首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equine herpesvirus-1 (EHV-1) is an alphaherpesvirus which infects horses, causing respiratory and neurological disease and abortion in pregnant mares. Latency is established in trigeminal ganglia and lymphocytes. Immunity to EHV-1 lasts between 3 and 6 months. Current vaccines, many of which contain inactivated virus, have reduced the incidence of abortion storms in pregnant mares but individual animals, which may be of high commercial value, remain susceptible to infection. The development of effective vaccines which stimulate both humoral and cellular immune responses remains a priority. Utilising data generated following experimental and field infections of the target species, this review describes the immunopathogenesis of EHV-1 and the interaction between the horse's immune system and this virus, both in vivo and in vitro, and identifies immune responses, highlighting those which have been associated with protective immunity. It then goes on to recount a brief history of vaccination, outlines factors likely to influence the outcome of vaccine administration and describes the immune response stimulated by a selection of commercial and experimental vaccines. Finally, based on the available data, a rational strategy designed to stimulate protective immune responses by vaccination is outlined.  相似文献   

2.
REASONS FOR PERFORMING STUDY: An assay has been developed that measures EHV-1 specific interferon gamma synthesis (IFNgamma), a cytokine produced following the activation of memory T lymphocytes and therefore a measure of cell mediated immunity. The method requires validation in the field. OBJECTIVES: To measure the frequency of EHV-1 specific, IFNgamma synthesising peripheral blood mononuclear cells (PBMC) in a population of Thoroughbred horses, and examine its relationship with age, gender, premises and history of vaccination or field infection with EHV-1. METHODS: Lymphocytes from 200 Thoroughbred horses were stimulated with EHV-1 in vitro, and IFNgamma detected using a monoclonal antibody and indirect immunofluorescence. Percent positive cells were enumerated by flow cytometric analysis and the results described and compared statistically between groups. RESULTS: The frequency of IFNgamma+ PBMC was significantly higher in animals age >5 years compared with 2-4 years, in females vs. males, on stud farms vs. training yards and following vaccination of 2-year-olds with inactivated virus compared with nonvaccinates. Age strongly confounded all these associations and care must therefore be taken interpreting these results. Mares exposed to a field infection with EHV-1 also had higher frequencies of IFNgamma+ PBMC than other vaccinated horses. CONCLUSIONS: The frequency of EHV-1 specific, IFNgama+ PBMC among the sample Thoroughbred population was diverse but lowest in young, unvaccinated horses-in-training. POTENTIAL RELEVANCE: The frequency of EHV-1 specific lymphocytes synthesising IFNgamma in this population may be associated with its susceptibility to infection with this virus. This easy technique may be applied to monitor the antigenicity of vaccines and their effectiveness at stimulating cellular immunity.  相似文献   

3.
Equine herpesvirus-1 (EHV-1) remains a frequent cause of upper respiratory tract infection and abortion in horses worldwide. However, little is known about the local antibody response elicited in the upper airways of horses following exposure to EHV-1. This study analysed the mucosal humoral immune response of weanling foals following experimental infection with virulent EHV-1, or vaccination with either of 2 commercial vaccines. Twenty weanlings were assigned to 5 groups and were inoculated with, or vaccinated against, EHV-1 following different regimens. Finally, all weanlings were simultaneously challenged intranasally with virulent EHV-1 Army 183 (A183). Nasal wash and serum samples were collected at regular intervals until 13 weeks after final challenge. Nasal washes were assayed for EHV-1-specific equine IgGa, IgGb, IgG(T), IgA, IgM and total virus-specific antibody using an indirect, quantitative ELISA. Total serum antibody responses were also monitored, and clinical signs of EHV-disease were recorded for each individual. Virus-specific IgA dominated the mucosal antibody response elicited in weanlings inoculated with A183, being detectable at up to 3.1 microg/mg total IgA 13 weeks after challenge. Neither inactivated EHV-1 administered i.m., nor attenuated EHV-1 administered intranasally induced detectable mucosal antibodies. EHV-1-specific mucosal antibodies impeded EHV-1 plaque formation in vitro. Such virus-neutralising antibody probably contributes to a reduction of shedding of EHV-1 from the respiratory tract of virus-infected horses.  相似文献   

