首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of Popping on the Endosperm Cell Walls of Sorghum and Maize   总被引:1,自引:0,他引:1  
The structure of the vitreous endosperm of raw and popped grains of popcorn maize and sorghum has been examined by light and scanning electron microscopy. In both cereals, popping produces everted grains consisting of expanded endosperm foam attached to the pericarp and embryo tissue. As previously reported, each bubble of the foam is formed from an individual starch granule inflated by internal steam pressure. Large fissures may contribute significantly to the expansion of the endosperm foam. The cell walls of the vitreous endosperm of both cereals are shattered into small fragments, which separate slightly as the cell contents expand during popping. Despite this, the endosperm cells retain their polygonal outline. Intact cell walls of raw endosperm, wall fragments from popped endosperm foam, and fragments isolated after treatment of the foam withalpha -amylase, were visualised through the autofluorescence of their ferulic acid content. The in vitro digestibility of popped sorghum was unchanged compared to raw sorghum, whereas that of wet-cooked sorghum was greatly reduced. It is suggested that popping-induced wall fragmentation improves the accessibility of the protein and starch reserves of the endosperm to digestive enzymes.  相似文献   

2.
To improve sorghum grain protein nutritional quality, improved sorghum lines were transformed to suppress the synthesis of different kafirin sub-classes, or backcrossed into transgenic lines with improved protein quality. Co-suppression of the alpha-, gamma- and delta-kafirin sub-classes and removal of the tannin trait resulted in transgenic sorghum lines with high cooked protein digestibility (±80%), improved Amino Acid Score (0.8) and Protein Digestibility Corrected Amino Acid Score (0.7) compared to the non-transgenic null controls (±50%, 0.4 and 0.2, respectively). These high protein quality lines had a floury endosperm. They also had modified protein body structure, where the protein bodies were irregular shaped with few to numerous invaginations and were less densely packed, with a dense protein matrix visible around the protein bodies. When fewer sub-classes were suppressed, i.e. gamma 1 and delta 2, the endosperm was corneous with normal protein body structure but the improvement in cooked protein digestibility appeared to be less. Apparently, co-suppression of several kafirin sub-classes is required to obtain high protein nutritional quality sorghum lines, but this seems to result in floury-type grain endosperm texture.  相似文献   

3.
The effects of endosperm vitreousness, cooking time and temperature on sorghum and maize starch digestion in vitro were studied using floury and vitreous endosperm flours. Starch digestion was significantly higher in floury sorghum endosperm than vitreous endosperm, but similar floury and vitreous endosperm of maize. Cooking with 2-mercaptoethanol increased starch digestion in both sorghum and maize, but more with sorghum, and more with vitreous endosperm flours. Increasing cooking time progressively reduced starch digestion in vitreous sorghum endosperm but improved digestibility in the other flours. Pressure-cooking increased starch digestion in all flours, but markedly more in vitreous sorghum flour; probably through physical disruption of the protein matrix enveloping the starch. Irrespective of vitreousness or cooking condition, the alpha-amylase kinetic constant (k) for both sorghum and maize flours remained similar, indicating that differences in their starch digestion were due to factors extrinsic to the starches. SDS-PAGE indicated that the higher proportion of disulphide bond-cross-linked prolamin proteins and more extensive polymerisation of the prolamins on cooking, resulting in polymers of Mr>100k, were responsible for the lower starch digestibility of the vitreous sorghum endosperm flour.  相似文献   

4.
Accelerated aging at 50 °C significantly affected the physical and chemical properties of sorghum and maize. Aging caused associations between starch granules, protein matrix, and cell walls. During aging, floury areas of the endosperm became more corneous; as the endosperm hardened, strong associations between starch and protein developed, causing the endosperm to fracture through endosperm cells instead of along cell walls, which is common for non-aged maize. Aging significantly decreased the pasting viscosity of starch, molecular solubility at 85 °C and the molecular weight of solubilized starch. Solubility of albumins and globulins decreased while solubility of proteins extracted by a reducing agent and/or in alkaline pH increased during aging. Decreased solubility and functionality of starch and protein in aged grain appear to be due to protein oxidation.  相似文献   

