首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abundant genetic resources of wild rice in China represent a key gene pool for modern rice breeding, contributing to food production and agricultural development in China and worldwide.Between the 1970s and the 2010s, two national wild rice surveys were carried out in China. More than 20 000accessions of three species Oryza rufipogon, O. officinalis and O. meyeriana have been conserved ex situ. An in situ conservation system has also been set up to protect notable and endangered populations....  相似文献   

2.
Strong genetic incompatibilities exist between two primary rice subspecies,indica and japonica.However,the wild ancestors of rice,O.nivara Sharma et Shastry and O.rufipogon Griff.,are genetically compatible.How this genetic incompatibility became established has not been clearly elucidated.To provide insights into the process,we analyzed a pair of hybrid sterility genes in rice,DOPPELGANGER 1(DPL1)and DOPPELGANGER 2(DPL2).Either of the two loci can have one defective allele(DPL1-and DPL2-).Hybrid pollen carrying both DPL1-and DPL2-alleles is sterile.To explore the origination of DPL1-and DPL2-,we sequenced the DPL1 and DPL2 genes of 811 individual plants,including Oryza sativa(132),O.nivara(296)and O.rufipogon(383).We then obtained 20 DPL1 and 34 DPL2 sequences of O.sativa from online databases.Using these sequences,we analyzed the genetic and geographic distribution patterns of DPL genes in modern rice and its wild ancestors.Compared with the ancestral populations,DPL1-and DPL2-showed reduced diversity but increased frequency in modern rice.We speculated that the diversity reduction was due to a historic genetic bottleneck,and the frequency had likely increased because the defective alleles were preferred following this artificial selection.Such results indicated that standing variances in ancestral lines can lead to severe incompatibilities among descendants.Haplotype analysis indicated that the DPL1-haplotype of rice emerged from an O.nivara population in India,whereas the DPL2-haplotype emerged from O.rufipogon in South China.Hence,the evolutionary history of DPLs conforms to the presumed multiple domestication events of modern rice.  相似文献   

3.
Australian Oryza are an understudied and underexploited genetic resource for rice improvement. Four species are indigenous: Oryza rufipogon, Oryza meridionalis, Oryza australiensis are widespread across northern Australia, whereas Oryza officinalis is known from two localities only. Molecular analysis of these wild populations is required to better define the distinctness of the taxa and the extent of any gene flow between them and rice. Limited collections of these wild populations are held in seed and DNA banks. These species have potential for domestication in some cases but also have many traits of potential value in the improvement of domesticated rice. Stress tolerance (biotic and abiotic) and grain quality characteristics in these populations may be useful.  相似文献   

4.
Franklin Southworth 《Rice》2011,4(3-4):142-148
The Dravidian languages, now spoken mainly in peninsular India, form one of two main branches of the Zagrosian language family, whose other main branch consists of Elamitic and Brahui. Proto-Dravidian, the oldest reconstructible form of Dravidian, shows a society whose economy is based mainly on herding. While the speakers of Proto-Dravidian had some agricultural knowledge, they do not appear to have brought cereals with them when they moved from western Iran to the borderlands of South Asia in the fourth millennium BCE. Linguistic evidence shows that they had contact with Indo-Iranian speakers, and some groups of Dravidian speakers entered the Indus Valley before or during the period of the Harappan civilization. Dravidian-speaking groups played a significant role in herding and agriculture during that period and later, and may have been the first to cultivate rice on a large scale in the Indus Valley.  相似文献   

5.
Takeshi Izawa 《Rice》2008,1(2):127-134
Rice domestication involved a complex process of selection by ancient humans, leading to the development of a new species, Oryza sativa, during the last 10,000 years. Recent rice genome research and the cloning of domestication-related genes have provided novel knowledge about the domestication process, although recent reviews have revealed more complexity than previously suspected. Some of this additional complexity may arise from a poor fit between the new data and previous models. DNA divergence observed in existing landraces, cultivars, and wild relatives can now be determined accurately, so the order of major DNA changes such as single nucleotide polymorphisms during the domestication process can be abducted owing to relatively low mutation rates. Therefore, a new model to explain the selection process during rice domestication, such as the one proposed for further discussion in this paper, is needed to accommodate the new DNA evidence.  相似文献   

