首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
籽粒硬度是小麦品质评价的重要指标。为挖掘控制小麦籽粒硬度的重要基因/位点,以国内外171个小麦品种组成的自然群体为材料,在4个环境下利用小麦90K SNP芯片对籽粒硬度进行全基因组关联分析(genome-wide association study, GWAS)。171个小麦品种籽粒硬度变异系数为56.59%~66.80%,相关系数为0.88~0.92。GWAS结果表明,共检测到20个与小麦籽粒硬度显著相关的SNPs,其中,14个SNPs(7个位点)在2个及以上环境中能被检测到,分别位于1A、1B、1D、2A、5A和7A染色体上,可解释6.76%~11.79%的表型变异。表型贡献率超过10%的SNPs有4个(3个位点),分布在1D、2A和5A染色体上,其中,1D染色体上的标记wsnp_Ku_c19622_29138795在3个环境中能被检测到,可解释9.08%~11.79%的表型变异;2A染色体上的标记Excalibur_c12675_1789在4个环境中均能被检测到,可解释9.10%~10.86%的表型变异;5A染色体上的标记wsnp_Ra_c24707_34262900和BS00041219_51在2个环境中能被检测到,可解释6.76%~10.35%的表型变异。在所有环境下均与小麦籽粒硬度显著相关的位点有4个,分别位于1A、1B、2A和7A染色体上。  相似文献   

2.
小麦抽穗期QTL及其与环境的互作   总被引:3,自引:0,他引:3  
为筛选稳定表达的小麦抽穗期QTL用于辅助选择,以旱选10号×鲁麦14的DH群体为试材,在四种环境下对抽穗期进行QTL。结果表明,该DH群体抽穗期呈连续性分布,表现为多基因控制的数量性状。四种环境下共检测到6个抽穗期加性QTLs,分别位于1B、1D、4D、6B、7B、7D染色体上,LOD值为3.13~10.88,贡献率在1.57%~6.72%之间,其中QHd-1D-1和QHd-7B与环境具有互作效应。共检测到10对上位性QTL位点,互作效应值为-0.39~0.423,表型贡献率在1.39%~4.86%之间,其中4对上位性位点与环境具有互作效应。  相似文献   

3.
Diuraphis noxia Kurdjumov is an aphid pest that hampers the global production of wheat (Triticum aestivum L.). Infestation of wheat by D. noxia reduces crop yield and sometimes leads to the death of susceptible cultivars. To date resistant cultivars have been used to control infestations. However, the development of resistance-breaking aphid biotypes is complicating this management strategy. This study aimed to ascertain the effect that 25 mM potassium phosphate (K3PO4) treatment has on inducing resistance in wheat against D. noxia. The effects of potassium phosphate on induced resistance against D. noxia were determined using gene regulation and enzymatic levels of lipoxygenase (EC 1.13.11) and phenylalanine ammonia lyase (EC 4.3.1.24). The results indicated that the treatment of both susceptible (Scheepers) and resistant (Tugela DN) wheat cultivars with potassium phosphate induces genes differentially. A phenotypic study showed delayed development and less severity of symptoms with decreased numbers of aphids feeding on plants treated with potassium phosphate in comparison with untreated plants for both resistant and susceptible cultivars. The results from the gene expression and enzyme activity studies indicated that both of the induced systemic resistance-linked genes were similarly regulated after potassium phosphate treatment. The data strongly support treatment of wheat with potassium phosphate to induce tolerance against D. noxia.  相似文献   

4.
Phenolic acids are major components of cell walls in wheat and have important implications on human health as antioxidants with anti-tumor activity. Our objectives were to identify phenolic acid genes in wheat by single nucleotide polymorphisms (SNPs) detected within the coding sequences of candidate genes, and to identify chromosomal regions associated with single phenolic acids and total soluble phenolic compounds. A set of candidate genes involved in the biosynthesis of hydroxycinnamic acid derivatives were identified by comparative genomics. SNPs found in the coding sequences of six genes (PAL1, PAL2, C4H, C3H, COMT1 and COMT2) were used to determine their chromosomal location and accurate map position on two reference consensus linkage maps. The genome-wide association study (GWAS), based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs, detected 22 quantitative trait loci (QTL) distributed on almost all durum wheat chromosomes. Two QTL for p-coumaric acid were coincident with the phenylalanine ammonia-lyase (PAL2) and p-coumarate 3-hydroxylase (C3H) genes on chromosome arms 2AL and 1AL, respectively. The availability of candidate gene-based markers can allow elucidating the mechanism of phenolic acids accumulation in wheat kernels and exploiting the genetic variability of phenolic acids content for the nutritional improvement of wheat end-products.  相似文献   

