首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to examine fertility at foal heat and its relevance to body condition score (BCS) and blood nutritional metabolites in Thoroughbred mares. Thoroughbred mares foaled from 2006 to 2009 were included and classified into two groups: group C (conception; n = 34), which included mares that conceived during foal heat (within 3 weeks after foaling), and group NC (nonconception; n = 39), which included mares that did not conceive despite mating during their foal heat. BCS and blood samples were obtained 1 month before the expected foaling date and 1, 2, 3, and 4 weeks after foaling. Total protein (TP), albumin (Alb), blood urea nitrogen (BUN), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), total cholesterol (T-Cho), triglyceride (TG), nonesterified fatty acid (NEFA), calcium (Ca), inorganic phosphate (iP), and magnesium (Mg) levels were measured using an automatic clinical chemistry analyzer. Repeated measures analysis of variance (ANOVA) and Student t-test were used to examine the differences between the two groups. No significant differences were observed between the two groups in any of the above-mentioned parameters at 1 month before the expected foaling date (Student t-test). Furthermore, no significant differences were observed between the two groups in serum levels of TP, Alb, AST, GGT, T-Cho, NEFA, Ca, and Mg and BCS at postpartum periods (repeated measures ANOVA). Serum TG, BUN, and iP levels remained lower in group NC than in group C after foaling (P < .05, repeated measures ANOVA). Although the mechanism by which these nutritional factors affect a decline in reproductive performance remains unclear, our results suggest that blood biochemical tests can detect potential imbalances in nutrition and metabolism, even if there is no difference in BCS.  相似文献   

2.
Apart from functional abnormalities, genetic structural disorders and management problems endometritis is one of the major causes of infertility or subfertility in mares. However, the causes of postbreeding endometritis in foal heat have not been clearly resolved to date. The aim of this study was to search for the relationship between neutrophil activity, acute-phase proteins, and oxidative status to indicate the parameters, which can influence fertility in cold-blooded mares in foal heat. The blood for the experiment was collected from 16 cold-blooded mares at five time points: 6–8 days before parturition, 24 hours after parturition, at the first postpartum breeding on the ninth day, 24 hours after breeding, and 48 hours after ovulation. The obtained samples were assigned for hematological tests, assays of neutrophil activity, plasma malondialdehyde (MDA), and fibrinogen concentrations. We estimated that in susceptible mares during persistent postbreeding endometritis, neutrophil activity increased together with MDA and fibrinogen plasma level. Elastase release in resistant mares before parturition was 48.91 ± 1.75%, whereas in susceptible animals, the value reached 45.57 ± 1.9% of the maximal release. Myeloperoxidase release in resistant mares before parturition reached 13.95 ± 2.1%, then increased at three consecutive measurements, and returned to a value from before parturition at the last measurement. Myeloperoxidase level in susceptible mares was slightly lower than in resistant ones, then these values augmented at all measurements, reaching the maximum at the fourth one. The obtained results may help to indicate the predisposition to persistent postbreeding endometritis in cold-blooded mares bred at foal heat.  相似文献   

3.
The study involved 46 healthy purebred Arabian mares exhibiting regular oestrous cycles that underwent artificial insemination (AI). Pregnancy was detected ultrasonographically (US) in 40 mares. In 15 mares in foal, early embryonic death (EED) was observed during the pregnancy days 14-21. Blood for determinations of serum acute phase proteins (SAA and Hp) and progesterone (P4) was sampled 12-24 h before ovulation and the first insemination, at 12, 24, 72, 96 h and on day 7, 10, 14, 21, 35 and 55 after ovulation. The results revealed that in 25 mares without EED, the serum levels of P4, SAA and Hp were within physiological limits; in 15 mares with EED, the levels of SAA and Hp were significantly increased. In seven mares with EED, high levels of SAA and Hp were already found before ovulation and at 12, 24, 72, 96 h as well as on day 7 and 10 post-ovulation, whereas the level of P4 was normal for early pregnancy. In the remaining eight mares with EED, increased levels of SAA and Hp were found at 72 h after ovulation and maintained until day 55. In this group, the level of P4 decreased since 96 h after ovulation. Determinations of SAA, Hp and P4 in mares in early pregnancy (EP) are useful for monitoring normal development of pregnancy and for diagnosis of subclinical genital inflammations, which may lead to EED.  相似文献   