6.
Fine Mapping of C(Chromogen for Anthocyanin) Gene in Rice   总被引:1,自引:1,他引:0  
Seven residual heterozygous lines (RHLs) displaying different genotypic compositions in the genomic region covering probable locations of C (Chromogen for anthocyanin) gene on the short arm of rice chromosome 6 were selected from the progenies of the indica cross Zhenshan 97B/Milyang 46. Seeds were harvested from each of the seven plants, and the resultant F2:3 populations were used for fine mapping of C gene. It was shown in the populations that the apiculus coloration matched to basal leaf sheath coloration in each plant. By relating the coloration performances of the populations with the genotypic compositions of the RHLs, the C locus was located between rice SSR markers RM314 and RM253. By using a total of 1279 F2:3 individuals from two populations showing coloration segregation, the C locus was then located between RM111 and RM253, with genetic distances of 0.7 cM to RM111 and 0.4 cM to RM253. Twenty-two recombinants found in the two populations were assayed with seven more markers located between RM111 and RM253, including six SSR markers and one marker for the C gene candidate, OsC1. The C locus was delimited to a 59.3-kb region in which OsC1 was located.  相似文献   

7.
Cultivated rice (Oryza sativa L.) is derived from Asian wild rice (Oryza rufipogon Griff). Vietnamese local varieties and wild natural populations in Vietnam and Myanmar were examined to evaluate the levels of genetic variation in cultivated and wild rice. In total, 222 Vietnamese local varieties were analyzed with ten microsatellite markers. Using marker genotype and gene diversity data, the local varieties were differentiated based on geographical distribution, cropping season, and human preference. A total of 976 wild plants were collected at six natural sites of wild populations (three each in Myanmar and Vietnam), and the degrees of variation among populations were analyzed with five microsatellite markers. Phylogenetic analyses revealed wide genetic differentiation among wild populations. The diversity values detected in a single wild population in Vietnam were higher than those in whole Vietnamese local varieties. These results indicate that wild rice has much greater genetic variation than cultivated rice.  相似文献   

8.
The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09), two inbred indica rice (Zhongzu 14 and Zhongzao 22), two indica hybrid rice (Zhongzheyou 1 and Guodao 1), and one weedy indica rice (Taizhou weedy rice). The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice 〉 Chunjiang 016 〉 Xiushui 09 and Zhongzu 14 〉 Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and weedy rice. Averaged across years, the risk  相似文献   

9.
Taiwan’s aboriginal peoples are thought to be related to ancestral Austronesian-speaking peoples. Currently, Taiwan has 14 officially acknowledged aboriginal tribes. The major crops currently farmed in aboriginal areas are rice (Oryza sativa) and foxtail millet (Setaria italica). Archeologists recently excavated the remains of several early cultures in Taiwan. The most plentiful plant remains were carbonated rice and foxtail millet grains. The earliest 14C date of these excavation sites is ~5,000 bp. These settlements may be those of the earliest ancestral Austronesian speakers in Taiwan. Rice domestication is a complex story. In this study, we identified the functional nucleotide polymorphisms of 16 domestication-related genes using 60 landraces collected from aboriginal Taiwanese villages about 100 years ago. We also screened the phenotypes of these landraces. By integrating pheno- and genotypic data, together with data from archeologists and linguists, we may be able to better understand the history of rice cultivation in Taiwan and nearby areas.  相似文献   

10.

Background

Rice blast, caused by the ascomycete Magnaporthe oryzae (Mo), imposes a major constraint on rice productivity. Managing the disease through the deployment of host resistance requires a close understanding of race structure of the pathogen population.

Results

The host/pathogen interaction between isolates sampled from four Mo populations collected across the rice-producing regions of China was tested using two established panels of differential cultivars. The clearest picture was obtained from the Chinese cultivar panel, for which the frequency of the various races, the race diversity index, the specific race isolate frequency, and the frequency of the three predominant races gave a consistent result, from which it was concluded that the pathogen population present in the southern production region was more diverse than that in the northeastern region. The four blast resistance genes Pi1, Pik, Pik-m, and Piz all still remain effective in the southern China rice production area, as does Pi1 in the northeastern region. The effectiveness of Pita, Pik-p, Piz, and Pib is restricted to single provinces. The distinctive resistance profile shown by the Chinese differential cultivar set implied the presence of at least five as yet unidentified blast resistance genes.

