首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The milling potential of hulled barley, hulled oat, triticale, rye and wheat was studied using a long tempering process and a laboratory four-roller mill. Regardless of the investigated cereal, the results indicated a significant influence (p < 0.05) of volume per surface area ratio on the milling yield and ash contents of the flour. The lowest milling yield was obtained in case of hulled oat. Solvent retention capacity profiles were determined for all investigated whole cereals and flours for predicting the contribution of different polymers to the functionality of samples. For all solvents higher values were obtained for the whole cereals compared to the corresponding flour. Thermo-mechanical properties of the whole cereals and refined flours were also investigated. If in case of wheat the gluten proteins play an essential role on dough behaviour during kneading at 30 °C, in case of triticale, rye, hulled barley and hulled oat, the fibers play a major role as well. Thermo-mechanical properties of starch registered a large variation between cereals and/or flours. The lowest torque value corresponding to starch gelatinization (C3) was registered in case of the hulled oat flour, 1.92 Nm, while the highest value in case of rye flour, 2.65 Nm.  相似文献   

2.
In this study, a simple strategy for acrylamide (AA) reduction in white and dark wheat and spelt and rye breads, including the impact of flour basic composition, flour extraction rate, type of technology and baking time and temperature was addressed. Moreover, the correlation between AA formation in breads and total phenolic compounds (TPC) and antioxidant capacity (AC) of flours and breads was calculated. The studies showed an impact of flours origin on AA formation in breads with the following rank: wheat bread ≤ spelt bread < rye bread. There was no statistically significant effect of flour extraction rates and their chemical components on AA formation in breads baked at 200 °C/35 min. However, a weak effect was noted for wheat and spelt breads baked at higher temperature. In contrast, a positive correlation between AA in wheat, spelt and rye breads baked at both applied conditions (200 °C for 35 min or 240 °C for 30 min) and AC of white and dark flours was noted. The same finding was noted between AA formation and TPC and AC of bread and its crust. The provided data indicated that AA mitigation strategy should be based on the selection of lower baking temperature with longer baking time as the main important factor amongst others.  相似文献   

3.
Trace elements (Zn, Fe, Cu and Mn) and minerals (Ca, Mg, P and K) concentrations were determined in whole meal flour of five einkorn accessions and one bread wheat cultivar, cropped in four different locations for two years. The major factors influencing mineral levels were year and genotype, as well as their interaction. Einkorn varieties exhibited higher Zn (7.18 ± 0.76 mg/100 g DM), Fe (5.23 ± 0.47), Mn (4.65 ± 0.23), Cu (0.90 ± 0.08), Mg (151.2 ± 9.00) and P (541.1 ± 35.37) concentration than bread wheat. Mg concentration correlated positively with that of other bivalent cations (Zn and Ca). The relevant amount of trace elements consistently found in einkorn further confirms the potential of this cereal in human nutrition, either by direct consumption or by introgression of superior alleles into enhanced polyploid wheat cultivars.  相似文献   

4.
To assess the effect of ageing on alpha-amylase activity, falling number, pasting properties and SDS sedimentation volume, whole meal and white flours of einkorn (cv Monlis) and bread wheat (cv Serio) were stored in darkness at different temperatures and analysed several times up to 374 days. Pregerminated bread wheat flours (cv Blasco) were also evaluated.  相似文献   

5.
Total alkylresorcinol (AR) content and homologue composition were assessed in whole grain flours of 15 varieties each of bread wheat, durum, spelt, emmer, and einkorn grown in four different environments. Bread wheat (761 ± 92 μg/g DM) and spelt (743 ± 57 μg/g) belonging to the hexaploid species showed higher AR concentrations than the tetraploid durum (654 ± 48 μg/g, p < 0.05), while the concentrations found in the diploid einkorn (737 ± 91 μg/g) and the tetraploid emmer (697 ± 94 μg/g) did not significantly differ from the other species. The AR content showed a remarkable heritability and, thus, seemed to be mainly determined by genetic factors. If ARs were assumed to be deposited within a specific AR-rich layer of the kernel, AR levels of all varieties would easily surpass their minimal inhibitory concentrations against fungal pathogens within this barrier layer. Although the AR carrying a C21:0 side chain was the main homologue in all species, the levels of all AR homologues and their relative composition significantly differed between hexaploid (bread wheat and spelt), tetraploid (durum and emmer) and diploid (einkorn) species. Consequently, a clear-cut differentiation of Triticum species and derived whole grain flours according to their degrees of ploidy was established based on concentrations of saturated C17-, C19-, C21-, C23-, and C25-substituted ARs.  相似文献   