4.
The immunoglobulin G (IgG) subclass response was investigated in horses with or without pyrexia after natural infection with equine herpesvirus type 1 (EHV-1) in the field. All horses were kept at the training centers of the Japan Racing Association and were immunized with an inactivated EHV-1 vaccine before EHV-1 infection. An IgG subclass response dominated by IgGa and IgGb was induced in horses without pyrexia after EHV-1 infection. In contrast, horses that developed pyrexia showed increased IgGc and IgG (T) subclass production in addition to IgGa and IgGb. Although inactivated EHV-1 vaccines are considered to induce a mainly Th-2-biased response, these results indicated that the responses in horses inoculated with inactivated EHV-1 vaccine were not uniform, and that horses with a Th-1-biased response were likely to be protected from pyrexia.  相似文献   

5.
An outbreak of neurological disease caused by EHV-1 infection is described with emphasis on diagnosis and prognosis for recumbent horses. In April 1995, an outbreak of the neurological form of Equine herpesvirus type 1 (EHV-1) occurred in a well-managed riding school with 41 horses: 34 horses showed a temperature spike and 20 some degree of neurological signs, of which 10 were nursed intensively in the indoor arena of the riding school for 3 to 20 days, 8 having to be maintained in slings for 2-18 days, while 9 needed bladder catheterisation b.i.d. for 2-16 days. Within the first 3 days, one horse was subjected to euthanasia and another horse died. Postmortem examination revealed a mild vasculitis with perivascular mononuclear cuffing and axonal degeneration in the central nervous system. Clinical diagnosis was confirmed by serology and virology: 28 horses seroconverted in one or more tests during the outbreak, whereas 12 had already high CF and SN titres in the first sample, suggestive of recent infection. Virus was isolated from nasal swabs of 4 horses, and identified as EHV-1 with type-specific monoclonal antibodies. Restriction enzyme analysis revealed that the EHV-1 strains from this outbreak belonged to genome type EHV-1.IP. The electropherotypes were identical to those from another, epidemiologically unrelated, outbreak of neurological disease 2 months earlier. The timing of the temperature spikes and seroconversions indicated that the infection was probably introduced by a horse purchased 3 weeks before neurological signs occurred. At follow-up one year later, the 10 horses that showed mild neurological signs had recovered completely. Of the 8 horses that survived intensive care, 3 had returned to around their former performance level (2 of which had been in slings), while the other 5 had become pasture-sound. At follow-up 4 years later, all pasture-sound horses had been subjected to euthanasia because of persistent mild ataxia and incontinence. In conclusion, the prognosis for recumbent horses due to EHV-1 infection is grave. For virological diagnosis, extensive and strategic sampling of febrile in-contact horses is required, and the EHV-1-specific glycoprotein G (gG) ELISA is a valuable tool for specific serological diagnosis of EHV-1 infection causing neurological disease.  相似文献   

6.
REASONS FOR PERFORMING STUDY: Neurological disease in horses caused by infection with certain 'paralytic' strains of equine herpesvirus-1 (EHV-1) is a potentially devastating condition the pathogenesis of which is poorly understood. Preliminary observations in both experimentally induced and naturally occurring cases of the central nervous system disease have revealed a more robust cell-associated viraemia in horses infected with paralytic isolates of EHV-1, relative to horses infected with abortigenic isolates. To investigate further this pathogenesis-relevant question, the present study was performed using a greater number of horses and a more precise method for quantification of EHV-1 DNA present in viraemic leucocytes. OBJECTIVE: To compare the magnitude and duration of leucocyte-associated viraemia in seronegative, age-matched foals following infection with paralytic vs. abortigenic isolates of EHV-1. METHODS: Peripheral blood mononuclear cells (PBMC) were collected from 20 weanling foals at 2, 4, 7, 9, 11, 14 and 21 days after intranasal inoculation with either paralytic or abortigenic isolates of EHV-1. The amount of EHV-1 DNA present in each PBMC sample was measured by real-time quantitative PCR. RESULTS: Foals inoculated with paralytic strains of EHV-1 developed both a greater magnitude and longer duration of PBMC-associated viraemia than foals inoculated with abortigenic strains of the virus. CONCLUSIONS: Both the higher magnitude and longer duration of cell-associated viraemia contribute to the risk for development of neurological signs in horses infected with paralytic strains of EHV-1. POTENTIAL RELEVANCE: Our results provide empirically derived, scientific data that contributes to a better understanding of the pathogenetic basis for the differing abilities of paralytic and abortigenic strains of EHV-1 to cause post infection central nervous system disease in the horse. The findings identify the importance of minimising the quantitative burden of viraemic leucocytes that follows exposure to the virus, by the use of effective therapeutic antiviral drugs and efficacious prophylactic vaccines that stimulate cytotoxic immune responses against EHV-1 infected cells.  相似文献   