5.
为给小麦穗部性状标记辅助选择提供可供选择的分子标记,并进一步对小麦穗部相关性状QTL进行精细定位及相关基因克隆,利用普通小麦Heyne×Lakin杂交F2代单粒传获得的145个F6代重组自交系(recombinant inbred line,RIL)群体,构建了含有2 210个标记(2 068个SNP标记和142个SSR标记)的总长度为2 139.35cM的遗传连锁图谱,并利用该图谱对小麦穗部性状(穗长、小穗数、穗密度)进行了QTL分析。结果表明,共检测出16个加性QTL,其中,与穗长相关的QTL有6个,分布在2A、2D、3B、4D、5A和7D染色体上,可解释表型变异7.58%~15.94%;与小穗数相关的QTL有4个,分布在1A、4A和7D染色体上,可解释表型变异7.28%~14.78%;与穗密度相关的QTL有6个,位于4D、5A和6B染色体上,可解释表型变异5.60%~20.06%。  相似文献   

6.
为了明确新疆冬春麦区小麦春化和光周期基因的分布特点,利用STS标记对185份品种(系)的重要春化基因Vrn-A1、Vrn-B1、Vrn-D1、Vrn-B3和光周期基因Ppd-D1位点的等位变异组成进行了检测和分析。结果表明,在新疆小麦品种中,春化和光周期基因位点显性等位变异分布频率不同。含有春化显性等位变异Vrn-A1的品种47个,占供试品种(系)的25.4%;Vrn-B1为43个,占23.3%;Vrn-D1为38个,占20.5%;Vrn-B3位点不存在显性等位变异。春化显性等位变异Vrn-A1、Vrn-B1和Vrn-D1在冬、春性小麦内的分布比例也不同。在春性小麦品种(系)中,显性等位变异Vrn-A1出现的频率较高(55.3%);其次为Vrn-B1,占50.6%;Vrn-D1占44.7%。在冬性小麦中,仅有显性等位变异Vrn-B1出现,占2.0%。在光周期基因Ppd-D1位点,80.0%的品种(系)携带光不敏感显性等位变异Ppd-D1a;其中在春性和冬性小麦品种(系)中,Ppd-D1a出现的频率分别为83.5%和77.0%。新疆小麦品种(系)中,存在11种春化和光周期基因显性等位变异组合。  相似文献   

7.
为发掘小麦旗叶性状相关基因位点,以384个小麦品种(系)为材料,对2个年份获得的旗叶长、宽、面积、长宽比和55K SNP芯片分型数据进行全基因组关联分析。结果发现,共检测到60个与旗叶性状显著关联的SNP,分布于除了1D、2A、4D和6D外的17对染色体上,解释表型变异的4.11%~9.70%,平均为5.64%。与旗叶长、宽、面积、长宽比相关的位点分别有12、24、18和16个,其中10个SNP为多性状相关位点。旗叶长相关SNP中,7D染色体上的3个SNP(AX-110826147、AX-111061288和AX-111843581)与2个年份旗叶长及其平均值均显著相关,1个SNP(AX-108882010)与2018年旗叶长及2个年份平均值均显著相关,这4个SNP位于7D染色体63.48~67.45 Mb区段,SNP标记间R2的平均值为0.78(P<0.000 1),呈现较大的连锁不平衡。遗传效应分析发现,该区段存在8种单倍型,其中单倍型III和IV在2个年份的旗叶长基本一致,分别为18.30和18.20 cm,高于其他6种单倍型的旗叶长;这2种单倍型分别占供试材料的40.36%和2.08%,可能是一个新的控制旗叶长的基因位点。  相似文献   