4.
Sixteen estrous cycles from 10 cyclic mares were randomly assigned to a control or sulpiride group (n = 8 each). All mares received 1,500 IU of human chorionic gonadotropin (hCG) (hour 0) during estrus with a follicular diameter ≥32 mm. Mares were scanned every 12 hours until ovulation. In the treatment group, beginning at hour 0, each mare received 1.5 mg/kg of sulpiride every 12 hours intra-muscularly until ovulation or formation of a luteinized unruptured follicle (LUF). Concentrations of luteinizing hormone (LH) and prolactin (PRL) were measured by radioimmunoassay. In each group, there were 10 preovulatory follicles for the eight cycles. The ovulation rate (9/10, 90%) was similar in the control and sulpiride groups. Two mares formed an LUF, which was first detected at hours 48 and 72 for the sulpiride and control mares, respectively. The interval from hCG to ovulation was 49.5 ± 11.1 and 43.5 ± 5.8 hours, for the control and sulpiride groups, respectively (P > .5). LH followed the typical preovulatory surge pattern, with no difference between groups (P > .5). Sulpiride administration increased PRL concentration in treated mares at 24 (P < .1), 36, and 48 hours (P < .05) after treatment. In conclusion, sulpiride administration every 12 hours increased PRL concentration in treated mares after 24 hours of the beginning of treatment. However, at this time window and concentration, PRL did not have any effect on ovulation. The control mare that developed an LUF had a PRL concentration similar to other ovulatory control mares (always ≤10 ng/mL).  相似文献   

5.
The Criollo horse industry requires more efforts toward a better understanding of breed characteristics and physiology; few studies have been conducted in Criollo horses to fulfill this demand. Toward this aim, 70 Criollo mares (between 3 and 28 years of age) underwent physiologic evaluation of the length of gestation, occurrence of foal heat, and interval to postpartum ovulation. Gestation length in the 70 mares was 335.6 ± 10.5 days, varying from 312 to 364 days. The mean (±SD) interval from parturition to first ovulation of 42 mares that foaled between September and December of 2005 and 2006 was 19.9 ± 14.0 days. Eighty-three percent of the mares had an interval to foal heat ovulation shorter than 20 days (35/42). The mean (±SD) parturition to ovulation interval of these mares was 14.2 ± 3.0 days.  相似文献   

6.
Two studies were conducted to determine efficacy of cabergoline for suppressing prolactin (PRL) and the possible effects on vernal transition in mares. In experiment 1, six mares each received either vehicle or cabergoline (5 mg, intramuscularly) every 10 days for 12 treatments beginning February 4, 2013. Blood samples were drawn regularly, and mares were challenged with sulpiride periodically to assess PRL suppression. Weekly hair samples were obtained to determine shedding. Prolactin was suppressed (P < .05) by cabergoline, but suppression waned in spring. There was no effect (P > .05) of treatment on day of first ovulation, luteinizing hormone, or follicle stimulating hormone. Hair shedding was generally suppressed (P = .05). In 2014 (experiment 2), eight of the same 12 mares were used in a similar experiment to determine if the rise in PRL observed in experiment 1 was due to refractoriness to cabergoline or perhaps another factor. Treatment began on April 6, 2014, corresponding to the increase in PRL in treated mares in experiment 1. Mares were treated with cabergoline or vehicle until June 5. Prolactin was suppressed (P < .05) by cabergoline, and the pattern of apparent escape from suppression was similar to year 1. We conclude that (1) cabergoline at this dose alters hair shedding but does not alter the time of first ovulation in mares and (2) relative to our previous reports of cabergoline treatment in the fall, there is a seasonal effect on the ability of this dose of cabergoline to suppress unstimulated PRL secretion.  相似文献   

