首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenocystine (SeC) is a nutritionally available selenoamino acid with selective anticancer effects on a number of human cancer cell lines. The present study shows that SeC inhibited the proliferation of human breast adenocarcinoma MCF-7 cells in a time- and dose-dependent manner, through the induction of cell cycle arrest and apoptotic cell death. SeC-induced S-phase arrest was associated with a marked decrease in the protein expression of cyclins A, D1, and D3 and cyclin-dependent kinases (CDKs) 4 and 6, with concomitant induction of p21waf1/Cip1, p27Kip1, and p53. Exposure of MCF-7 cells to SeC resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. SeC treatment also triggered the activation of JNK, p38 MAPK, ERK, and Akt. Inhibitors of ERK (U0126) and Akt (LY294002), but not JNK (SP600125) and p38 MAPK (SB203580), suppressed SeC-induced S-phase arrest and apoptosis in MCF-7 cells. The findings establish a mechanistic link between the PI3K/Akt pathway, MAPK pathway, and SeC-induced cell cycle arrest and apoptosis in MCF-7 cells.  相似文献   

2.
Benzyl isothiocyanates (BITC), a member of the isothiocyanate (ITC) family, inhibits cell growth and induces apoptosis in many types of human cancer cell lines. The present study investigated mechanisms underlying BITC-induced apoptosis in A375.S2 human melanoma cancer cells. To observe cell morphological changes and viability, flow cytometric assays, cell counting, and a contrast-phase microscopic examination were carried out in A375.S2 cells after BITC treatment. Cell cycle distribution and apoptosis were assessed with the analysis of cell cycle by flow cytometric assays, DAPI staining, propidium iodide (PI), and annexin V staining. Apoptosis-associated factors such as reactive oxygen species (ROS) formation, loss of mitochondrial membrane potential (ΔΨ(m)), intracellular Ca(2+) release, and caspase-3 activity were evaluated by flow cytometric assays. Abundance of cell cycle and apoptosis associated proteins was determined by Western blotting. AIF and Endo G expression was examined by confocal laser microscope. Results indicated that (1) BITC significantly reduced cell number and induced cell morphological changes in a dose-dependent manner in A375.S2 cells; (2) BITC induced arrest in cell cycle progression at G(2)/M phase through cyclin A, CDK1, CDC25C/Wee1-mediated pathways; (3) BITC induced apoptosis and increased sub-G(1) population; and (4) BITC promoted the production of ROS and Ca(2+) and loss of ΔΨ(m) and caspase-3 activity. Furthermore, BITC induced the down-regulation of Bcl-2 expression and induced up-regulation of Bax in A375.S2 cells. Moreover, BITC-induced cell death was decreased after pretreatment with N-acetyl-l-cysteine (NAC, a ROS scavenger) in A375.S2 cells. In conclusion, the results showed that BITC promoted the induction of G(2)/M phase arrest and apoptosis in A375.S2 human melanoma cells through ER stress- and mitochondria-dependent and death receptor-mediated multiple signaling pathways. These data suggest that BITC has potential as an agent for the treatment of melanoma.  相似文献   

3.
The anti-inflammatory effect of miyabenol A, a stilbene isolated from Vitis thunbergii, on lipopolysaccaride (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages was studied. Miyabenol A inhibited NO production (EC 50: 2.7 muM) and iNOS protein and mRNA expression in a parallel concentration-dependent manner. LPS-evoked NF-kappaB nuclear translocation and associated IkappaB degradation were abrogated by miyabenol A treatment. Phosphorylations of IKKalpha/beta, ERK1/2, JNK p38 MAPK, and Akt were observed in LPS-stimulated cells; nevertheless, miyabenol A selectively blocked IKKalpha/beta, p38, and Akt phosphorylation. Furthermore, LPS-stimulated IKKalpha/beta and Akt phosphorylation was abolished by p38 inhibitor SB203580. Wortmannin (a PI3K inhibitor) also attenuated LPS-induced IKKalpha/beta phosphorylation, although to a less extent than SB203580, but failed to affect p38 phosphorylation. These observations suggested that PI3K/Akt might lie downstream of p38 MAPK to coregulate LPS-induced IKKalpha/beta phosphorylation. Taken together, miyabenol A acted via interfering with p38 MAPK-related signal pathways to down-regulate IKK/IkappaB activation and NO production.  相似文献   