8.
铁结合蛋白(Ferritin,Fer)参与干旱胁迫应答反应,开发Fer基因抗旱相关的分子标记可为抗旱小麦品种选育提供依据。本研究依据2个强抗旱性和2个弱抗旱性小麦品种1A染色体上铁结合蛋白基因(TaFer-A1)序列的差异,开发TaFer-A1基因抗旱相关的分子标记,用150份萌发期抗旱性不同的小麦品种(系)对标记的有效性进行验证。克隆序列比对发现,TaFer-A1基因在4份抗旱性极端品种间仅存在7个变异位点,包括6个SNP位点和1个3bp碱基Del/Ins位点,其中仅在基因第1个内含子区域的3个连续碱基TCT的Del/Ins位点变异与4份品种抗旱性的表型相对应,而其余6个SNP位点在强与弱抗旱性品种之间随机发生。根据两组抗旱性极端品种间TCT碱基的差异,设计1对引物开发出了分子标记FerA1i-ntr1。该分子标记在2个强抗旱性品种中扩增出了167bp特异性条带,定名为TaFer-A1a等位变异;在2个弱抗旱性品种中扩增出了170bp特异性条带,定名为TaFer-A1b等位变异,表明FerA1i-ntr1为共显性标记。在分子标记FerA1i-ntr1检测的150份小麦品种(系)中,有73份被检测为TaFer-A1a等位变异类型,平均相对发芽率为70.1%;77份被检测为TaFer-A1b等位变异类型,平均相对发芽率为55.1%。TaFer-A1a等位变异类型品种(系)的平均相对发芽率极显著高于TaFer-A1b等位变异类型的(P<0.01),说明该共显性标记FerA1-intr1可用于小麦抗旱性的鉴定和筛选,也表明TaFer-A1基因与小麦抗旱性有关。  相似文献   

9.
小麦茎基腐病和赤霉病抗源筛选及关联SNP位点分析   总被引:1,自引:0,他引:1  
小麦茎基腐病(crown rot,CR)和赤霉病(Fusarium head blight,FHB)是由镰孢菌引起的两种主要的小麦病害。为筛选对CR和FHB的优异抗源、发掘抗病基因,从1 000多个来自世界各地的小麦种质中筛选了311个核心种质,对其进行CR苗期和成株期抗性及FHB抗性鉴定和评价,并利用全基因组关联分析(GWAS)鉴定与CR和FHB抗性相关位点。结果筛选出4个种质(Cimrmanova、济南13、GHABAGHEB、秃芒麦)具有优良的CR抗性;12个种质(陇春8号、中麦175、鲁麦5号、潍麦6号、皖麦50、Reeves、石家庄8号、西农928、山麦、SAFI-1/ZEMAMRA-1、平阳181和石家庄54)具有优良的FHB抗性;5个种质(山前麦、陇春8号、内江31、聊麦16和淮麦22)对CR和FHB均表现一定的抗性,尤其是陇春8号对CR成株抗性和FHB抗性水平均达到R级,表明该种质对两种病害兼具优良抗性。通过GWAS分析发现,在1A和6B染色体上有6个SNPS与CR-SR抗性显著相关;在1A、1B、3A、3B、6A、6B和6D染色体上有15个SNPS与CR-APR抗性显著相关;在5A、7A和7B染色体上有13个SNPS与FHB 抗性显著相关。本研究结果为小麦抗CR和FHB基因的定位和育种奠定了基础。  相似文献   

10.
小麦产量性状的QTL分析   总被引:16,自引:2,他引:14  
为寻找更多与小麦产量性状相关的数量性状位点(QTL),利用江苏地方品种望水白与墨西哥小麦品种Alondra杂交构建的重组自交系群体(104个家系),在3个试验环境下进行了单株有效穗数、主穗粒数、单穗粒数和千粒重4个性状的QTL分析,结果在5A染色体上检测到与单株有效穗数相关、可以解释10.3%~18.8%表型变异的QTL1个;检测到与主穗粒数相关的QTL8个,分别位于染色体1B、1D、3B、4A、5D、6B上和连锁群4上(未知具体染色体归属),单个QTL可以解释9.9%~19.9%的表型变异;检测到与单穗粒数相关的QTL11个,分别位于染色体1B、1D、2A、2B、3B、4A、5D、6B和7A上,单个QTL可解释7.5%~43.4%的表型变异;检测到与千粒重相关的QTL5个,分别位于2A、2B、3B、4D和7A染色体上,单个QTL可解释9.6%~25.7%的表型变异。获得的QTL可以用于分子标记辅助育种。  相似文献   