Conclusions

The Chinese differential cultivar set proved to be more informative than the Japanese one for characterizing the race structure of the rice blast pathogen in China. A number of well characterized host resistance genes, in addition to some as yet uncharacterized ones, remain effective across the major rice production regions in China.
  相似文献   

11.
Germin-like protein (GLP) markers were associated with quantitative trait loci (QTL) for resistance to the rice blast pathogen, Magnaporthe oryzae in multiple rice (Oryza sativa) mapping populations. Twelve paralogous OsGLP gene family members are located within the physical QTL region on chromosome 8, and gene silencing studies suggest that they contribute collectively to the resistance phenotype. We compared sequence and expression profiles of OsGLP alleles in two resistant and two susceptible parental rice lines to find functional polymorphisms that correlated with the resistant phenotype. Based on coding and promoter sequences, the genes belong to two germin subfamily groups (GER3 and GER4). OsGLP members from both subfamilies were constitutively expressed and developmentally regulated in all cultivars. Transient induction above constitutive levels was observed for some OsGLPs, especially GER4 subfamily members, at early time points after M. oryzae infection and mechanical wounding. Varying 5′ regulatory regions and differential expression of some family members between resistant and susceptible cultivars corresponded with differential hydrogen peroxide (H2O2) accumulation after the same stimuli. OsGLP of both GER subfamilies localized to the plant cell wall. The protein location and early gene induction suggest that OsGLPs protect rice leaves at early stages of infection before fungal penetration and subsequent ingress. Our data suggest that regulation of OsGLP genes defines resistant versus susceptible phenotypes.  相似文献   

12.
A pot experiment was performed to learn the differences in plant productivity and OH4 emission between two rice cultivars, super rice variety Ningjing 1 and traditional variety Zhendao 11, which were currently commercially appUed in Nanjing, China. Similar seasonal changes of CH4 emission fluxes and soil solution CH4 contents were found between the tested cultivars. Although there was no significant difference in plant biomass production between the cultivars, the grain yield of Ningjing 1 was significantly higher by 35.0% (P 〈 0.05) than that of Zhendao 11, whereas the total CH4 emission from Ningjing 1 was 35.2% lower (P 〈 0.05). The main difference in the amounts of CH4 emission between the cultivars occurred in the period from the tillering stage to the heading stage. The biomass-scaled and yield-scaled CH4 emissions were respectively 3.8 and 5.2 mg/g for Ningjing 1, significantly lower than those for Zhendao 11 (7.4 and 12.8 mg/g, respectively). According to the relationships between the plant growth characteristics and the CH4 emission, a stronger root system contributed mainly to the lower CH4 emission of Ningjing 1, as compared with Zhendao 11. Our results demonstrated that super rice has advantages not only in grain productivity but also in CH4 emission mitigation. Further expansion of super rice cropping will enhance rice yield and reduce greenhouse gas emission in China.  相似文献   

13.
 对中国现存的七省(区)的17份中国普通野生稻(其中广西普通野生稻6份,东乡野生稻5份,广东、湖南各2份,福建及云南景洪普通野生稻各1份)及28份栽培稻地方品种的叶绿体DNA进行了限制性内切酶酶切分析。28份中国栽培稻被分成三类,C1、C2和C3。其中C2叶绿体基因组类型仅有1份材料,为一个籼稻品种。两个主要类型C1和C3分别对应于粳型和籼型,说明中国栽培稻在叶绿体基因组存在籼、粳分化。17份中国普通野生稻的叶绿体DNA用同样3种内切酶酶切,共产生两种类型。它们分别与栽培稻中的C1和C3相同,其中C1类型占主要,为94.1%(16/17),具C3型叶绿体基因组的野生稻为1份广西材料。此外没有检测到新的类型。这说明在中国普通野生稻中也存在对应于栽培稻籼型和粳型两种不同的叶绿体基因组类型,而且是以对应于粳型的C1型叶绿体基因组类型材料为主。从大多数中国普通野生稻具有与粳型栽培稻相同的叶绿体基因组类型,可以推测粳稻起源于中国的可能性很大。  相似文献   