4.
Naringenin, a well-known naturally occurring flavonone, demonstrates cytotoxicity in a variety of human cancer cell lines; its inhibitory effects on tumor growth have spurred interest in its therapeutic application. In this study, naringenin was derivatized to produce more effective small-molecule inhibitors of cancer cell proliferation, and the anticancer effects of its derivative, 5-hydroxy-7,4'-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), in non-small-cell lung cancer (NSCLC) cell lines NCI-H460, A549, and NCI-H1299 were investigated. Naringenin itself possesses no cytotoxicity against lung cancer cells. In contrast, N101-43 inhibits proliferation of both NCI-H460 and A549 cell lines; this capacity is lost in p53-lacking NCI-H1299 cells. N101-43 induces apoptosis via sub-G1 cell-cycle arrest in NCI-H460 and via G0/G1 arrest in A549 cells. Expression of apoptosis and cell-cycle regulatory factors is altered: Cyclins A and D1 and phospho-pRb are down-regulated, but expression of CDK inhibitors such as p21, p27, and p53 is enhanced by N101-43 treatment; N101-43 also increases expression levels of the extrinsic death receptor Fas and its binding partner FasL. Furthermore, N101-43 treatment diminishes levels of cell survival factors such as PI3K and p-Akt dose-dependently, and N101-43 additionally induces cleavage of the pro-apoptotic factors caspase-3, caspase-8, and poly ADP-ribose polymerase (PARP). Cumulatively, these investigations show that the naringenin derivative N101-43 induces apoptosis via up-regulation of Fas/FasL expression, activation of caspase cascades, and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 and A549 cells. In conclusion, these data indicate that N101-43 may have potential as an anticancer agent in NSCLC.  相似文献   

5.
Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have antioxidant, anti-inflammatory, and anticancer activities. This study investigated the antiproliferative effect of hispolon on human hepatocellular carcinoma Hep3B cells by using the MTT assay, DNA fragmentation, DAPI (4,6-diamidino-2-phenylindole dihydrochloride) staining, and flow cytometric analyses. Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Hispolon-induced S-phase arrest was associated with a marked decrease in the protein expression of cyclins A and E and cyclin-dependent kinase (CDK) 2, with concomitant induction of p21waf1/Cip1 and p27Kip1. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells. These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell cycle arrest and apoptosis in Hep3B cells.  相似文献   

6.
Berberine (BBR) is a natural alkaloid with significant antitumor activities against many types of cancer cells. This study investigated the molecular mechanisms by which BBR suppresses the growth of HER2-overexpressing breast cancer cells. The results show that BBR induces G1-phase cell cycle arrest by interfering with the expression of cyclins D1 and E and that it induces cellular apoptosis through the induction of a mitochondria/caspase pathway. The data also indicate that BBR inhibits cellular growth and promotes apoptosis by down-regulating the HER2/PI3K/Akt signaling pathway. Furthermore, it is also shown that a combination of taxol and BBR significantly slows the growth rate of HER2-overexpressing breast cancer cells. In conclusion, this study suggests that BBR could be a useful adjuvant therapeutic agent in the treatment of HER2-overexpressing breast cancer.  相似文献   

7.
Gallic acid (GA) is widely distributed in various plants and foods and has various biological properties including anticancer effects. In this study, we investigated the effects of mitogen-activated protein kinase (MAPK) [MAP 20 kinase or ERK kinase (MEK), c-Jun N-terminal kinase (JNK), or p38)] inhibitors or small interfering RNAs (siRNAs) on GA-induced HeLa cell death in relation to reactive oxygen species (ROS) and glutathione (GSH) levels. GA dose dependently inhibited the growth of HeLa cells via apoptosis and/or necrosis at 24 h, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨ(m)). Treatment with 70 μM GA increased the ROS level including O(2)(?-) and significantly induced GSH depletion in HeLa cells. GA decreased the activity of extracellular signal-regulated kinase (ERK) at 24 h, whereas it increased that of JNK at the same time. While the MEK inhibitor or ERK siRNA did not affect cell growth and death in 70 μM GA-treated HeLa cells at 24 h, JNK and p38 inhibitors enhanced cell growth inhibition and death in these cells. Additionally, p38 siRNA administration augmented growth inhibition, death, and MMP (ΔΨ(m)) loss in 70 μM GA-treated HeLa cells. In relation to ROS and GSH levels, JNK and p38 inhibitors increased ROS levels, and GSH-depleted cell numbers in GA-treated HeLa cells. Moreover, p38 siRNA increased O(2)(?-) levels and GSH depletion in GA-treated HeLa cells. Each MAPK inhibitor and siRNA differentially affected ROS and GSH levels in HeLa control cells. Conclusively, JNK and p38 inhibitors and p38 siRNA enhanced growth inhibition and cell death in GA-treated HeLa cells, which were to some extent related to GSH depletion and ROS levels, especially O(2)(?-).  相似文献   