6.
To limit nutritional losses and optimise bread processing, heat damage indices (furosine, glucosylisomaltol, hydroxymethylfurfural), sugars, α-amylase, β-amylase and colour were monitored during bread manufacturing from refined flour of three einkorn, three bread and one durum wheat samples. The heat damage indices increased only during the baking step. Furosine was significantly lower in einkorn (on average, 9.3 ± 5.33 and 25.3 ± 10.70 mg/100 g protein in crumb and crust, respectively) than in bread wheat (31.6 ± 3.05 and 115.6 ± 13.53) and durum wheat (36.2 ± 2.82 and 165.0 ± 3.17). Glucosylisomaltol and hydroxymethylfurfural were detected only in the crust, with lower levels in einkorn (on average, 2.3 ± 1.78 and 10.0 ± 7.79 mg/kg DM, respectively) than in bread wheat (13.1 ± 5.57 and 42.8 ± 10.64) and durum wheat (18.9 ± 1.11 and 57.2 ± 0.80). The different behaviour of einkorn was probably related to its moderate β-amylase activity, and thus the low maltose content of its dough. Colour was correlated with heat damage, as einkorn breads were lighter than the others.The results show that einkorn bread undergoes lower heat damage than analogous products from durum and bread wheat, thus probably better preserving its nutritional value.  相似文献   

7.
Ancient wheat grain is considered by consumers to be more natural, pro-healthy and better tolerated, so these genotypes are being steadily reintroduced to cultivation. This study presents the content and composition of phenolic acids, alkylresorcinols, sterols, tocols and carotenoids in the grain of Indian dwarf and Persian wheats, extended by characteristics of their kernels (weight, dimensions and colour). To compare these features, four other wheat species (bread, spelt, durum and einkorn wheats) were used. It was found that the grain of Indian dwarf and Persian wheat is similar in weight and dimensions to grain of einkorn wheat, while in colour to bread wheat. Among the tested samples, grain of both new genotypes was the richest source of total low molecular phytochemicals, especially phenolic acids and alkylresorcinols, while being the weakest source of carotenoids. For these wheats, an enhanced share of ferulic acid (93–95%) was found, accompanied by higher quantitative and qualitative variability of homologues within sterols, tocols and carotenoids. In turn, the alkylresorcinol composition was related to wheat ploidy level.  相似文献   

8.
Phenolic compounds, particularly ferulic acid the most abundant phenolic in wheat, are the major contributors to the in vitro antioxidant capacity. They are present in wheat in free and bound forms which affect their bioavailability. Thus the current study aims to investigate changes in free and bound phenolic acids occurred during baking in wholegrain bread, cookie and muffin. The products were also fortified with lutein due to its proved health benefits, and were previously evaluated with regard to lutein stability and bioavailability and antioxidant properties. The control and fortified wholegrain bakery products contained reasonable amounts of free and bound phenolic acids with bread products exhibiting the highest level per serving (0.6 and 11.7 mg, respectively). Ferulic acid was the principal phenolic both in the free or bound extracts of the three products followed by p-coumaric acid in the bound extracts. Baking resulted in an increase in free phenolic acids in the three products, while bound phenolic acids decreased in bread and slightly changed in cookie and muffin products. Though the effect of baking appeared to be dependent on type of baked product, type of phenolic, recipe and baking conditions, the wholegrain products should be considered good sources of phenolic antioxidants.  相似文献   