7.
The purpose of this study was to investigate the changes in serum concentrations of prolactin (PRL), progestagens, and estradiol-17β and biochemical parameters during peripartum in an agalactic mare, as well as to study the periparturient indices of the foal. A 4-year-old Thoroughbred, primiparous, pregnant mare was diagnosed as agalactic from clinical conditions such as absence of observable udder development and weight loss of her foal after parturition. Serum PRL concentrations of the agalactic mare during prepartum tended to be lower than those of the control mares (19.5 ng/mL and 67.0 ± 15.0 ng/mL on the day of parturition, respectively). The progestagens and estradiol-17β concentrations were not markedly different between the agalactic mare and the control mares. Concentrations of γ-glutamyl transferase of the agalactic mare were higher than those of the control mares (P < .05). Although the serum immunoglobulin G concentrations of the foal of the agalactic mare after 24 hours of age were lower than those of the foals of the control mares (P < .05), all periparturient indices regarding the agalactic mare were considered to be within the normal range. In contrast, insufficient udder development and milk production was observed in the agalactic mare through the pre- and postpartum periods. We have ruled out the known causes for agalactia in mares based on other parameters, clinical symptoms, and nutritional causes. Clinical symptoms and PRL parameters in this case report are consistent with the category of agalactia in mares of unexplained causes, and we have determined additional blood parameters associated with agalactia in mares that are consistent with this category.  相似文献   

8.
Ultrasonographic pregnancy records of 195 mares from six Thoroughbred stud farms, over a period of 7 years were retrospectively analysed to assess the effect of various factors on embryonic vesicle (EV) fixation pattern and pregnancy outcome. Of the total of 746 pregnancies analysed, significantly (p < 0.01) more EV fixations were evident in the right uterine horn than in the left (53.35% vs 46.65% respectively). There was no significant effect of either, the side of ovulation, or age of the mare, on the side of EV fixation. However, EV fixation, was significantly (p < 0.001) more likely to occur in the right uterine horn in maiden and barren mares (65.75% vs 57.45% respectively). The age and reproductive status of the mare as well as foal heat breeding failed to demonstrate a consistent effect on pregnancy loss relative to the side of EV fixation. In lactating and foal heat bred mares, EVs were significantly (p < 0.0001) more frequently established in the contralateral horn to the one from which the mare delivered her most recent foal. In lactating mares, significantly (p < 0.05) higher embryonic and pregnancy losses were observed in the ipsilateral horn. In conclusion, (a) side of EV fixation was (i) independent of the side of ovulation and mare age (ii) significantly (p < 0.001) affected by reproductive status, (b) neither age of mare nor reproductive status had any effect on pregnancy loss rates relative to the side of EV fixation and (c) in lactating mares the EV had a greater chance of fixation and survival in the horn contralateral to the one from which the mare delivered her most recent foal.  相似文献   

9.
The aim of the present study was to evaluate the correlation of age and heat cycle to determine reproductive efficiency in young and aged Thoroughbred mares bred on foal heat (FH) or on second heat (SH) after foaling. Embryo mortality (EmbM) was determined every time a mare was found open after a positive pregnancy diagnosis. Parturition to breeding interval, pregnancy rate (PregR) and EmbM rate were the dependent variables and the treatments were breeding on the FH or on SH. The cutoff age to obtain above-average probability for the EmbM was 10 years old. PregR in mares bred on FH was lower compared with SH (P < .01); however, it was neither affected by the age of mares (P > .05) nor by the age group of mares (P > .05). Regarding FH and SH, there was a difference in PregR in young mares (P < .01), unlike in aged mares (P > .05). EmbM rate was not different between mares bred on FH or SH (P > .05) although it was affected by age of mares (P < .01). EmbM was higher in oldest than young mares (P < .01). Aged mares bred on FH had a significantly higher EmbM rate compared with the young group also bred on FH (P < .01). In conclusion, the reproductive efficiency of Thoroughbred mares bred on FH is dependent of the age. Aged mares (≥10 years old) should be bred at their SH to reduce EmbM and improve reproductive performance.  相似文献   