8.
Chondrosarcoma is a malignant primary bone tumor that is resistant to chemotherapy and radiation therapy. α-Mangostin, a component of Garcinia mangostana Linn, is a xanthone derivative shown to have antioxidant and antitumor properties. This study is the first to investigate anticancer effects of α-mangostin in the human chondrosarcoma cell line SW1353. We showed that α-mangostin inhibited cell proliferation of SW1353 cells in a time- and dose-dependent manner by using the trypan blue exclusion method. Hoechst 33342 nuclear staining and nucleosomal DNA-gel electrophoresis revealed that α-mangostin could induce nuclear condensation and fragmentation, typically seen in apoptosis. Flow cytometry using Annexin V/PI double staining assessed apoptosis, necrosis and viability. α-Mangostin activated caspase-3, -8, -9 expression, decreased Bcl-2 and increased Bax. This promotes mitochondrial dysfunction, leading to the release of cytochrome c from the mitochondria to the cytoplasm. In addition, total and phosphorylated ERK and JNK were downregulated in α-mangostin-treated SW1353 cells but no changes in p38. α-Mangostin also decreased phosphorylated Akt without altering total Akt. These results suggest that α-mangostin inhinbited cell proliferation and induced apoptosis through downregulation of ERK, JNK and Akt signaling pathway in human chondrosarcoma SW1353 cells.  相似文献   

9.
The objective of this study was to investigate the antiproliferative effect and the mechanism of trypsin inhibitor (TI) from sweet potato [Ipomoea batatas (L.) Lam. 'Tainong 57'] storage roots on NB4 promyelocytic leukemia cells. The results showed that TI inhibited cellular growth of NB4 promyelocytic leukemia cells in a time-dependent and dose-dependent manner, and treatment for 72 h induced a marked inhibition of cellular growth, showing an IC50 of 57.1 +/- 8.26 microg/mL. TI caused cell cycle arrest at the G1 phase as determined by flow cytometric analysis and apoptosis as shown by DNA laddering. TI-induced cell apoptosis involved p53, Bcl-2, Bax, and cytochrome c protein in NB4 cells. P53 and Bax proteins were accumulated, and antiapoptotic molecule Bcl-2 was decreased in the tested cells in a time-dependent manner during TI treatment. TI also induced a substantial release of cytochrome c from the mitochondria into the cytosol. Hence, TI induced apoptosis in NB4 cells through a mitochondria-dependent pathway, which was associated with the activation of caspase-3 and -8. These results demonstrated that TI induces NB4 cell apoptosis through the inhibition of cell growth and the activation of the pathway of caspase-3 and -8 cascades.  相似文献   

10.
Chronic cardiovascular and neurodegenerative complications induced by hyperglycemia have been considered to be associated most relevantly with endothelial cell damages (ECD). The protective effects of the aqueous extract of Psidium guajava L. budding leaves (PE) on the ECD in human umbilical vein endothelial cell (HUVEC) model were investigated. Results revealed that glyoxal (GO) and methylglyoxal (MGO) resulting from the glycative and autoxidative reactions of the high blood sugar glucose (G) evoked a huge production of ROS and NO, which in turn increased the production of peroxynitrite, combined with the activation of the nuclear factor kappaB (NFkappaB), leading to cell apoptosis. High plasma glucose activated p38-MAPK, and high GO increased the expressions of p38-MAPK and JNK-MAPK, whereas high MGO levels induced the activity of ERK-MAPK. Glucose and dicarbonyl compounds were all found to be good inducers of intracellular PKCs, which together with MAPK acted as the upstream triggering factor to activate NFkappaB. Conclusively, high plasma glucose together with dicarbonyl compounds can trigger the signaling pathways of MAPK and PKC and induce cell apoptosis through ROS and peroxynitrite stimulation and finally by NFkappaB activation. Such effects of PE were ascribed to its high plant polyphenolic (PPP) contents, the latter being potent ROS inhibitors capable of blocking the glycation of proteins, which otherwise could have brought forth severe detrimental effects to the cells.  相似文献   

