首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A disk-shaped molecule with chiral tails is shown to form long fibers of molecular diameter and micrometer length by self-assembly in chloroform. The molecules are derived from crown ethers and contain a phthalocyanine ring. In the fibers, they have a clockwise, staggered orientation that leads to an overall right-handed helical structure. These structures, in turn, self-assemble to form coiled-coil aggregates with left-handed helicity. Addition of potassium ions to the fibers leaves their structure intact but blocks the transfer of the chirality from the tails to the cores, leading to loss of the helicity of the fibers. These tunable chiral materials have potential in optoelectronic applications and as components in sensor devices.  相似文献   

2.
We studied the mechanical process of seed pods opening in Bauhinia variegate and found a chirality-creating mechanism, which turns an initially flat pod valve into a helix. We studied con?gurations of strips cut from pod valve tissue and from composite elastic materials that mimic its structure. The experiments reveal various helical con?gurations with sharp morphological transitions between them. Using the mathematical framework of "incompatible elasticity," we modeled the pod as a thin strip with a flat intrinsic metric and a saddle-like intrinsic curvature. Our theoretical analysis quantitatively predicts all observed con?gurations, thus linking the pod's microscopic structure and macroscopic conformation. We suggest that this type of incompatible strip is likely to play a role in the self-assembly of chiral macromolecules and could be used for the engineering of synthetic self-shaping devices.  相似文献   

3.
The crystal structure of the uncomplexed orthorhombic form of gramicidin A has been determined at 120 K and at 0.86 angstrom resolution. The pentadecapeptide crystallizes as a left-handed antiparallel double-stranded helical dimer with 5.6 amino acid residues per turn. The helix has an overall length of 31 angstroms and an average inner channel diameter of 4.80 angstroms. The channel of this crystalline form is void of ions or solvent molecules. The channel diameter varies from a minimum of 3.85 angstroms to a maximum of 5.47 angstroms and contains three pockets where the cross-channel contacts are 5.25 angstroms or greater. The range of variation seen for the phi and psi torsion angles of the backbone of the helix suggests that these potential ion binding sites can be induced to travel the length of the channel in a peristaltic manner by cooperatively varying these angles. The indole rings of the eight tryptophan residues of the dimer are overlapped in three separate regions on the outer surface of the helix when viewed down the barrel of the channel. This arrangement would permit long-chained lipid molecules to nest parallel to the outer channel surface between these protruding tryptophan regions and act like molecular splines to constrain helical twist deformations of the channel.  相似文献   

4.
Revisiting the role of the mother centriole in centriole biogenesis   总被引:1,自引:0,他引:1  
Centrioles duplicate once in each cell division cycle through so-called templated or canonical duplication. SAK, also called PLK4 (SAK/PLK4), a kinase implicated in tumor development, is an upstream regulator of canonical biogenesis necessary for centriole formation. We found that overexpression of SAK/PLK4 could induce amplification of centrioles in Drosophila embryos and their de novo formation in unfertilized eggs. Both processes required the activity of DSAS-6 and DSAS-4, two molecules required for canonical duplication. Thus, centriole biogenesis is a template-free self-assembly process triggered and regulated by molecules that ordinarily associate with the existing centriole. The mother centriole is not a bona fide template but a platform for a set of regulatory molecules that catalyzes and regulates daughter centriole assembly.  相似文献   

5.
Interfacially active block copolymer amphiphiles have been synthesized and their self-assembly into micelles in supercritical carbon dioxide (CO2) has been demonstrated with small-angle neutron scattering (SANS). These materials establish the design criteria for molecularly engineered surfactants that can stabilize and disperse otherwise insoluble matter into a CO2 continuous phase. Polystyrene-b-poly(1,1-dihydroperfluorooctyl acrylate) copolymers self-assembled into polydisperse core-shell-type micelles as a result of the disparate solubility characteristics of the different block segments in CO2. These nonionic surfactants for CO2 were shown by SANS to be capable of emulsifying up to 20 percent by weight of a CO2-insoluble hydrocarbon into CO2. This result demonstrates the efficacy of surfactant-modified CO2 in reducing the large volumes of organic and halogenated solvent waste streams released into our environment by solvent-intensive manufacturing and process industries.  相似文献   