10.
The aim of this study was to evaluate the effects of different treatments for induction and synchronization of oestrus and ovulation in seasonally anovulatory mares. Fifteen mares formed the control group (C), while 26 mares were randomly assigned to three treatment groups. Group T1 (n = 11) were treated with oral altrenogest (0.044 mg/kg; Regumate®) during 11 days. Group T2 (n = 7) was intravaginally treated with 1.38 g of progesterone (CIDR®) for 11 days. In group T3 (n = 8), mares were also treated with CIDR®, but only for 8 days. All mares received PGF2α 1 day after finishing the treatment. Sonographic evaluation of follicles, pre‐ovulatory follicle size and ovulation time was recorded. Progesterone and leptin levels were analysed. Results show that pre‐ovulatory follicles were developed after the treatment in 88.5% of mares. However, the pre‐ovulatory follicle growth was dispersal, and sometimes it was detected when treatment was not finished. While in mares treated with intravaginal device, the follicle was soon detected (1.5 ± 1.2 days and 2.3 ± 2.0 days in T2 and T3 groups, respectively), in T1 group, the pre‐ovulatory follicle was detected slightly later (3.9 ± 1.6 days). The interval from the end of treatment to ovulation did not show significant differences between groups (T1 = 13.1 ± 2.5 days; T2 = 11.0 ± 3.6 days; T3 = 13.8 ± 4.3 days). The pregnancy rate was 47.4%, similar to the rate observed in group C (46.7%; p > 0.05). Initial leptin concentrations were significantly higher in mares, which restart their ovarian activity after treatments, suggesting a role in the reproduction mechanisms in mares. It could be concluded that the used treatments may be effective for oestrous induction in mares during the late phase of the seasonally anovulatory period. Furthermore, they cannot synchronize oestrus, and then, it is necessary to know the reproductive status of mares when these treatments are used for oestrous synchronization.  相似文献   

11.
Timed artificial insemination (TAI) has boosted the use of conventional artificial insemination (CAI) by employing hormonal protocols to synchronize oestrus and ovulation. This study aimed to evaluate the efficiency of a hormonal protocol for TAI in mares, based on a combination of progesterone releasing intravaginal device (PRID), prostaglandin (PGF) and human chorionic gonadotropin (hCG); and compare financial costs between CAI and TAI. Twenty-one mares were divided into two groups: CAI group (CAIG; n = 6 mares; 17 oestrous cycles) and TAI group (TAIG; n = 15 mares; 15 oestrous cycles). The CAIG was subjected to CAI, involving follicular dynamics and uterine oedema monitoring with ultrasound examinations (US), and administration of hCG (1,600 IU) when the dominant follicle (DF) diameter's ≥35 mm + uterine oedema + cervix opening. The AI was performed with fresh semen (500 × 106 cells), and embryo was recovered on day 8 (D8) after ovulation. In TAI, mares received 1.9 g PRID on D0. On D10, PRID was removed and 6.71 mg dinoprost tromethamine was administered. Ovulation was induced on D14 (1,600 IU of hCG) regardless of the DF diameter's, and AI was performed with fresh semen (500 × 106 cells). On D30 after AI, pregnancy was confirmed by US. The pregnancy rate was 80.0% in TAIG and 82.3% in CAIG (p > .05). The TAI protocol resulted in 65% reduction in professional transport costs, and 40% reduction in material costs. The TAI was as efficient as CAI, provided reduction in costs and handlings, and is recommended in mares.  相似文献   

12.
The objective of this study was to compare the rate of ovulation when deslorelin and/or human chorionic gonadotropin (hCG) was administered in mares in both the transition period and the ovulatory season. A total of 200 Paint Horses, Quarter Horses, and crossbred mares were used during the transition season (July to September) and the ovulatory season (October to February) of the southern hemisphere. The animals were divided into four groups. In the control group (n = 72), mares received 1 mL of saline; in deslorelin group (n = 171), 1.5 mg of deslorelin was administered by intramuscular (IM) injection; in hCG group (n = 57), 1,667 IU of hCG was administered IV; and in hCG + deslorelin group (n = 438), 1.5 mg of deslorelin (IM) and 1,667 IU of hCG (IV) were administered. The drugs were administered after follicles ≥35 mm in diameter were identified and grade III uterine edema was observed. At 48 hours after application, ultrasonography was performed to detect ovulation. During the transition period, the ovulation rates were 4.3% (control), 78.6% (deslorelin), 50% (hCG), and 73.3% (hCG + deslorelin). During ovulatory season, the ovulation rates were 16.4% (control), 68.8% (deslorelin), 60% (hCG), and 73% (hCG + deslorelin). There was no significant difference (P > .05) in the ovulation rate between the groups or the periods, except that the control group was lower than all others. Furthermore, both hCG and deslorelin are viable options for inducing ovulation during the transition period before ovulation season.  相似文献   

