were prepared from F4 populations derived from a single cross. We could not observe any major differences in the general malt characteristics between the two malts. A brewing trial was performed using these malts. The analysis of the wort and beer revealed that the absence of LOX‐1 had little effect on the general characteristics of the wort and beer. In contrast, beer made from the LOX‐null malt showed reduced levels of beer‐deteriorating substances, trans‐2‐nonenal (T2N), and trihydroxyoctadecenoic acid (THOD). In the sensory evaluation, well‐trained panel members recognized the significant superiority of the aged LOX‐null beer in terms of staleness. These results show that the LOX‐1 null barley line can be effectively used to improve the flavor stability of beer without changing the other important beer qualities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号