6.
Neural progenitor cells were encapsulated in vitro within a three-dimensional network of nanofibers formed by self-assembly of peptide amphiphile molecules. The self-assembly is triggered by mixing cell suspensions in media with dilute aqueous solutions of the molecules, and cells survive the growth of the nanofibers around them. These nanofibers were designed to present to cells the neurite-promoting laminin epitope IKVAV at nearly van der Waals density. Relative to laminin or soluble peptide, the artificial nanofiber scaffold induced very rapid differentiation of cells into neurons, while discouraging the development of astrocytes. This rapid selective differentiation is linked to the amplification of bioactive epitope presentation to cells by the nanofibers.  相似文献   

7.
Predicting structure from the attributes of a material's building blocks remains a challenge and central goal for materials science. Isolating the role of building block shape for self-assembly provides insight into the ordering of molecules and the crystallization of colloids, nanoparticles, proteins, and viruses. We investigated 145 convex polyhedra whose assembly arises solely from their anisotropic shape. Our results demonstrate a remarkably high propensity for thermodynamic self-assembly and structural diversity. We show that from simple measures of particle shape and local order in the fluid, the assembly of a given shape into a liquid crystal, plastic crystal, or crystal can be predicted.  相似文献   

8.
Kato T 《Science (New York, N.Y.)》2002,295(5564):2414-2418
Additional functionality can be incorporated into liquid crystalline materials by using phase segregation and self-assembly. Intermolecular interactions such as hydrogen bonding and ionic interactions play key roles in the formation of these complex structures. One-, two-, and three-dimensional phase-segregated structures on various scales of length are formed by self-assembly of a variety of partially incompatible molecules. Such structures can enhance anisotropic properties such as ionic conductivity.  相似文献   

9.
Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.  相似文献   

10.
When a solution of collagen molecules, at neutral pH and moderate ionic strength, is warmed from 4 degrees to 30 degrees C, a spontaneous self-assembly process takes place in which native-type collagen fibers are produced. Events occurring during thermally induced fibrillogenesis process can be monitored, in aqueous media and in real time, by Fourier transform infrared spectroscopic techniques. Tentative assignments of observed spectral bands are given.  相似文献   

11.
木材酸性液化条件下苯酚的作用机理   总被引:5,自引:0,他引:5  
论述了酸性条件下木材液化中苯酚的作用机理.苯酚作为亲核试剂,引起了木材组分一些主要化学键的断裂,使得木材组分大分子降解为小分子;苯酚作为反应试剂,与其中一些降解生成的小分子反应生成具有酚类结构的化合物;苯酚作为溶剂,使生成的酚类结构化合物溶解,并减缓或阻止了已生成的活性小分子之间的缩聚反应.催化剂酸提供质子(H )以及酸性环境,使化学键的断裂更为容易,同时也改变了液化反应途径.  相似文献   

12.
Highly energized molecules normally are rapidly equilibrated by a solvent; this finding is central to the conventional (linear-response) view of how chemical reactions occur in solution. However, when a reaction initiated by 33-femtosecond deep ultraviolet laser pulses is used to eject highly rotationally excited diatomic molecules into alcohols and water, rotational coherence persists for many rotational periods despite the solvent. Molecular dynamics simulations trace this slow development of molecular-scale friction to a clearly identifiable molecular event: an abrupt liquid-structure change triggered by the rapid rotation. This example shows that molecular relaxation can sometimes switch from linear to nonlinear response.  相似文献   

13.
Fibers composed of molecules of deoxygenated sickle cell hemoglobin are the basic cause of pathology in sickle cell disease. The hemoglobin molecules in these fibers are arranged in double strands that twist around one another with a long axial repeat. These fibrous aggregates exhibit a pattern of polymorphism in which the ratio of their helical pitch to their radius is approximately constant. The observed ratio agrees with an estimate of its value calculated from the geometric properties of helical assemblies and the degree of distortion that a protein-protein interface can undergo. This agreement indicates that the radius of an aggregate is limited by the maximum possible stretching of double strands. The geometric properties limiting the radial extent of sickle hemoglobin fibers are fundamental to all cables of protein filaments and could contribute to the control of diameter in other biological fibers such as collagen or fibrin.  相似文献   