11.
The objectives of this study were to investigate the antiproliferation and apoptosis mechanism of saponin and flavonoid fractions from Gynostemma pentaphyllum (Thunb.) Makino on prostate cancer cell PC-3. Both flavonoid and saponin fractions were isolated by a column chromatographic method with Cosmosil 75C(18)-OPN as adsorbent and elution solvents of ethanol-water (30:70, v/v) for the former and 100% ethanol for the latter, followed by high-performance liquid chromatography-tandem mass spectrometry analysis. On the basis of the MTT assay, the saponin and flavonoid fraction were comparably effective in inhibiting the growth of PC-3 cells, with the IC(50) being 39.3 and 33.3 μg/mL, respectively. Additionally, both fractions induced an arrest of PC-3 cell cycle at both S and G2/M phases, with both early and late apoptotic cell populations showing a dose-dependent rise. The Western blot assay indicated that the incorporation of flavonoid or saponin fraction could modulate the expression of G2 and M checkpoint regulators, cyclins A and B, and the antiapoptotic proteins Bcl-2 and Bcl-xl and pro-apoptotic proteins Bad and Bax. The expression of the caspase-3 and its activated downstream substrate effectors, DFF45 and poly (ADP-ribose) polymerase-1 (PARP-1), was also increased and followed a dose-dependent manner. All of these findings suggest that the apoptosis of PC-3 cells may proceed through the intrinsic mitochondria pathway.  相似文献   

12.
13.
Ganoderma lucidum is known as a medicinal mushroom used in traditional Chinese medicine. In the present study, the effect of lucidenic acids (A, B, C, and N) isolated from a new G. lucidum (YK-02) on induction of cell apoptosis and the apoptotic pathway in HL-60 cells were investigated. The results demonstrated that lucidenic acids decreased cell population growth of HL-60 cells, assessed with the MTT assay. The cell cycle assay indicated that treatment of HL-60 cells with lucidenic acid A, C, and N caused cell cycle arrest in the G 1 phase. Lucidenic acid B (LAB) did not affect the cell cycle profile; however, it increased the number of early and late apoptotic cells but not necrotic cells. Treatment of HL-60 cells with LAB caused loss of mitochondria membrane potential. Moreover, the ratio of expression levels of pro- and antiapoptotic Bcl-2 family members was changed by LAB treatment. LAB-induced apoptosis involved release of mitochondria cytochrome c and subsequently induced the activation of caspase-9 and caspase-3, which were followed by cleavage of poly(ADP-ribose) polymerase (PARP). Pretreatment with a general caspase-9 inhibitor (Z-LEHD-FMK) and caspase-3 inhibitor (Z-DEVD-FMK) prevented LAB from inhibiting cell viability in HL-60 cells. Our finding may be critical to the chemopreventive potential of lucidenic acid B.  相似文献   

14.
Acacetin (5,7-dihydrocy-4'-methoxy flavone), which is a flavonoid compound, possesses anti-peroxidative and anti-inflammatory effects. The effects of acacetin on cell viability in human gastric carcinoma AGS cells were investigated. This study demonstrated that acacetin was able to inhibit cell proliferation and induce apoptosis in a concentration- and time-dependent manner. Acacetin-induced cell death was characterized with changes in nuclear morphology, DNA fragmentation, and cell morphology. The molecular mechanism of acacetin-induced apoptosis was also investigated. Treatment with acacetin caused induction of caspase-3 activity in a time-dependent manner, but not caspase-1 activity, and induced the degradation of DNA fragmentation factor (DFF-45) and poly(ADP-riobse) polymerase. Cell death was completely prevented by a pancaspase inhibitor, Z-Val-Ala-Asp-fluoromethyl ketone. Furthermore, treatment with acacetin caused a rapid loss of mitochondrial transmembrane potential, stimulation of reactive oxygen species (ROS), release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. Antioxidants such as N-acetylcysteine and catalase, but not superoxide dismutase, allopurinol, or pyrrolidine dithiocarbamate, significantly inhibited acacetin-induced cell death. In addition, it was found that acacetin promoted the up-regulation of Fas and FasL prior to the processing and activation of pro-caspase-8 and cleavage of Bid, suggesting the involvement of a Fas-mediated pathway in acacetin-induced apoptosis. On the other hand, the results showed that acacetin-induced apoptosis was accompanied by up-regulation of Bax and p53, down-regulation of Bcl-2, and cleavage of Bad. Taken together, these results suggest that ROS production and a certain intimate link might exist between receptor- and mitochondria-mediated death signalings that committed to acacetin-induced apoptosis in AGS cells. The induction of apoptosis by acacetin may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