5.
Relationships between kernel vitreousness and proteins and starch partitioning to the floury and vitreous regions of the endosperm were monitored in a set of 13 maize inbred lines. Decrease of protein contents from the vitreous to the floury endosperms were mainly assigned to α-zeins. Using Raman microspectroscopy, we observed a protein gradient from the periphery to the center of endosperms that well fitted with the inverse relationships between vitreousness and protein content of the vitreous and floury regions. In addition, Raman microspectroscopy highlighted an increase of starch crystallinity from the periphery to the center of the maize endosperms. This agrees with the higher amylose and associated lipid contents within starches of vitreous than in those of floury endosperms. Finally, starch granules from vitreous regions displayed more channels than the floury ones. These channels contain proteins that might favor adhesion of proteins to starch granules or granule–granule contacts to form the close packing of the vitreous endosperm. Therefore transition from vitreous to floury endosperm is at least the result of both protein and starch gradients. These gradients are probably associated with metabolic gradients that have been observed during endosperm development.  相似文献   

6.
Kafirins extracted from the endosperm of seven sorghum [Sorghum bicolor (L.) Moench] cultivars were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent assay (ELISA). Kafirins extracted from the vitreous and floury endosperm portions within the kernel were also analysed by these techniques. The ELISA results indicated that the level of all the three kafirins was high in the hard endosperm kernels. The level of γ-kafirin was particularly higher in the vitreous endosperm portions of these kernels. The ratio of γ-kafirin to the α-kafirin was, however, higher for the floury portions of soft kernels. Tissue print immunoblotting revealed that the β- and γ-kafirins were concentrated in the central floury endosperm portions of soft kernels, whilst α-kafirin was distributed more uniformly throughout the endosperm. In contrast, all three kafirins were distributed uniformly throughout the endosperms of hard kernels. The data indicate that the content, as well as the distribution, of kafirins within the kernel is different in grains varying in endosperm hardness.  相似文献   

7.
Three cultivars of pearl millet, CO 6 (good milling and good popping), a traditional variety [(TV) good milling but poor popping] and MBH 157 (poor milling and poor popping) were examined microscopically for their kernel texture and analysed for carbohydrate and protein composition. The endosperm texture of CO 6 and TV were corneous, while that of MBH 157 was floury. The pericarps of CO 6 and TV were thin, single layered with compact aleurone cells, but in contrast, that of MBH 157 was thick and multilayered, with loosely arranged aleurone cells. No significant differences in the physico-chemical characteristics of the isolated starches of the millet varieties were noticed. Starch and non-starch polysaccharide contents of CO 6, MBH 157 and TV varieties were 72·9, 75·3, 65·8% and 6·5, 8·5, 15·7%, respectively. Glucose, arabinose and xylose were the major sugars in the NSP fractions. CO 6 and TV varieties contained higher proportion of pentosans with higher ratios of arabinose/xylose and uronic acid.  相似文献   

8.
【Objective】Aminoacyl-tRNA synthetases (aaRSs) are closely related to the transmission of genetic information. Besides translation, aaRSs in plants participate in gametogenesis and embryo development, early plastid development, immune signal perception and disease defense. In this study, we used a rice endosperm defective mutant to analyze the function of tryptophanyl-tRNA synthase (WRS1) during seed development, proving that WRS1 gene encodes a key factor affecting rice endosperm development. 【Method】In this study, a stably-inherited rice floury endosperm mutant (wrs1) was screened from the mutant library of indica cultivar N22 (Oryza sativa subsp. indica) induced by ethyl methane sulfonate (EMS). Map-based cloning and complementation test identified the target gene. Morphological observation and starch physicochemical properties of wrs1 mature seeds were analyzed. Semi-thin sections were prepared to observe the developing endosperm structure with a scanning electron microscope. qRT-PCR and GUS staining were performed to analyze the expression of WRS1. The expression of starch synthesis related genes in the endosperm at 12 days after flowering was determined by qRT-PCR, and these protein expression levels in mature seed were detected by immunoblotting. The free amino acid contents of mature seeds were measured with a fully automatic amino acid analyzer. 【Result】The seedlings of wrs1 were featured by obvious delay in development and finally withered and died. The floury grains isolated from the heterozygous mutant (WRS1wrs1) showed shrunken belly, decreased grain thickness and thousand-grain weight. Total starch contents, the peak viscosity and breakdown viscosity of pasting starch were lower in wrs1. The compound starch granules in developing endosperm of wrs1 were smaller and loosely arranged. WRS1 was restricted to the 183 kb region of the long arm of chromosome 12. Sequencing revealed a single base substitution in exon 6 of the tryptophanyl-tRNA synthetase gene (WRS1), resulting in a substitution of methionine. The expression of most starch synthesis-related genes in wrs1 was down-regulated, while these proteins showed different accumulation levels. The contents of proteins in wrs1 grains were decreased, while free amino acids contents were significantly increased. 【Conclusion】WRS1 encodes tryptophanyl-tRNA synthase. Mutation of this gene affects amino acid homeostasis and protein synthesis in rice endosperm, resulting in abnormal expression of the genes in starch synthesis pathway which affects starch synthesis and accumulation, and eventually lead to seed development defects.  相似文献   