9.
The evolution of tocol content was investigated during the manufacture of bread, water biscuit and pasta from refined flours of einkorn wheat, bread wheat and, for pasta only, durum wheat semolina.  相似文献   

10.
Oxidative Stability of bread is increasingly being recognized as important for long shelf-life. Formation of free radicals in whole wheat flour and white flour during heating was compared using Electron Spin Resonance spectroscopy in order to identify the primary oxidative events. Heating lead to a higher content of free radicals in wholemeal wheat flour than in white flour, since components in the husk seem to make a major contribution. Two different pathways are suggested for the formation of free radicals in wheat flour. The activation energy for the radical formation in the flours was estimated by Arrhenius plot as 34 kJ mol−1 up to 453 K, and above 473 K higher activation energies were observed. The change in activation energies indicates a change in reaction mechanisms for oxidation probably involving species with different mobility, i.e. different molecular weight. The accumulated concentration of free radicals in heated flour increased during one month storage and it is slightly affected by the water activity in the storage container.  相似文献   

11.
Epidemiological studies have linked whole grain consumption to prevention of several chronic diseases. Whole grain is a source of important phytochemicals, such as ferulic acid (FA). FA is the most abundant phenolic and major contributor to the in vitro antioxidant capacity of wheat grain. Several studies have reported highly variable results on FA bioavailability (0.4–98%). The binding of FA to polysaccharides may limit its bioavailability. Therefore, our study aimed at monitoring release features of FA during gastrointestinal (GI) transit. This was termed bioaccessibility. The bioaccessibility of FA was studied from different wheat fractions and breads with the use of a dynamic in vitro system that simulates the upper GI transit and digestion. The results showed low bioaccessibility of FA from the wheat fractions and breads (<1%). However, the bioaccessibility was high when free FA was added to flour (∼60%). The bioaccessibility of FA appeared to be determined by the percentage of free FA. In wheat grain, most of FA is bound to arabinoxylans and other indigestible polysaccharides restricting its release in the small intestine. New processing developments should be considered to increase free FA in the cereal matrix in order to improve its bioavailability and systemic health effect.  相似文献   

12.
Volatile compounds formed during heat-treatment of wheat flour influence the application of treated flour. In this study, normal and waxy hard wheat flours before and after dry-heat treatment were subjected to headspace analysis by solid-phase microextraction of volatiles followed gas chromatography–mass spectrometry (GC/MS). The untreated waxy wheat flour contained higher levels of odor-active compounds than normal wheat flour including aldehydes, alcohols, furans, and ketones. Lipid oxidation appears to play major role in producing such odor compounds. Heat treatments, depending on the severity, alter the profile of volatile compounds. Low temperature (100–110 °C) treatments effectively eliminated cereal odor (aldehyde) and did not introduce additional odors, providing a possible way to produce low-odor flours. Heat treatments at 120 °C and higher temperatures elevated the content of pyrazines, furans, and sulfur-containing compounds which together gave a roasty aroma to the flours. Considering organoleptic properties, treatments of flours at 140 °C was superior to 160 °C. The waxy wheat flour was more prone to produce odor-active compounds than normal wheat flour during the same heat treatment.  相似文献   

13.
Recent studies on einkorn wheat, an underutilised relative of durum and bread wheat, demonstrated its outstanding nutritional characteristics and fostered a renewed interest for its cultivation. Einkorn is a disease-resistant and thrifty crop, supplying flour with optimal composition even with minimal agronomic management. To understand the role of nitrogen fertilisation on its composition and nutritional quality, a two-year study comparing five different nitrogen treatments (0 kg/ha, 40 and 80 kg/ha at tillering, 40 and 80 kg/ha at heading) was performed on three einkorn accessions.The two years had similar temperatures but very different rainfall profiles, so the climate had a strong effect on most traits, including thousand kernels weight, Falling number, viscoamylographic parameters, carotenoid and phenolic acid concentration. On the other hand, nitrogen fertilisation improved protein content, SDS sedimentation volume and phenolic acids concentration. Carotenoids synthesis was slightly limited with increasing fertilisation; a similar, but less evident, effect was present for tocols. The results demonstrate that einkorn wheat does not require abundant nitrogen fertilisation to provide flour with good nutritional and technological characteristics.  相似文献   