15.
Shikonin is a main constituent of the roots of Lithospermum erythrorhizon that has antimutagenic activity. However, its other biological activities are not well-known. Shikonin displayed a strong inhibitory effect against human colorectal carcinoma COLO 205 cells and human leukemia HL-60 cells, with estimated IC(50) values of 3.12 and 5.5 microM, respectively, but were less effective against human colorectal carcinoma HT-29 cells, with an estimated IC(50) value of 14.8 microM. Induce apoptosis was confirmed in COLO 205 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by loss of mitochondrial membrane potential, reactive oxygen species (ROS) generation, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of poly(ADP-ribose) polymerase (PARP) and DNA fragmentation factor (DFF-45) were accompanied by activation of caspase-9 and -3 triggered by shikonin in COLO 205 cells. Here, we found that shikonin-induced apoptotic cell death was accompanied by upregulation of p27, p53, and Bad and down-regulation of Bcl-2 and Bcl-X(L), while shikonin had little effect on the levels of Bax protein. Taken together, we suggested that shikonin-induced apoptosis is triggered by the release of cytochrome c into cytosol, procaspase-9 processing, activation of caspase-3, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by shikonin may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

16.
The present study examined the effects of tangeretin, a polymethoxylated flavonone present in citrus fruits, on ultraviolet B (UVB)-induced cyclooxygenase-2 (COX-2) expression in JB6 P+ mouse skin epidermal cells. Tangeretin suppressed UVB-induced COX-2 expression and transactivation of nuclear factor-κB and activator protein-1 in JB6 P+ cells. Moreover, tangeretin blocked UVB-induced phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38, and attenuated the phosphorylation of MAPK kinases 1/2, 3/6, and 4. Tangeretin also limited the endogenous generation of reactive oxygen species (ROS), thereby protecting the cells against oxidative stress. However, tangeretin did not scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and influence the nicotinamide adenine dinucleotide phosphate oxidase activity. These results suggest that the anti-inflammatory effects of tangeretin stem from its modulation of cell signaling and suppression of intracellular ROS generation. Tangeretin may have a potent chemopreventive effect in skin cancer.  相似文献   

17.
Gallic acid (GA), 3,4,5-trihydroxybenzoic acid, is a natural polyphenolic acid and widely found in gallnuts, tea leaves and various fruits. Previous studies have shown that GA possesses anti-inflammatory, antiallergic and anticarcinogenic activity. In the present study, we aim to investigate the antitumor effects of GA on breast cancer cell. Our results revealed that GA treatment significantly reduced the cell growth of human breast cancer cell MCF-7 in a dose-dependent manner. Further flow cytometric analysis showed that GA induced significant G2/M phase arrest but slightly affected the population of sub-G1MCF-7 cells. Therefore, levels of cyclins, cyclin-dependent kinases (CDKs), and their regulatory proteins involved in S-G2/M transition were investigated. Our findings revealed that levels of cyclin A, CDK2, cyclin B1 and cdc2/CDK1 were diminished; in contrast, levels of the negative regulators p27(Kip1) and p21(Cip1) were increased by GA treatment. Additionally, Skp2, a specific ubiquitin E3 ligase for polyubiquitination of p27(Kip1) was reduced by GA treatment. Further investigation showed that GA attenuated Skp2-p27(Kip1) association and diminished polyubiquitination of p27(Kip1) in MCF-7 cells. Moreover, knockdown of p27(Kip1) but not p21(Cip1) significantly alleviated GA-induced accumulation of G2/M phase. These findings indicate that GA may upregulate p27(Kip1) level via disruption of p27(Kip1)/Skp2 association and the consequent degradation of p27(Kip1) by proteosome, leading to G2/M phase arrest of MCF-7 cell. It is suggested that GA should be beneficial to treatment of breast cancer and p27(Kip1)-deficient carcinomas.  相似文献   