13.
This study was designed to determine if prostaglandin F2α (PGF2α) when administered on d 6 post-ovulation in a low dose in the lumbosacral space (LSS) would induce luteolysis while minimizing side effects usually associated with intramuscular administration of this analogue in mares. A second objective was to determine if human chorionic gonadotropin (hCG) injected into the LSS would reduce time to ovulation in the mare. Ten normally cycling mares served as their own controls in a crossover design, receiving intramuscular injections of PGF2α(10 mg), intravenous injections of hCG (3000 IU) and injections of PGF and hCG at the acupuncture site (2 mg and 3000 IU, respectively), as well as sham injections of saline. Beginning 12 h after injection, mean progesterone concentrations were less (P<0.05) in PGF2α-treated mares than in mares receiving saline. Moreover, progesterone concentrations were similar (P<0.001) between both groups of mares receiving PGF2α. In addition, there was no difference (P>0.1) between mares receiving the acupuncture injection of PGF2α and the intramuscular injection in days to ovulation. However, duration and severity of side effects associated with PGF2α administration were dramatically decreased (P<0.01) when PGF2α was delivered to the acupuncture site compared to intramuscular delivery. The time to ovulation was similar (P>0.1) for mares receiving shams, or hCG. These data indicate that delivery of 2 mg of PGF2α in the LSS induces luteolysis and reduces the sweating and muscle cramping associated with PGF2α administration. There was no advantage to the delivery of hCG in the LSS.  相似文献   

14.
Mares are seasonally polyoestrous breeders. Therefore, the first ovulation of the season, following winter anoestrus, is the only cycle in which mares ovulate without the presence of an old CL from the previous cycle. The objective of this study was to compare the length of oestrous behaviour, and plasma progesterone concentrations during the early post-ovulatory period between mares after the first and second ovulation of the breeding season. Overall, 38 mares and 167 oestrous periods were used in the study. From those, 11 mares were used during the first and subsequent oestrous period to measure and compare the post-ovulatory rise in progesterone concentration, whereas all the mares were used to compare the length of the post-ovulatory oestrous behaviour between the first and subsequent cycles of the breeding season. The persistence of the post-ovulatory oestrus was longer (p < .001) following the first ovulation of the year (median of 52 h) compared with the subsequent ovulations (median of 36 h for second and later ovulations groups; n = 38 mares). The progesterone concentration at any of the four 8 h-intervals analysed (28, 36, 76 and 84 h post-ovulation) was lower (p < .01) following the first versus the second ovulation of the year. By 36 h post-ovulation the progesterone concentration of mares at the second ovulation of the year had passed the threshold of 2 ng/ml (2.1 ± 0.33 ng/ml), whereas in the first cycle it was 1.2 ± 0.13 ng/ml. In conclusion, mares had lower progesterone concentrations in their peripheral circulation and longer persistence of oestrous behaviour following the first ovulation of the year compared with the second and subsequent ovulatory periods of the breeding season.  相似文献   

15.
Embryo transfer was used in an equestrian teaching center in order to produce as many foals as possible from their preferred mares during a single breeding season. Embryo collection by uterine lavage was attempted in five donor mares on 25 occasions 6.5 days after ovulation. Sixteen of the collection attempts (64%) yielded a total of 17 blastocysts. Of these 17 embryos, 13 were immediately transferred transcervically into recipient mares that had ovulated within two days of the time of ovulation in the donors, three were frozen for later transfer, and one was lost. Eight of the freshly transferred embryos (61%) developed and were detected on ultrasonography on day 11.5; five of these continued to develop normally and gave rise to healthy foals (38%), but three were lost at 14.5, 22.5 and 24.5 days gestation. Two of the frozen embryos were judged viable when thawed the following year and produced one additional pregnancy after transcervical transfer. Thus the five donor mares have produced five foals and a sixth 90-day pregnancy1 with only a three-month interruption of their use for competition and teaching.

1While this paper was in press, the sixth pregnancy also terminated in the production of a healthy foal.