7.
The identification of some of the adaptive immune responses to infection with equine viruses has been the first step toward rational immunoprophylactic design. Sufficient knowledge of infection-induced immunity and informed estimates of the requirements for long-term immunity for EIV have now been obtained. Thus, the future for inactivated EIV vaccines is promising now that new adjuvants have been applied to induce cellular immunity and safe methods have been designed to stimulate virus-neutralizing (VN) antibody at mucosal surfaces. Adenoviruses induce circulating VN antibody, the presence of which appears to correlate with protection from reinfection. Therefore, the potential of vaccines to induce VN antibody and protect from challenge is an important next step with this virus. With persistent viruses such as EHV-1, antibody-mediated protection from infection can be achieved only at the site of initial infection, that is, the nasopharynx and upper respiratory tract. Systemic dissemination is very rapid and consequently VN antibody is unlikely to play a major role in prevention of disease once the initial infection event has occurred. Cellular immune responses, particularly CTLs, play a dominant role in protection and recovery and are important in immune surveillance and determination of the outcome of reactivation of latent virus. Therefore, the key to future EHV-1 vaccine design is to focus on stimulation of CTL responses, and this requires the successful presentation of vaccine-derived antigenic peptides to MHC class I molecules that are recognized by specific receptors on CTL. There is some evidence that stimulation of EHV-1-specific CTL precursors may correlate with immunity to this virus. By analogy with gamma herpesviruses in humans, CTL precursor frequency may also function as an immune correlate for EHV-2. Although EAV infection induces strong immunity in females and geldings, persistent infection of the genital tract is an important route of dissemination from stallions. Although inactivated vaccines induce strong immunity (which depends upon VN activity of serum antibody) to first infection, the immunologic control of persistent infection is currently poorly understood; however, analogy with other persistent viruses suggests that CTLs are also likely to play an important role in the control of persistent EAV infections.  相似文献   

8.
The temperature sensitive and host range mutant clone 147 of equine herpesvirus 1 (EHV-1) was assessed for its ability to protect conventional, susceptible adult horses against respiratory infection by EHV-1 and equine herpesvirus 4 (EHV-4).Intranasal (IN) vaccination with 5.2 log(10) TCID(50) did not cause adverse clinical reactions although a limited virus shedding and viraemia (leukocytes) was observed in 11 of 15 and 10 of 15 vaccinated horses respectively. All 15 vaccinated horses showed a significant seroresponse to both EHV-1 and EHV-4 for virus neutralising (VN) antibody. None of 14 control horses shed virus or became viraemic or seroconverted prior to challenge. EHV-1 challenge (dose 6.0 log(10)) 6 weeks after vaccination resulted in pyrexia in all eight control horses while eight vaccinated horses remained unaffected. Six control horses developed nasal discharge, five of which were mucopurulent nasal discharge (mean duration 3.2 days) which also occurred in four vaccinated horses for 1 day. All eight control horses shed challenge EHV-1 at a significantly higher level (group mean titre 2.6+/-0.4 log(10) TCID(50) per sample) and for much longer (mean duration 4.8+/-1.5 days) than that (group mean titre 1.4+/-0.8 log(10) TCID(50) per sample and mean duration 1.5+/-0.5 days) in six vaccinated horses. Furthermore, all eight control horses became viraemic (mean duration 2.9 days) but viraemia did not occur in eight vaccinated horses. Following EHV-1 challenge, all eight control horses showed a significant VN antibody rise to both EHV-1 and EHV-4 but this occurred in only one vaccinated horse and to EHV-4 only. In EHV-4 challenge (dose of 4.2 log(10) TCID(50)) of a separate pair of seven vaccinated and six control horses, 6 weeks after EHV-1 vaccination resulted in pyrexia (mean duration 2.3 days) and nasal discharge (mean duration 1.8 days) in three and five control horses respectively but the only reaction observed in the vaccinated group was nasal discharge for 1 day in one animal. All six control animals shed virus (mean titre 2.5+/-0.6 log(10) TCID(50) per sample and mean duration 2+/-0.6 days) compared to one vaccinated animal. Although EHV-4 viraemia is rare, 3 of 6 control horses became viraemic after EHV-4 challenge but this was not observed in vaccinated horses. After EHV-4 challenge 3 and 5 of 6 control horses seroconverted for VN antibody to EHV-1 and EHV-4 respectively; a non-responsive control horse had high level of pre-existing VN antibody to EHV-4. However, only 1 of 7 vaccinated horses showed a significant antibody rise and only to EHV-4.  相似文献   