18.
Monascus pigments have been reported to possess anticancer effects in various cancer cells; however, the molecular mechanisms of their anticancer properties remain largely unknown. Monascuspiloin is an analogue of the Monascus pigment monascin, and its anticancer growth activity against human prostate cancer cells was evaluated using in vitro and in vivo models. Monascuspiloin effectively inhibits the growth of both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cells. Monascuspiloin preferentially induces apoptosis in LNCaP cells by attenuating the PI3K/Akt/mTOR pathway. In androgen-independent PC-3 cells, monascuspiloin induces G2/M arrest and autophagic cell death by an AMPK-dependent pathway. Induction of autophagy in PC-3 cells further sensitizes cells to apoptosis induced by monascuspiloin. Monascuspiloin inhibits tumor growth in nude mice bearing PC-3 xenografts through induction of apoptosis and autophagy. This study is the first to demonstrate that monascuspiloin has therapeutic potential for the treatment of both androgen-dependent and -independent human prostate cancers.  相似文献   

19.
Indole-3-carbinol (I3C), a potential anticancer substance, can be found in cruciferous (cabbage family) vegetables, mainly cauliflower and Chinese cabbage. However, the bioactivity of I3C on the apoptotic effects of murine leukemia WEHI-3 cells and promotion of immune responses in leukemia mice model are unclear. In this study, we investigated the effect of I3C on cell-cycle arrest and apoptosis in vitro and immunomodulation in vivo. I3C decreased the viable WEHI-3 cells and caused morphological changes in a concentration- and time-dependent manner. I3C also led to G0/G1 phase arrest, decreased the levels of cyclin A, cyclin D, and CDK2, and increased the level of p21(WAF1/CIP1). Flow cytometric analyses further proved that I3C promoted ROS and intracellular Ca(2+) production and decreased the levels of ΔΨ(m) in WEHI-3 cells. Cells after exposure to I3C for 24 h showed DNA fragmentation and chromatin condensation. Comet assay also indicated that I3C induced DNA damage in examined cells. I3C increased the levels of cytochrome c, FADD, GADD153, GRP78, and caspase-12 as well as induced activities of caspase-3, -8, and -9. Moreover, I3C attenuated NF-κB DNA binding activity in I3C-treated WEHI-3 cells as shown by EMSA and Western blotting analyses. In the in vivo study, we examined the effects of I3C on WEHI-3 leukemia mice. Results showed that I3C increased the level of T cells and decreased the level of macrophages. I3C also reduced the weights of liver and spleen, and it promoted phagocytosis by macrophages as compared to the nontreated leukemia mice group. On the basis of our results, I3C affects murine leukemia WEHI-3 cells both in vitro and in vivo.  相似文献   

20.
This study demonstrated that ergocalciferol was able to inhibit leukemia cell growth in a concentration-dependent manner. Exploration of the acting mechanisms involved this event revealed that ergocalciferol induced DNA fragmentation and increased sub-G1 DNA contents in HL-60 cells, both of which are hallmarks of apoptosis. Analysis of the integrity of mitochondria demonstrated that ergocalciferol caused loss of mitochondrial membrane potential with release cytochrome c to cytosol, generation of reactive oxygen species (ROS), and depletion of glutathione (GSH), suggesting that ergocalciferol may induce apoptosis in HL-60 cells through a ROS-dependent pathway. Further results show that caspases-2, -3, -6, and -9 were all activated by ergocalciferol, together with cleavage of the downstream caspase-3 targets, DNA fragmentation factor (DFF-45), and poly(ADP-ribose) polymerase. In addition, ergocalciferol led to the increase in pro-apoptotic factor Bax accompanied with the decrease in anti-apoptotic member Mcl-1, and the reduced Mcl-1 to Bax ratio may be a critical event concerning mitochondrial decay by ergocalciferol. Furthermore, ergocalciferol also led to induction of Fas death receptor closely linked to caspase-2 activation, suggesting the involvement of a Fas-mediated pathway in ergocalciferol-induced apoptosis. Totally, these findings suggest that ergocalciferol causes HL-60 apoptosis via a modulation of mitochondria involving ROS production, GSH depletion, caspase activation, and Fas induction. On the basis of anticancer activity of ergocalciferol, it may be feasible to develop chemopreventive agents from edible mushrooms or hop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号