  相似文献   

16.
The aim of this study was to evaluate the effect of equine chorionic gonadotropin (eCG) at the end of progesterone (P4) treatment on follicular and luteal characteristics during transition period (TP) and reproductive breeding season (RP). A total of 13 crossbred mares were distributed in two experimental groups in the spring and summer (n = 26). The animals received intravaginal P4 (1.9 g) releasing device from D0 to D10. On removal of P4 device, the mares received 400 IU of eCG (eCG group) or saline solution (control group). Human chorionic gonadotropin (hCG; 1.750 IU) was administered (DhCG) as soon as ovulatory follicle (OF) ≥35 mm was detected. Ovarian ultrasonography was performed from D0 until 15 days after ovulation. Blood samples were collected on D0, D5, D10, DhCG, 9 days after ovulation (CL9D), and 13 days after ovulation (CL13D). P4 and estradiol concentrations were assessed by chemiluminescence. Data were compared by Tukey test at P < .05. Ovulation rate was similar (P = .096) between seasons (RP = 100%; TP = 70%) but occurred earlier (P = .015) in RP (34.8 ± 10.1 hours) compared with TP (42.0 ± 10.4 hours). Interactions between season and treatment were observed for OF diameter (mm) (RP/control = 36.2 ± 1.8ab; RP/eCG = 32.9 ± 2.8 b; TP/control = 32.2 ± 1.2 b; TP/eCG = 37.2 ± 1.9a; P = .004) and for corpus luteum (CL) diameter (mm) on CL13D (RP/control = 25.4 ± 3.5a; RP/eCG = 22.5 ± 1.8ab; TP/control = 21.6 ± 4.9 b; TP/eCG = 27.4 ± 4.3a; P = .023), although no differences were observed for serum P4 on CL13D (RP/control = 6.0 ± 3.1 ng/mL; RP/eCG = 5.8 ± 0.9 ng/mL; TP/control = 3.6 ± 2.7 ng/mL; TP/eCG = 5.1 ± 2.3 ng/mL; P = .429) or for day of structural CL regression (RP/control = 12.8 ± 1.9; RP/eCG = 12.1 ± 1.1; TP/control = 11.0 ± 1.7; TP/eCG = 13.2 ± 2.0; P = .102). The application of eCG at the moment of P4 implant removal seemed to increase the capacity of luteal maintenance during spring TP. However, eCG treatment was worthless during the breeding season.  相似文献   

17.
The objective of this study was to determine the effect of exogenous progesterone administration at ovulation and during the early development of the CL, on its future sensitivity to a single administration of PGF2a in mares and cows. Horse Retrospective reproductive data from an equine clinic in the UK during three breeding seasons were used. Mares were divided into: control group, cycles with single ovulations; double ovulation group cycles with asynchronous double ovulations; and PRID group: cycles with single ovulations and treatment with intravaginal progesterone device (CIDR) immediately after the ovulation. All mares were treated with d‐cloprostenol (PGF) at either: (i) 88 hr; (ii) 96 hr; (iii) 104 hr; or (iv) 112 hr after the last ovulation. Cattle A total of nine non‐lactating Holstein cows were used. All cows were administered PGF14 d apart and allocated to one of two groups control group GnRH was administered 56 hr after the second PGF administration. CIDR group CIDR was inserted at the same time of GnRH administration. All cows were administered PGF at 120 hr post‐ovulation. The complete luteolysis rate of mares with double ovulation (66.7%) and those treated with exogenous progesterone (68.4%) was significantly higher than the rate of mares with single ovulation (35.6%) at 104 hr. In the cow, however, the treatment with CIDR did not increase the luteolytic response in cows treated at 120 hr post‐ovulation. In conclusion, the degree of complete luteolysis can be influenced by increasing the concentration of progesterone during the early luteal development in mares.  相似文献   