9.
10.
【目的】对水稻粉质皱缩突变体fse2进行表型分析及基因克隆,为阐明水稻淀粉合成机制以及胚的发育奠定基础。【方法】fse2来自粳稻品种滇粳优1号的MNU(N-甲基-N-亚硝基脲)诱变突变体库。本研究考查了突变体fse2籽粒的理化性状,利用扫描电镜和半薄切片观察了淀粉颗粒的结构;构建了fse2与N22的F2群体,通过图位克隆及转基因互补验证确定目标基因;通过qRT-PCR以及GUS活性染色对FSE2进行组织表达分析;免疫印迹分析了突变体中淀粉合成相关基因以及线粒体基因的蛋白变化。【结果】fse2籽粒粉质皱缩,千粒重显著下降;胚乳中淀粉颗粒变小变圆,排列松散,不能形成正常的复合淀粉颗粒;突变体中总淀粉、直链淀粉含量均显著下降,脂肪含量显著上升,突变体淀粉的糊化特性发生明显改变。FSE2编码一个线粒体和质体双定位的鸟苷酸激酶(guanylate kinase),命名为OsGK1。OsGK1在各器官中组成型表达,并在花后6 d的胚乳中表达水平最高。突变体胚乳中淀粉合成相关蛋白水平显著降低,尤其是AGPS2b和PHOI。此外,突变体fse2的胚发育严重受损,导致种子纯合致死;线粒体定位的AOX积累显著增强,而野生型中几乎检测不到,表明线粒体呼吸途径受损。【结论】由于OsGK1的功能缺陷,导致水稻种子中线粒体和造粉体发育异常,进而产生了胚致死以及胚乳粉质皱缩的表型,因此OsGK1对水稻种子的发育至关重要。  相似文献   

11.
There has always been an interest in devising breeding programs for designer foods that would benefit both the producer and consumer. The challenge today is transformation of agriculture from “subsistence farming” to “market and income generation oriented” production system for which sorghum with its diverse end uses can assume significant role. Breeding for end-use identity-specific genotypes is needed for increased profitability to the farmers. In the present study, 60 sorghum genotypes were evaluated over two years to identify genotypes suitable for semolina recovery and popping properties, i.e. popping efficiency and pop volume expansion. Semolina recovery ranged from 20.7% to 48.3%, while popping efficiency ranged from 0 to 77.5%. Semolina recovery had positive and significant association with endosperm texture (r = 0.62), grain density (r = 0.49) and grain hardness (r = 0.55) indicating that genotypes with corneous endosperm yield high semolina. Also, semolina recovery had significant positive correlation with popping efficiency (r = 0.49) indicating that genotypes suitable for semolina can also be used for popping. Genetic divergence studies indicated that out of three clusters formed, cluster II having guinea race germplasm lines are suitable for semolina and popping. The information generated and the genotypes identified will help in enhancing the demand for sorghum as an industrial crop.  相似文献   

12.
A review of literature on endosperm texture determination and its relationship with milling performance is presented. Methods for measuring sorghum endosperm texture as abrasive, pearling and wet milling are reported. This review describes some indirect methods: time to grind by the Brabender microhardness tester (BHMT), resistance to grinding by the Stenvert hardness tester (SHT), two methods for determination of average particle size: particle size index (PSI) and near-infrared (NIR) reflectance and others based on density differences between the floury and vitreous part of the endosperm.  相似文献   