14.
We have developed a new method of countercurrent chromatography which employs a vertical helical tube in the centrifugal field. The helical tube is arranged so that it does not rotate as it revolves, thus eliminating the need for rotating seals. When the gyrating tube is filled with either phase and the other phase is introduced into the tube in the proper direction, an equilibrium state results in which the two phases are split into multiple alternating segments within the coil. Each phase oscillates to and fro with the rotation as the moving phase is steadily eluted out through the other end of the tube. Consequently, solutes introduced into the tube are subjected to a rapid partition process, resulting in an efficient chromatographic separation without the complications arising from solid supports. The method is illustrated by the microanalytical separation of dinitrophenyl amino acids and can be used on a preparative scale.  相似文献   

15.
Rod-coil diblock copolymers in a selective solvent for the coil-like polymer self-organize into hollow spherical micelles having diameters of a few micrometers. Long-range, close-packed self-ordering of the micelles produced highly iridescent periodic microporous materials. Solution-cast micellar films consisted of multilayers of hexagonally ordered arrays of spherical holes whose diameter, periodicity, and wall thickness depended on copolymer molecular weight and composition. Addition of fullerenes into the copolymer solutions also regulated the microstructure and optical properties of the microporous films. These results demonstrate the potential of hierarchical self-assembly of macromolecular components for engineering complex two- and three-dimensional periodic and functional mesostructures.  相似文献   

16.
We report here the self-assembly of macroscopic sacs and membranes at the interface between two aqueous solutions, one containing a megadalton polymer and the other, small self-assembling molecules bearing opposite charge. The resulting structures have a highly ordered architecture in which nanofiber bundles align and reorient by nearly 90 degrees as the membrane grows. The formation of a diffusion barrier upon contact between the two liquids prevents their chaotic mixing. We hypothesize that growth of the membrane is then driven by a dynamic synergy between osmotic pressure of ions and static self-assembly. These robust, self-sealing macroscopic structures offer opportunities in many areas, including the formation of privileged environments for cells, immune barriers, new biological assays, and self-assembly of ordered thick membranes for diverse applications.  相似文献   

17.
We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules.With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60.C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained "silo" crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.  相似文献   

18.
Alkanes adopt extended conformations in solution that minimize steric interactions and maximize surface area. Folding can reduce the amount of hydrophobic surface exposed to solvent, but sterically unfavorable gauche interactions result. However, we found that the alkyl chains of two common surfactants in aqueous solution adopt helical conformations when bound within a synthetic receptor. The receptor recognizes the helical alkane better than the extended conformation, even though 2 to 3 kilocalories per mole of strain is introduced. The proper filling of space and burial of hydrophobic surface drive the molecular recognition between the receptor and the coiled alkane.  相似文献   

19.
The self-assembly mechanism of alkanethiol monolayers on the (111) surface of gold was discovered with the use of an ultrahigh-vacuum scanning tunneling microscope. Monolayer formation follows a two-step process that begins with condensation of low-density crystalline islands, characterized by surface-aligned molecular axes, from a lower density lattice-gas phase. At saturation coverage of this phase, the monolayer undergoes a phase transition to a denser phase by realignment of the molecular axes with the surface normal. These studies reveal the important role of molecule-substrate and molecule-molecule interactions in the self-assembly of these technologically important material systems.  相似文献   

20.
There is a general need for the engineering of protein-like molecules that organize into geometrically specific superstructures on molecular surfaces, directing further functionalization to create richly textured, multilayered assemblies. Here we describe a computational approach whereby the surface properties and symmetry of a targeted surface define the sequence and superstructure of surface-organizing peptides. Computational design proceeds in a series of steps that encode both surface recognition and favorable intersubunit packing interactions. This procedure is exemplified in the design of peptides that assemble into a tubular structure surrounding single-walled carbon nanotubes (SWNTs). The geometrically defined, virus-like coating created by these peptides converts the smooth surfaces of SWNTs into highly textured assemblies with long-scale order, capable of directing the assembly of gold nanoparticles into helical arrays along the SWNT axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号