18.
The expression of 12 different aquaporin subtypes in equine endometrium was examined at the mRNA and protein level. Endometrial samples were obtained during anoestrus, oestrus, 8, and 14 days after ovulation in non‐pregnant mares, and 14 days after ovulation in pregnant mares. Quantitative PCR revealed a time‐dependent pattern for all aquaporin subtypes examined except for AQP10 and 12. AQP3, 5 and 7 showed highest mRNA abundance 8 days after ovulation, while AQP0 and 2 were most abundant at Day 14 of the cycle in non‐pregnant mares. At 14 days of pregnancy, AQP1, 4, 8, 9 and 11 displayed highest expression levels. Western blot analysis confirmed protein expression of AQP0, 2 and 5. Immunohistochemistry localized protein expression to luminal and glandular epithelial and stromal cells. AQP0 staining intensity was highest in samples obtained on Day 14 of the oestrous cycle. AQP2 immunoreactivity seemed to be stronger in samples collected 14 days after ovulation from non‐pregnant animals, in particular luminal epithelial staining. Samples collected 8 days after ovulation from cyclic animals were characterized by intense AQP5 staining of glandular epithelium, predominantly in the deeper glands. Progesterone treatment of anoestrous mares did not enhance expression of AQPs, indicating that factors other than progesterone are required for the up‐regulation of certain AQP subtypes during dioestrus. In conclusion, it seems that an equine‐specific collaboration of aquaporin subtypes contributes to changes in endometrial fluid content occurring throughout the oestrous cycle and contributes to endometrial receptivity during early pregnancy in the mare.  相似文献   

19.
A retrospective study on the reproductive performance of 401 artificially inseminated trotter mares during six breeding seasons is presented. Mares, 279 post partum (PP) and 122 maiden and barren, or nonlactating (NL), were inseminated with fresh semen obtained from four fertile stallions of the same breed. Pregnancy rate (PR) of mares inseminated at the foal heat (182/253, 71.9%) was lower, but not significantly different, than the PR (22/26, 84.6%) of mares inseminated for the first time at the second post partum cycle and similar to the PR at the first and second cycle of NL mares (95/112, 77.8% and 25/33, 75.7%, respectively). PR of mares inseminated at the foal heat was higher, but nonsignificantly different, from PR of the post partum mares not pregnant after artificial insemination (AI) at foal heat and inseminated again at the following estrous cycle. The PR after AI at the foal heat was significantly higher than the PR when the AI was performed at the third or later cycle in NL mares (71.9% vs 22.2%, P<0.01). The estrus cycle/pregnancy ratio for the PP mares inseminated, for the first time at the foal heat or at the second heat and for NL mares was, respectively, 1.4, 1.2, 1.3 at first cycle and 1.4, 1.3 and 1.4 at the end of the season or when mares left the stud. The proportion of open mares at the end of the season or when leaving the stud was 7.1% (18/253), 3.8% (1/26) and 4.1% (5/122) for PP mares first inseminated at the first or second post partum cycle and for NL mares, respectively; the total rate of open mares was 6% (24/401). The foaling rate (FR) following conception at the foal heat (72.1%) was not statistically different from the FR following conception at any other cycle (50–100%). Based on the absence of significant differences in fertility at the first post partum estrus cycle versus any other estrus cycle, we conclude that breeding at the foal heat should be advisable.  相似文献   

20.
The aim of this study was to clarify the relationship between the placental retention time (PRT) and the reproductive performance following mating at the foal heat in Thoroughbreds. For this purpose, we interviewed 292 farmers over a period of 3 years with questionnaires evaluating foaling, expulsion of placenta and reproductive performance at the foal heat in 1,432 mares. The obtained data were later compared with a previous study of heavy draft mares. The average of the PRT of the 1,432 Thoroughbred mares was 58 ± 88 min (mean ± SD). The mean PRT of Thoroughbreds was significantly shorter than that of the148 min of heavy draft mares. The incidences of retained placenta (RP) occurring in the Thoroughbred mares were 5.2 and 4.0%, for over 3 and 4 hr after foaling, respectively. The incidence of RP over 4 hr was significantly lower than that of 25% in heavy draft mares. The pregnancy rate at foal heat of the mares in which PRT was less than 3 hr was 37%, and it significantly decreased to 11% for those with PRT of more than 3 hr. In the comparison of the reproductive performance between Thoroughbred and heavy draft mares, the pregnancy rate of Thoroughbreds dropped drastically to 10% when PRT exceeded 40, and in consequence, the pregnancy rate of Thoroughbreds was significantly lower than the 30% of heavy draft mares, which had a PRT of over 4 hr. In conclusion, the Thoroughbred mares had a low incidence of RP, however, a PRT exceeding 3 hr severely affected the reproductive performance at the foal heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号