13.
【目的】水稻种子主要以淀粉形式储藏能量。淀粉合成需要多种酶类和调控因子参与,机制较为复杂。本研究利用水稻胚乳发育缺陷突变体,克隆和鉴定新的调控淀粉合成相关基因,旨在为研究淀粉合成及其调控提供理论依据。【方法】从化学诱变剂甲基亚硝基脲(1-methyl-1-nitroso-urea, MNU)处理的宁粳3号(Ningjing 3, WT)突变体库中筛选到一个能稳定遗传的胚乳粉质皱缩突变体,命名为fse4 (floury and shrunken 4 )。与籼稻品种Dular杂交获得F1种子(F2),通过图位克隆的策略确定FSE4候选基因。利用杂合植株(FSE4fse4)分离出的粉质种子,观察形态学特征,分析其理化性质。使用扫描电镜和半薄切片技术观察胚乳结构。使用qRT-PCR和免疫印迹分析淀粉合成相关基因表达模式和淀粉合成相关酶类的蛋白积累量。利用全自动氨基酸分析仪测定成熟胚乳各氨基酸含量。【结果】突变体fse4籽粒宽度、厚度以及千粒重显著下降,同时胚乳中总淀粉、总蛋白、直链淀粉含量亦显著下降,而脂肪含量显著上升;淀粉黏度、崩解值和消减值显著低于野生型。突变体fse4中多为单粒型淀粉颗粒,且排列分散。FSE4定位于第5染色体长臂约252 kb的区间内,测序发现编码Δ1-吡咯啉-5-羧酸合成酶基因 (Delta 1-pyrroline-5-carboxylate synthetase, P5CS)第1外显子上发生单碱基替换,导致一保守的氨基酸发生变异。突变体fse4中大部分淀粉合成相关基因表达量下调,多种淀粉合成相关蛋白积累量减少。突变体fse4米粉中多种氨基酸含量发生显著变化,游离氨基酸含量是其野生型的3.6倍。此外,外源喷施脯氨酸能部分恢复突变体fse4种子萌发缺陷表型。【结论】FSE4编码脯氨酸合成关键限速酶P5CS,该基因对胚乳中氨基酸的合成及代谢起重要的调控作用,并影响淀粉的合成与积累。  相似文献   

14.
【Objective】Starch is the main energy reserve of rice endosperm. The biosynthesis of starch is complex, requiring a large number of synthetic enzymes and regulators. Screening rice endosperm defective mutants and cloning the underlying genes will lay theoretical basis for starch biosynthesis and its regulation. 【Method】 A stable genetic floury and shrunken endosperm mutant termed as fse4 (floury and shrunken4) were obtained from the mutant library of Ningjing 3 (WT), which was induced by N-methyl-N-nitrosourea (MNU). An F2 mapping population was generated by crossing the fse4 mutant with Dular (an indica rice variety) and the gene was finally isolated. The floury seeds segregated from the fse4 heterozygous plants were used to observe the morphological features, and the physicochemical properties of the brown rice flour were analyzed. The endosperm structure was observed with a scanning electron microscopy by the semi-thin section technology. The expression of starch synthesis related genes during grain filling was determined by qRT-PCR; Immunoblotting was used to detect the accumulation of proteins related to starch synthesis. The amino acids contents of each mature endosperm were determined with the fully automatic amino acid analyzer.【Result】The 1000-grain weight and grain size were significantly reduced in fse4. Compared with WT, the contents of total starch, amylose and total protein were signi?cantly lower in fse4, while the lipid content was signi?cantly higher. The starch viscosity, breakdown viscosity and setback viscosity of the fse4 mutant were lower than WT. The endosperm of the mutant had many single dispersed starch granules with large spaces between each other. Using 1568 recessive individuals, FSE4 was narrowed down to a 252 kb region. Sequencing revealed a single base substitution in the first exon of the delta 1-pyrroline-5-carboxylate synthetase (P5CS), resulting in a conserved amino acid variation. Most of the genes related to starch synthesis were downregulated in fse4 and the protein accumulation related to starch synthase were reduced. The contents of various amino acids in fse4 rice flour were increased or decreased, the total free amino acids contents in fse4 seeds was 2.6 times higher than those in WT. Exogenous proline was applied during the germination of fse4 seeds, and the embryonic lethal phenotype was partially recovered.【Conclusion】FSE4 encode the key rate-limiting enzyme P5CS of proline synthesis, which plays an important role in the biosynthesis and metabolism of amino acids in endosperm and affects the accumulation of starch.  相似文献   