11.
《Field Crops Research》1999,63(1):87-98
Field experiments were carried out to study grain yield, zinc (Zn) efficiency and concentrations of Zn in shoot and grain of 37 bread wheat (Triticum aestivum) and three durum wheat (Triticum durum) cultivars grown in a Zn-deficient calcareous soil with (23 kg Zn ha−1), and without, Zn fertilization in 1993–1994 and 1994–1995. The same Zn-deficient soil was used in greenhouse experiments to study shoot dry weight, Zn efficiency and shoot Zn concentrations of 21 bread and three durum wheat cultivars (same cultivars used in the field experiments). Zinc fertilization of cultivars in the field enhanced grain yield on average by 30% in both years. Increases in grain yield to Zn fertilization varied substantially between cultivars from 8% to 76%. Accordingly, there was large variability in Zn efficiency of cultivars, expressed as the ratio of grain yield or shoot dry-matter yield produced under Zn deficiency compared to that under Zn fertilization. On average, Zn efficiency values ranged from 57% to 92% for grain yield in field experiments and from 47% to 83% for shoot dry weight in greenhouse experiments. Most of the cultivars behaved similarly in their response to Zn deficiency in the field and greenhouse. The cultivars selected from local landraces had both, a high Zn efficiency and high yield under Zn-deficient conditions. The bread wheat cultivars, improved for irrigated conditions, had generally low Zn efficiency and low yield, both in the field and greenhouse. All durum wheat cultivars in this study also showed low levels of Zn efficiency, grain yield and shoot dry weight under Zn deficiency. Overall, there was no relation between Zn efficiency values and Zn concentrations in grain or shoot dry matter. The results presented here demonstrate the existence of substantial variation in Zn efficiency among wheat cultivars, particularly bread wheat cultivars, and suggest that wheat landrace populations are a valuable source of genes to improve high Zn efficiency of wheat for Zn-deficient soils.  相似文献   

12.
GAMyb基因编码蛋白作为GA信号途径的转录激活因子,对促进植物种子的萌发具有重要作用。为探讨GAMyb基因是否为导致小麦不同休眠特性的又一个原因,利用GAMyb基因在小麦3A、3B和3D染色体上的基因组序列设计了基因特异性引物,对不同休眠特性的白粒小麦中TaGAMyb-B基因的等位变异和转录本的表达特性进行了研究。结果表明,TaGAMyb-B基因在不同休眠特性的材料中存在SNPs和Indel的序列差异。根据不同休眠特性小麦材料TaGAMyb-B基因的序列差异,两个新的等位变异TaGAMyb-Ba和TaGAMyb-Bb被命名。进一步研究发现,两种不同等位变异的小麦材料在种子发育的不同时期TaGAMyb-B基因表达水平存在差异,说明TaGAMyb-B基因在不同休眠特性小麦材料中的等位变异影响了其表达。  相似文献   

13.
High temperature has a negative impact on wheat grain quality and reduces market value. Emmer wheat (Triticum dicoccon Schrank), one of the earliest domesticated wheat species, is a source of genetic diversity for the improvement of heat and drought tolerance in modern wheat. However, the potential of emmer wheat for the improvement of grain physical quality under high temperature stress is little studied. A diverse set of 184 emmer-based hexaploid lines was developed by crossing emmer wheat with hexaploid wheat and backcrossing once to hexaploid wheat. These materials, seven hexaploid recurrent parents and seven commercial cultivars, were evaluated at two times of sowing (E1 and E2) in the field, in 2015–2016. The materials were genotyped using a 90 K SNP platform and these data were used to estimate the contribution of emmer wheat to the progeny. Significant phenotypic and genetic variation for grain physical quality traits including protein content and test weight was observed. High temperature significantly increased protein content and decreased test weight. Large scale field phenotyping identified emmer progenies with improved grain characteristic compared to their respective parents and commercial cultivars in both environments. A few families consistently produced higher trait means across environments compared to their recurrent parents. The emmer wheat parent contributed between 1 and 37% of the genome in emmer-based genotypes. Selected emmer derived lines with superior protein content and test weight, tended to have a greater genetic contribution from the emmer parent, ranging from 12 to 37% and 7–37% in E1 and E2, respectively. It was concluded that new genetic variation for seed traits, such as protein content and test weight, can be introduced to hexaploid wheat from emmer wheat. The newly developed emmer derivatives identified with enhanced grain quality under high temperature stress can potentially be used to improve grain quality through breeding.  相似文献   