14.
The eastern Himalayan region of Northeast (NE) India is home to a large number of indigenous rice varieties, which are traditionally classified as Oryza sativa subspecies indica, japonica or intermediate types. The classification based on traditional Cheng’s index is often inconclusive due to phenotypic plasticity of morphological characters, which are influenced by environmental conditions. We used molecular markers specific for indica and japonica subspecies to assess the degree of genetic relatedness of indigenous rice varieties in NE India. The results revealed that majority of upland (jum) and glutinous rice varieties, traditionally considered as japonica, were genetically close to the subspecies indica. All varieties of boro ecotype were found to be indica type, and only a few varieties cultivated in lowland and upland areas were japonica type. Some of the lowland varieties of the sali ecotype were intermediate between indica and japonica, and they showed a closer genetic affinity to O. rufipogon.  相似文献   

15.
ZHANG Qi 《水稻科学》2009,16(2):83-92
Since 1980s,rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been ‘quiet’ for 20 years in China,yet in recent years it has gradually emerged and been prevalent in fields planted with newly released rice varieties in the Changjiang River valley. Under the circumstances,scientists inevitably raised several questions:what causes the resurgence and what should we do next? And...  相似文献   

16.
We genotyped 74 rice germplasms including Tripura's local landraces, improved varieties, cultivars and breeding lines and other rice varieties using molecular markers for genetic diversity, drought QTLs, and blast resistance genes. The number of alleles per locus ranged from 2 to 5 with an average of 2.9. The polymorphic information content value per locus ranged from 0.059 (RM537) to 0.755 (RM252) with an average of 0.475. Cluster analysis based on 30 simple sequence repeat markers revealed 5 clusters and also indicated the presence of variability within the rice accessions. The drought QTL qDTY2.1 was found in 56.0% of germplasms and qDTY1.1 was detected in only 6.8% of the germplasms. Out of seven rice blast resistance genes screened, only two rice varieties, RCPL-1-82 and Buh Vubuk (Lubuk), were positive for four blast resistance genes while only Releng possessed two blast resistance genes. Among 74 rice germplasms, only three accessions, Releng, RCPL1-82 and Buh Vubuk (Lubuk), possessed both drought-related QTLs and blast resistance genes. Overall, the 74 indigenous rice genotypes showed low level of genetic diversity, which is in contrast to high level of genetic diversity among rice varieties in northeast India, where highlights the good farming practice, conservation of germplasms and the limitation of molecular markers employed in this study. The presence of both drought related QTLs and blast resistance genes in some of the germplasms can be useful in future breeding programmes.  相似文献   

17.
问说水稻起源   总被引:1,自引:0,他引:1  
本文阐述了稻的起源学说,基于江西省万年县野生稻到栽培稻植硅石和花粉完整驯化遗存的考古发现,提出了万年县是中国稻作的起源地之一,为研究中国栽培稻的起源提供了重要依据。  相似文献   

18.
Resistance to rice gall midge in rice germplasm 91-1A2 was identified and genetically analyzed. F1s of rice population were derived from 91-1A2 which crossed with rice materials Jinggui, TN1, W1263 (Gm1), IET2911 (Gm2), BG404-1 (gm3), OB677 (Gm4), ARC5984 (Gm5) and Duokang 1 (Gm6) as a male parent. The resistance of all parental lines and F1, BC1F1 and F2 populations to rice gall midge was identified. The results showed that 91-1A2 and all F1s were resistant to Chinese rice gall midge biotype IV. The segregation ratio of resistant plants to susceptible ones in BC1F1 and F2 were accorded with 1:3 and 9:7 rules by χ2 test, suggesting that the resistance of 91-1A2 to Chinese rice gall midge biotype IV was controlled by two dominant genes which were new resistance genes, non-allelic to the known rice gall midge resistance genes.  相似文献   

19.
Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality. However, the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease. The genetic improvement of Varalu was done by introgressing a major yield QTL, qDTY12.1, along with two major blast resistance genes i.e. Pi54 and Pi1 through marker-assisted backcross breeding. Both traits were transferred till BC2 generation and intercrossing was followed to pyramid the two traits. Stringent foreground selection was carried out using linked markers as well as peak markers (RM28099, RM28130, RM511 and RM28163) for the targeted QTL (qDTY12.1), RM206 for Pi54 and RM224 for Pi1. Extensive background selection was done using genome-wide SSR markers. Six best lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) having qDTY12.1 and two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%-96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified. These lines showed yield advantage under drought stress as well as irrigated conditions. MSM-36 showed better performance in the national coordinated trials conducted across India, which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production. The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号