15.
水稻粉质胚乳突变体ws的表型分析及基因克隆   总被引:1,自引:1,他引:0  
从甲基亚硝基脲(1-Methyl-1-Nitrosourea,MNU)处理的粳稻品种滇粳优1号突变体库中,筛选到一个稳定遗传的胚乳粉质突变体ws,其籽粒的千粒重、籽粒大小、总淀粉含量、直链淀粉含量等指标均降低,淀粉在尿素溶液中的膨胀能力减弱。对成熟及发育中的胚乳淀粉结构进行观察,发现ws突变体的胚乳中产生大量小而不规则排布的单淀粉颗粒。利用F2群体中分离出的92个隐性极端个体将突变基因连锁在第8染色体近着丝粒位置,随后共用2025个极端个体将目标基因定位于95kb的区间。测序发现ws突变体中编码腺苷二磷酸葡萄糖焦磷酸化酶(Adenosine diphosphate glucose pyrophosphorylase,AGPase)小亚基S2的基因发生点突变,导致编码氨基酸的替换。基因表达分析发现,突变体胚乳中编码AGPase各亚基的相关基因表达量没有发生显著改变,而Western杂交分析显示突变体中AGPS2b的蛋白含量下降。同时,ws突变体的胚乳中AGPase活性下降为野生型的一半。研究结果表明,OsAGPS2的突变导致水稻胚乳中AGPase活性降低,从而影响了淀粉合成。  相似文献   

16.
【目的】氨酰-tRNA合成酶(aminoacyl-tRNA synthetases, aaRSs)与遗传信息传递密切相关,已发现植物中aaRSs家族蛋白在维持翻译功能之余,还参与配子发生与胚发育、质体的早期发育以及免疫信号的感知与病害防御等生物学过程。本研究利用水稻胚乳发育缺陷突变体,分析水稻色氨酰-tRNA合成酶(WRS1)在胚乳发育中的作用,证明WRS1基因编码一个影响水稻胚乳发育的关键因子。【方法】本研究通过甲烷磺酸乙酯(ethyl methane sulfonate, EMS)诱变籼稻(Oryza sativa subsp. indica)品种N22,筛选到一个稳定遗传的水稻粉质胚乳突变体(wrs1),图位克隆获得目标基因。对wrs1成熟种子进行形态学观察以及淀粉相关理化性质测定,利用细胞学切片分析wrs1发育中胚乳的结构,利用实时荧光定量PCR(quantitative real-time PCR, qRT-PCR)和GUS活性染色分析基因表达模式,通过qRT-PCR比较野生型与突变体花后12 d胚乳中淀粉合成相关基因表达情况,免疫印迹检测野生型与突变体成熟种子中淀粉合成酶蛋白积累情况,使用全自动氨基酸分析仪测定游离氨基酸含量。【结果】 wrs1突变体幼苗表现出明显的发育滞后且逐渐蔫萎死亡,从杂合突变体(WRS1wrs1)中分离到的粉质籽粒呈现明显的腹部皱缩,粒厚、千粒重下降,同时总淀粉含量下降,糊化淀粉的峰值黏度和崩解值均低于野生型。wrs1突变体发育胚乳中复合淀粉颗粒变小,排列疏松。WRS1定位于第12染色体长臂约183 kb的区间内,测序发现编码色氨酰-tRNA合成酶(tryptophanyl-tRNA synthetase, WRS)基因的第6外显子上发生单碱基替换,导致一个保守位置上的甲硫氨酸被替换。wrs1突变体中大部分淀粉合成相关基因表达量下调,且野生型与突变体间基因表达的变化与相应蛋白积累的差异存在不一致的趋势。wrs1突变体籽粒中蛋白质积累降低,而游离氨基酸含量显著升高。【结论】 WRS1编码色氨酰-tRNA合成酶,该基因突变后通过影响氨基酸稳态和蛋白质合成,造成淀粉合成相关基因异常表达从而影响淀粉的合成与积累,导致种子发育缺陷。  相似文献   