14.
In this study, the content of soluble, free forms of phenolic compounds (total phenolics, flavonoids, PVPP (polyvinylpolypyrrolidone) bound phenolics, proanthocyanidins and phenolic acids), as well as the content of carotenoids and tocopherols, were determined in whole grains of bread and durum wheat, rye, hull-less barley and hull-less oat, each represented with four genotypes. Antioxidant activity was evaluated as radical scavenging activity with DPPH (2,2-diphenyl-1-picrylhydrazyl) reagent, as well as by hydrogen transfer reaction (reduction power) based on the reduction of Fe3+. Generally, a considerable variation in antioxidant activities and phytochemical contents was observed between the cereals. Remarkably higher DPPH radical scavenging ability and reducing power were detected in hull-less barley, followed by rye and hull-less oat and durum and bread wheat, indicating that small grain species have different major antioxidants with different properties. Hull-less barley had the highest content of total free phenols, flavonoids, PVPP bound phenolics and contained flavan-3-ols, not found in other species. Hull-less oat had the highest content of tocopherols, very high content of yellow pigments and PVPP bound phenolics. Ferulic acid was the major free phenolic acid in small grain cereals tested. The relationship between the content of soluble phenols, as well as reducing power and DPPH scavenging activity are also considered.  相似文献   

15.
Two agro-industrial co-products, brewers' spent grain and wheat bran, were fractionated by sequentially extracting with alkali of increasing strength. Over 60% of the brewers' grain biomass was solubilised by these treatments, compared with only 25% for wheat bran. The carbohydrate and phenolic composition of the solubilised fractions were determined, highlighting two compositionally different sets of fractions. In both co-products arabinoxylan was the main polysaccharide released. The degree of arabinose substitution of the extracted arabinoxylan diminished as the alkali strength increased. Insoluble residues contained both cellulose and non-cellulosic polysaccharides. In spent grain, the composition of the arabinoxylan in the residue was similar to that of the starting material. In wheat bran, the residual xylan was very highly substituted with arabinose. Both ferulic acid and three forms of diferulic acid (5,5′, 8-O-4′ and 8,5′) were present in the solubilised material, even after treatment with 4 M KOH. Esterified acetate was also present on polymers solubilised with KOH at concentrations up to 1 M. The more soluble fractions of spent grain represented a heterogeneous aggregation of feruloylated arabinoxylans with a broad molecular mass range, but the fractions extracted with stronger base were separated into low molecular weight moieties, presumably due to cleavage of covalent cross-links. Potential food and non-food uses for the isolated fractions from the cereal co-products are discussed.  相似文献   

16.
Depolymerization of mixed linkage cereal β-glucans has been observed during the mixing and fermentation of multigrain breads. To maintain the bioactivity of β-glucans in bread and other foods, control of β-glucanase activity during production is needed. β-Glucanase activity in wheat and dairy ingredients was determined by adding them to β-glucan solutions and following the change in the molecular weight of β-glucan at 50 °C for 60 min. The activities in six wheat and six dairy ingredients ranged from undetectable to a 98% reduction in molecular weight. Calcium propionate, potassium sorbate, and sodium benzoate are salts of organic acids commonly used as food preservatives. Low concentrations of these additives (0.1–1.0%) were found to have an inhibitory effect on the β-glucanases found in wheat flour and whey protein isolate. The depolymerization rate of β-glucan was reduced by up to 76% by the three additives.  相似文献   