14.
Traditional instruments used to evaluate dough and/or gluten rheological properties do not provide unambiguous separation of elastic and viscous behaviors. Recovery after shear creep and cyclic large deformation cyclic tensile testing were used here to decouple elastic and viscous effects. A large variation in the recoverable shear strain (∼7.2% to ∼28%) was seen for glutens from 15 U.S. popular common wheat cultivars with varying HMW subunits. Sedimentation values ranged from 29 to 57 ml for 12 hard wheat cultivars and 15 to 22 ml for three soft wheat cultivars. The tensile force at 500% extension ranged from 0.12 to 0.67 N for hard wheat glutens and from 0.10 to 0.20 for soft wheat glutens. However, the recoverable work after large extension was less than 40% of the total work of extension. In addition, recoverable work in tensile testing was highly correlated with the total work of extension (r2 = 0.97) and mixograph mix times (r2 = 0.81). Good to excellent bread volume was obtained for several cultivars from this sample set. This suggests that optimizing water absorption for mixing doughs to achieve maximal bread volume compensates for the wide range of viscoelastic behaviors of gluten.  相似文献   

15.
为发掘与小麦穗部性状相关的QTL,利用普通小麦BS366与白玉149杂交组合培育的73个DH群体为材料,构建了一套包含232个杂交组合的小麦永久F2群体,基于90K SNP芯片标记构建了高密度遗传图谱,并利用该图谱对2个环境下的穗长、小穗数、穗粒数和千粒重进行QTL定位.结果发现,所构建的图谱总长19 533 cM,含...  相似文献   

16.
Wheat grain hardness is one of the most important phenotypes related to milling, baking and noodle making. Either a mutation of the Puroindoline-a (Pina) gene or Puroindoline-b (Pinb) gene results in hard grain texture. A deletion mutation of Pina (Pina-D1b) is widely distributed among common wheat cultivars. Although North/South American and Australian cultivars and their descendants have a 15-kbp deletion in common, two new types of deletion mutation were found among Asian wheat cultivars. A 4.4-kbp deletion was found in one Korean and two Chinese wheat cultivars beginning at position +371 within the Pina coding region. The other, a 10.4-kbp deletion, was found in three Chinese and nine Japanese wheat cultivars, including five Japanese landraces, beginning at position −5112. It caused the deletion of the full-length Pina gene. These findings suggest that Asian wheat cultivars are genetically distinct from those in other regions. The 4.4-kbp and 10.4-kbp deletion mutants were designated as Pina-D1r and Pina-D1s, respectively.  相似文献   

17.
Knowledge on three-dimensional (3D) movement and distribution of Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) in grain bulks assists in the prediction of their distribution inside a bin. The following experiments were conducted to determine the 3D dispersal patterns of adult C. ferrugineus in wheat with 14.5% moisture content: 1) at various insect densities (0.35, 1.77 and 3.53 A/kg (adults/kg) at 20°C and in 24 h movement period; 2) in different movement periods (6, 24, and 72 h) at 20°C and 0.35 A/kg insect density; and 3) at different temperatures (20, 30 and 35°C) at 0.35 A/kg density in 24 h movement period. To create the densities of 0.35, 1.77, and 3.53 A/kg, 100, 500, and 1,000 adults were introduced in about 285 kg wheat, respectively. The 285 kg of wheat was kept in 343 mesh cubes, which in turn were packed in a wooden box. The introduced adults were counted at the end of the movement periods. Adult C. ferrugineus tended to move downward from the point of introduction, and then diffused throughout the grain bulk. The effects of insect densities, movement periods, and temperatures on the dispersion pattern of insects were similar in 1D columns, 2D chambers, and 3D grain bulk.  相似文献   