9.
In a project lasting 4 years more than 300 Lipizzans, around 180 of them adults, were vaccinated systematically against Equine Herpesvirus-1 (EHV-1) and representative groups thereof were serologically controlled for their antibody responses. In part, vaccination intervals recommended on packing slips were followed, in part other intervals, implicated by intermediary results, were used. A live virus vaccine proved ineffective if humoral antibodies were present. An oil-adjuvanted vaccine proved of highest antiviral immunogenicity, but after repeated revaccinations caused severe local reactions so frequently that we had to discontinue its use in adults. Fetal calf serum originating from the cell cultures used for viral propagation and not eliminated from the marketed product, was accused of being responsible for the incompatibilities. An inactivated mixed virus vaccine was of weak antigenicity regarding its EHV-1 component (whereas good regarding the influenza viruses) so that it proved unsatisfactory for primary immunization. It was, however, potent enough, and clinically well tolerated, to maintain suitable antibody levels in horses which had been initially primed by the oil-adjuvanted vaccine. Consequently, optimal humoral immunity as well as clinical acceptability resulted when two different vaccines were used, one for induction, the other for maintenance of protection. Vaccination intervals different from those on the packing slips are recommended for the mixed vaccine.  相似文献   

10.
11.
Equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) cause infections of horses worldwide. While both EHV-1 and EHV-4 cause respiratory disease, abortion and myeloencephalopathy are observed after infection with EHV-1 in the vast majority of cases. Disease control is achieved by hygiene measures that include immunization with either inactivated or modified live virus (MLV) vaccine preparations. We here compared the efficacy of commercially available vaccines, an EHV-1/EHV-4 inactivated combination and an MLV vaccine, with respect to induction of humoral responses and protection of clinical disease (abortion) in pregnant mares and foals on a large stud with a total of approximately 3500 horses. The MLV vaccine was administered twice during pregnancy (months 5 and 8 of gestation) to 383 mares (49.4%), while the inactivated vaccine was administered three times (months 5, 7, and 9) to 392 mares (50.6%). From the vaccinated mares, 192 (MLV) and 150 (inactivated) were randomly selected for serological analyses. There was no significant difference between the groups with respect to magnitude or duration of the humoral responses as assessed by serum neutralization assays (median range from 1:42 to 1:130) and probing for EHV-1-specific IgG isotypes, although neutralizing responses were higher in animals vaccinated with the MLV preparation at all time points sampled. The total number of abortions in the study population was 55/775 (7.1%), 9 of which were attributed to EHV-1. Seven of the abortions were in the inactivated and two in the MLV vaccine group (p=0.16). When foals of vaccinated mares were followed up, a dramatic drop of serum neutralizing titers (median below 1:8) was observed in all groups, indicating that the half-life of maternally derived antibody is less than 4 weeks.  相似文献   

12.
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.  相似文献   

13.
减毒沙门氏菌在疫苗和疫苗载体方面的研究进展   总被引:1,自引:1,他引:0  
沙门氏菌不仅可以用作疫苗,也是理想的疫苗载体,已受到医学与兽医学的广泛重视。沙门氏菌可以经黏膜途径免疫(口服或鼻内),操作方便,对接种对象刺激小;此外,沙门氏菌为胞内侵袭细菌,能有效递呈抗原,激发抗沙门氏菌和诱导外源蛋白的特异性体液免疫反应与细胞免疫反应,并能同时诱导黏膜免疫与全身免疫。文章对沙门氏菌的入侵机制、免疫机理及其在疫苗中的应用状况进行了综述,为新型疫苗的研究提供参考。  相似文献   