17.
Maize grain starch is the major energy source in animal nutrition, and its high digestion and utilization largely depend on endosperm traits and the structure of the starch-lipoprotein matrix. The aim of this work was to determine floury and vitreous endosperm traits and its relation to starch digestibility rate. In total, kernels of 30 hybrids were manually dissected, and amylose, total zein and starch and non-starch lipids were determined in both vitreous and floury endosperm. Starch digestibility of the whole kernel was determined based on glucose released during a two-step in vitro pig model of enzymatic digestion, and starch digestibility rate was calculated according to the first-order kinetics. The vitreous endosperm of tested hybrids had higher contents of amylose (204.6 vs 190.4 g/kg), zein (63.2 vs 40.4 k/kg) and starch lipids (5.6 vs 4.9 g/kg), and lower content of non-starch lipids (7.3 vs 9.6 g/kg) than floury endosperm. Digestibility coefficients varied among hybrids, and starch digestibility rate varied from 0.73 to 1.63 1/h. Lipids in both vitreous and floury endosperm negatively correlated with the most of digestion coefficients, whereas zein correlated in vitreous and amylose in the floury endosperm (P < 0.05). Starch digestibility rate negatively correlated with all traits, except amylose content in vitreous endosperm. As a result, a linear regression model with four variables including contents of zein and starch lipids in vitreous and zein and amylose in floury endosperm can predict more than 65% variability of starch digestibility rate of tested hybrids.  相似文献   

18.
四个不同粒重水稻品种颖果发育的比较   总被引:2,自引:0,他引:2  
 以粒重差异较大的4个水稻品种为供试材料,采用树脂切片、酶解胚乳细胞和显微观察等方法,比较研究了品种间在颖果生长、胚乳细胞增殖、果皮和胚乳结构等方面的差异,探讨了影响颖果生长的因素。 大粒品种颖果发育时间较小粒品种长,其胚乳细胞数、胚乳干质量及单个胚乳细胞平均干质量均高于小粒品种。在粒重相近的情况下,籼稻颖果发育和淀粉积累快于粳稻。与小粒品种相比,大粒品种子房壁细胞中淀粉粒多,子房壁细胞生长的持续时间长,果皮及背部维管束衰亡迟。 小粒品种胚乳外层细胞在花后7 d已转化成糊粉层细胞,大粒品种胚乳外层细胞要在花后10 d才转化成糊粉层细胞。 大粒品种的库容大和生理活性期长是其颖果能显著增大的生理原因。  相似文献   

19.
早籼稻垩白形成中胚乳淀粉粒发育的电镜观察   总被引:20,自引:4,他引:16  
沈波 《中国水稻科学》2000,14(4):225-228
对不同垩白度早籼品种中优早3号(少垩白)和泸红早1号(多垩白)的不同温度处理下的胚乳淀粉粒进行了扫描电镜观察,结果显示胚乳腹部淀粉粒形成的发育过程明显受温度条件的影响。在灌浆初始,高温促使淀粉粒发育进程提前,淀粉粒形状呈圆球形,边缘光滑,从而造成成熟时淀粉粒间的空隙明显,结构疏松,垩白率高。这在少垩白品种中优早3号中表现得尤为显著。  相似文献   

20.
We report the isolation of a pure form of cell walls from wheat endosperm ‘popped’ out from the whole, enzyme deactivated and soaked grain, and compare them with cell walls isolated from milled flours of extraction rates from 45% to 75%, at physiological (37 °C) and elevated (70 °C) temperatures. Cell walls isolated from flours all contained non-endosperm walls whereas walls from popped endosperm were apparently pure. The monosaccharide composition of ‘popped’ cell walls was different to that of cell walls isolated from flour, particularly glucose and mannose contents (34 and 7% for ‘popped’ cf 29 and 3% for flour respectively) and arabinose to xylose ratios (0.45 for ‘popped’ cf 0.58 for flour). Total phenolic contents of popped endosperm cell walls were three to four times lower than for cell walls from flour. Elevated isolation temperature also had a solubilising effect, altering the cell wall composition. This study provides a novel method of isolating pure wheat endosperm cell walls, and demonstrates how contaminating (thick cell walled) non-endospermic material in milled flours can have a major influence on cell wall compositional analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号