18.
Traditional instruments used to evaluate dough and/or gluten rheological properties do not provide unambiguous separation of elastic and viscous behaviors. Recovery after shear creep and cyclic large deformation cyclic tensile testing were used here to decouple elastic and viscous effects. A large variation in the recoverable shear strain (∼7.2% to ∼28%) was seen for glutens from 15 U.S. popular common wheat cultivars with varying HMW subunits. Sedimentation values ranged from 29 to 57 ml for 12 hard wheat cultivars and 15 to 22 ml for three soft wheat cultivars. The tensile force at 500% extension ranged from 0.12 to 0.67 N for hard wheat glutens and from 0.10 to 0.20 for soft wheat glutens. However, the recoverable work after large extension was less than 40% of the total work of extension. In addition, recoverable work in tensile testing was highly correlated with the total work of extension (r2 = 0.97) and mixograph mix times (r2 = 0.81). Good to excellent bread volume was obtained for several cultivars from this sample set. This suggests that optimizing water absorption for mixing doughs to achieve maximal bread volume compensates for the wide range of viscoelastic behaviors of gluten.  相似文献   

19.
Grain hardness is one of the most important quality characteristics of cultivated bread wheat (Triticum aestivum L.). A large deletion in the puroindoline a (Pina) gene or single nucleotide polymorphisms (SNPs) in the puroindoline b (Pinb) gene results in hard grain texture. So far, nine Pina alleles (Pina-D1aPina-D1b, Pina-D1kPina-D1q) and seventeen Pinb alleles (Pinb-D1aPinb-D1g, Pinb-D1pPinb-D1ab) have been identified in bread wheat. The major Pina and Pinb alleles identified in hard wheat cultivars are Pina-D1b, Pinb-D1b, Pinb-D1c and Pinb-D1d. In this study, a three-primer PCR system was employed to develop nine co-dominant STS markers for genotyping Pina-D1a and Pina-D1b, whereas temperature-switch (TS) PCR was used to develop six co-dominant SNP markers for genotyping the Pinb-D1a, Pinb-D1b, Pinb-D1c and Pinb-D1d alleles. These STS and TS-PCR markers were used to verify the grain hardness genotype of 100 wheat cultivars. The reliability and genotyping accuracy of TS-PCR markers were confirmed through sequencing of PCR products and a comparison with previously published results. Therefore, STS and TS-PCR markers offer a simple, cost-effective and reliable method for high-throughput genotyping Pina and Pinb alleles to select grain hardness in wheat quality breeding programs and for wheat market classification.  相似文献   

20.
为了解西藏半野生小麦粒型性状的QTL差异,以西藏半野生小麦Q1028和郑麦9023(ZM9023)杂交后获得的重组自交系群体为试验材料,于2012、2013和2015年分别在四川农业大学温江试验田种植,对其粒型性状(粒长、粒宽、粒厚、长宽比、籽粒大小)进行遗传分析。结果表明,重组自交系群体粒型性状均呈正态分布,对籽粒大小的影响依次为粒宽、粒厚、粒长。在三个年度环境中,总共检测到33个控制小麦粒长、粒宽、粒厚、籽粒大小和长宽比的QTL位点。其中,13个控制粒长的QTL分布在1B、2B、2D(3个)、3A、4A、5B、6A、6B、7A(3个)染色体上,每个位点对表型变异的贡献率为5.37%~11.57%。6个控制粒宽的QTL分布在2B、2D、4A、5B、6A、7A染色体上,可以解释表型变异的6.43%~12.69%。3个控制粒厚的QTL位于2B和2D(2个)上,表型贡献率分别为12.75%、10.00%和8.49%。9个控制籽粒大小的QTL分别位于2B、2D(2个)、4A、5B、6A、7A(3个)染色体上,单个QTL可解释6.26%~14.69%的表型变异。另外,本研究还在2B、2D、4A、5B、6A、7A染色体上共发现7个QTL富集区,这些染色体上的QTL和富集区与籽粒性状密切相关,在育种中值得关注。其中,2B染色体上XwPt-3561~XwPt-6932分子标记区间内有控制粒长、粒宽、粒厚、籽粒大小的遗传位点,6A染色体上标记wpt-730109与wpt-7063之间有控制增加籽粒宽度和籽粒大小的位点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号