14.
Horses are commonly vaccinated to protect against pathogens which are responsible for diseases which are endemic within the general horse population, such as equine influenza virus (EIV) and equine herpesvirus-1 (EHV-1), and against a variety of diseases which are less common but which lead to greater morbidity and mortality, such as eastern equine encephalomyelitis virus (EEE) and tetanus. This study consisted of two trials which investigated the antigenicity of commercially available vaccines licensed in the USA to protect against EIV, EHV-1 respiratory disease, EHV-1 abortion, EEE and tetanus in horses. Trial I was conducted to compare serological responses to vaccines produced by three manufacturers against EIV, EHV-1 (respiratory disease), EEE, and tetanus given as multivalent preparations or as multiple vaccine courses. Trial II compared vaccines from two manufacturers licensed to protect against EHV-1 abortion, and measured EHV-1-specific interferon-gamma (IFN-gamma) mRNA production in addition to serological evidence of antigenicity. In Trial I significant differences were found between the antigenicity of different commercial vaccines that should be considered in product selection. It was difficult to identify vaccines that generate significant immune responses to respiratory viruses. The most dramatic differences in vaccine performance occurred in the case of the tetanus antigen. In Trial II both vaccines generated significant antibody responses and showed evidence of EHV-1-specific IFN-gamma mRNA responses. Overall there were wide variations in vaccine response, and the vaccines with the best responses were not produced by a single manufacturer. Differences in vaccine performance may have resulted from differences in antigen load and adjuvant formulation.  相似文献   

15.
Eighteen horses, vaccinated on a number of occasions over a period of 12 to 20 months with either a live equine herpesvirus-1 (EHV-1) or an inactivated EHV-1 vaccine, were challenged by the intranasal instillation of the subtype 1 virus isolated from the 1983 outbreak of abortion and paralytic disease at the Lipizzan Stud, Piber, Austria. The prechallenge serum titres of all vaccinated horses were remarkably low, although most horses had received their last vaccine dose only 3 weeks before test-infection. Higher titres were obtained with the inactivated product than with the live virus vaccine. However, no obvious differences were found between the two vaccines in their ability to prevent disease, in that all vaccinated and two 'sentinel' horses became infected and developed viraemia and some degree of clinical disease after challenge; five of the 10 in-foal mares aborted.  相似文献   

16.
Equine herpesvirus myeloencephalitis (EHM) remains one of the most devastating manifestations of equine herpesvirus type 1 (EHV-1) infection but our understanding of its pathogenesis remains rudimentary, partly because of a lack of adequate experimental models. EHV-1 infection of the ocular vasculature may offer an alternative model as EHV-1-induced chorioretinopathy appears to occur in a significant number of horses, and the pathogenesis of EHM and ocular EHV-1 may be similar. To investigate the potential of ocular EHV-1 as a model for EHM, and to determine the frequency of ocular EHV-1, our goal was to study: (1) Dissemination of virus following acute infection, (2) Development and frequency of ocular lesions following infection, and (3) Utility of a GFP-expressing virus for localization of the virus in vivo. Viral antigen could be detected following acute infection in ocular tissues and the central nervous system (experiment 1). Furthermore, EHV-1 infection resulted in multifocal choroidal lesions in 90% (experiment 2) and 50% (experiment 3) of experimentally infected horses, however ocular lesions did not appear in vivo until between 3 weeks and 3 months post-infection. Taken together, the timing of the appearance of lesions and their ophthalmoscopic features suggest that their pathogenesis may involve ischemic injury to the chorioretina following viremic delivery of virus to the eye, mirroring the vascular events that result in EHM. In summary, we show that the frequency of ocular EHV-1 is 50-90% following experimental infection making this model attractive for testing future vaccines or therapeutics in an immunologically relevant age group.  相似文献   

17.
A type-specific enzyme-linked immunosorbent assay (ELISA) using equine herpesvirus types 1 (EHV-1) and 4 (EHV-4) glycoprotein G was applied for sero-epizootiology of EHV infections in Japan. Recently, an inactivated EHV-1 vaccine has been administered to racehorses for prevention of upper respiratory disease. To examine the effect of the vaccination on the result of the ELISA, 6 horses were experimentally inoculated three times intramuscularly or intranasally with inactivated EHV-1 vaccine. Sera collected from these horses were used to the type-specific ELISA and complement-fixation (CF) test. Although the CF test detected a significant increase of antibody elicited by vaccination, the ELISA did not detect any antibody response. Next, sera collected from thirty-eight horses, which were intramuscularly inoculated with inactivated EHV-1 twice at an interval of four weeks, were used in the ELISA and CF test. The results also indicated that CF titers increased by vaccine inoculation, but ELISA titers did not. To examine epizootiology of EHVs serologically in racehorse populations at two Training Centers of the Japan Racing Association, the type-specific ELISA and CF test were carried out using paired sera collected from racehorses before and after the winter season. The results showed that the ELISA could distinguish EHV-1 and EHV-4 infections in vaccinated horses serologically. In conclusion, the type-specific ELISA is considered to be useful for sero-diagnosis and sero-epizootiological research on EHV-1 and EHV-4 infections not only in unvaccinated horses, but also in vaccinated horses in Japan.  相似文献   

18.
ABSTRACT

Aim: To estimate the frequency of infection with equine herpesvirus type-1 (EHV-1) among horses from the central North Island of New Zealand, including the frequency of detection of the D752 genotype.