17.
The effects of the replacement of einkorn flour on pasta proteins aggregation were studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion high performance chromatography. Pasta was produced replacing durum wheat semolina with an increasing amount of einkorn flour (30, 50 and 100%). The polymeric protein structure of flours and related pasta and pasta mixture was determined by protein subunits composition and size of polymeric proteins. The unextractability of polymeric protein was related to the unextractable protein fraction and to the determination of –SH/-SS groups. Durum wheat semolina and einkorn flours increased their unextractable and polymeric fractions during pasta processing. The unexpected results derived from the areas of unextractable fractions and total and large unextractable polymeric fractions of 70/30 semolina/einkorn pasta mixture that were lower than those of 50/50 semolina/einkorn pasta mixture. Although the semolina flour contained more gluten proteins than einkorn flour, a higher aggregation was registered for 50/50 semolina/einkorn flour pasta. These results suggested that a different assessment of gluten network occurred in pasta mixture and it was regulated by a self-assembling machine influenced by nature of HMW-GS. The 50/50 semolina/einkorn pasta mixture determined a supramolecular structure in the developing of its network architecture.  相似文献   

18.
Direct measurement of the total antioxidant capacity of cereal products   总被引:3,自引:1,他引:2  
A simple and rapid procedure was developed for the direct measurement of the antioxidant capacity of cereals. It entails grinding of cereals, mixing with 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) reagent, centrifugation and measure of the absorbance. The ABTS reagent was dissolved in a mixture of ethanol:water (50:50, v/v), instead of 100% ethanol, in order to overcome low solubility of water-soluble antioxidant compounds of some cereals. A reaction time of 30 min allowed plateau values to be reached during the antioxidant capacity measurement of cereal samples. The accuracy of the direct procedure was confirmed by measuring, in solid state, the antioxidant activity of pure phenolic compounds.The direct procedure gave results of total antioxidant capacities significantly higher than those determined by the traditional procedure (multiple extraction followed by alkaline hydrolysis) for most whole meal cereals, suggesting that such a procedure was not always sufficient to properly assess the antioxidant capacity of bound phenolic compounds in cereals. The proposed extraction-independent procedure for measuring antioxidant capacity of cereals will facilitate the inter-laboratory data comparison, the construction of reliable antioxidant capacity database and the screening of large sampling of cereals for their nutraceutical characteristics.  相似文献   

19.
Nejayote is the wastewater from the alkaline-cooking of maize and its solids are rich in dietary fiber (45.3%), calcium (5.7%) and ferulic acid (219 mg/100 g). Nejayote solids were used to develop a food additive (NS) consisting of 80% nejayote solids and 20% gluten. NS was incorporated at 3, 6 or 9%, in wheat flour to increase the dietary fiber, calcium, phenolics and antioxidant capacity of breads. The addition of 9% NS did not affect overall baking performance and bread quality but increased dietary fiber up to 54% in composite breads. Moreover, enriched breads contained about 745 times more free ferulic acid and increased approximately 70% their antioxidant capacity. Two slices of bread (64 g) supplemented with 9% of NS provided 29% of the recommended calcium intake. Thus, the NS could be used as a value-added food-ingredient for the preparation of composite bakery-products with improved dietary fiber, calcium, nutraceuticals and antioxidant properties.  相似文献   

20.
A simple and rapid procedure was developed for the direct measurement of the antioxidant capacity of cereals. It entails grinding of cereals, mixing with 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) reagent, centrifugation and measure of the absorbance. The ABTS reagent was dissolved in a mixture of ethanol:water (50:50, v/v), instead of 100% ethanol, in order to overcome low solubility of water-soluble antioxidant compounds of some cereals. A reaction time of 30 min allowed plateau values to be reached during the antioxidant capacity measurement of cereal samples. The accuracy of the direct procedure was confirmed by measuring, in solid state, the antioxidant activity of pure phenolic compounds.The direct procedure gave results of total antioxidant capacities significantly higher than those determined by the traditional procedure (multiple extraction followed by alkaline hydrolysis) for most whole meal cereals, suggesting that such a procedure was not always sufficient to properly assess the antioxidant capacity of bound phenolic compounds in cereals. The proposed extraction-independent procedure for measuring antioxidant capacity of cereals will facilitate the inter-laboratory data comparison, the construction of reliable antioxidant capacity database and the screening of large sampling of cereals for their nutraceutical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号