Methods: Samples of retropharyngeal lymph nodes (RLN) and submandibular lymph nodes (SLN) were dissected from the heads of 63 horses that were humanely killed for various unrelated reasons between March and November 2015. DNA extracted from these tissues was subjected to enrichment for EHV-1 sequences by hybridisation with biotin-labelled EHV-1 specific probe, followed by recovery of EHV-1 sequences on streptavidin-coated magnetic beads. Enriched samples were tested for the presence of EHV-1 using nested quantitative real-time PCR. The EHV-1 amplicons were sequenced to determine the genotype of the virus.

Results: The median age of the horses was 6 (min 2, max 30) years, and 47/63 (75%) were Thoroughbreds. EHV-1 DNA was detected in RLN samples from 6/63 (10%) horses, and three of these horses were also positive for EHV-1 DNA in SLN. The remaining horses were negative for EHV-1 DNA in both RLN and SLN samples. The N752 genotype was detected in all positive samples and the D752 genotype was not detected in any of the samples.

Conclusions: EHV-1 continues to circulate among horses in New Zealand. The frequency of latent EHV-1 infection among sampled horses may have been underestimated due to the sensitivity limit of the assay or because of the limited anatomical sites sampled in the study. Lack of detection of the D752 genotype suggests that infection with this genotype is not common in horses in New Zealand.

Clinical Relevance: If live animals are tested for EHV-1 using SLN biopsy it should be kept in mind that negative results do not rule out the presence of latent EHV-1 infection at other sites inaccessible for testing. The RLN appear to be the preferred sample for detection of EHV-1 DNA in horses following recent euthanasia.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Currently, there is no recommended immunoprophylaxis against febrile respiratory diseases due to equine herpesvirus-1 (EHV-1) and -4 (EHV-4) in horses below age 5-6 months. This is because of interference by maternally-derived antibody (MDA) of vaccines. OBJECTIVE: Unweaned equine foals are an important reservoir of EHV-1 transmission; therefore, we experimentally assessed the efficacy of a live EHV-1 vaccine in foals age 1.4-3.5 months with MDA. METHODS: Following vaccination and challenge, parameters assessed were virus shedding in nasal mucus, leucocyte-associated viraemia, circulating virus neutralising antibody activity and clinical reactions. RESULTS: Controlled challenge showed that a single intranasal dose of the vaccine afforded partial but significant protection against febrile respiratory disease, virus shedding and viraemia due to EHV-1 infection, despite virus-neutralising MDA. CONCLUSIONS AND POTENTIAL RELEVANCE: The prospective vaccine would be a significant step forward in reducing the incidence of the disease caused by EHV-1 infection.  相似文献   

20.
Equine herpesvirus type 1 (EHV-1) is a worldwide spread pathogen of horses. It can cause abortion, respiratory and neurological disease and consequentially significant economic losses in equine industries. During 2009, two outbreaks of EHV-1 were confirmed in two stud farms in Eastern Croatia. The first outbreak occurred in February following the import of 12 horses from USA, serologically negative to EHV-1 before transport. Four mares aborted in the late stage of pregnancy and one perinatal death was recorded. Other six mares showed clinical signs of myeloencephalopathy with fatal end in four. One month later, the second EHV-1 outbreak was confirmed in stud farm about 100 km further with 17 abortions, three perinatal deaths and one mild neurological case. Epidemiological data showed that the disease was probably introduced in the first stud farm during international transport. The second outbreak started with the introduction of clinically healthy stallion from the first stud farm. Molecular characterisation and phylogenetic analysis confirmed that, despite different clinical signs, the identical virus caused both outbreaks. Both horse populations were free from EHV-1 infection before the outbreak and had not been vaccinated. Significant difference in clinical signs could be explained by different breed-related risk factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号