首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine whether hospitalisation of horses leads to increased antimicrobial resistance in equine faecal Escherichia coli isolates. E. coli were cultured from faecal samples of horses on admission and after 7 days of hospitalisation; antimicrobial susceptibility was determined for eight antimicrobial agents. Resistance profiles of E. coli isolates were grouped into clusters, which were analysed to determine resistance patterns. Resistance to 7/8 antimicrobial agents and multi-drug resistance (MDR; resistance to ?3 antimicrobial classes) were significantly higher after 7 days of hospitalisation. Forty-eight resistance profiles were identified; 15/48 were present on day 0 only, 16/48 on day 7 only and 17/48 at both times of sampling. There was a significant association between day 7 profiles and resistance detected to an increased number of antimicrobial agents. Hospitalisation of horses for 7 days resulted in alterations in equine faecal E. coli antimicrobial resistance profiles.  相似文献   

2.
Lactobacillus reuteri ATCC 55730 (L. reuteri ATCC 55730) and L. reuteri L22 were studied for their probiotic potential. These two strains were able to produce an antimicrobial substance, termed reuterin, the maximum production of reuterin by these two strains was detected in the late logarithmic growth phase (16 h in MRS and 20 h in LB broths). These two strains could significantly reduce the growth of Salmonella pullorum ATCC 9120 in MRS broth, L. reuteri ATCC 55730 with a reduction of 48.2 ± 4.15% (in 5 log) and 89.7 ± 2.59% (in 4 log) respectively, at the same time, L. reuteri L22 was 69.4 ± 3.48% (in 5 log) and 80.4 ± 3.22% respectively. L. reuteri ATCC 55730 was active against the majority of the pathogenic species, including S. pullorum ATCC 9120 and Escherichia coli O78, while L. reuteri L22 was not as effective as L. reuteri ATCC 55730. The two potential strains were found to survive variably at pH 2.5 and were unaffected by bile salts, while neither of the strains was haemolytic. Moreover, L. reuteri ATCC 55730 exhibited variable susceptibility towards commonly used antibiotics; but L. reuteri L22 showed resistant to most antibiotics in this study. L. reuteri ATCC 55730 consequently was found to significantly increase survival rate in a Salmonella-induced pullorum disease model in chick. To conclude, strain L. reuteri ATCC 55730 possesses desirable probiotic properties, such as antimicrobial activity and immunomodulation in vitro, which were confirmed in vivo by the use of animal models.  相似文献   

3.
Horses can be at risk for nitropoisoning by consuming plants containing 3-nitro-1-propionic acid or 3-nitro-1-propanol and to a lesser extent by plants containing nitrate. Populations of equine cecal microbes enriched for enhanced rates of 3-nitro-1-propionic acid (NPA) or nitrate metabolism were cultured for NPA- or nitrate-metabolizing bacteria on basal enrichment medium or tryptose soy agar supplemented with either 5-mM NPA or nitrate and under H2:CO2 (20:80) as the energy source. After 72 hours, separated colonies picked from plates, or roll tubes were cultured in fresh broth medium for 72 hours and then identified by 16S rRNA gene sequencing. Isolates from the NPA-enriched populations were identified as Streptococcus lutetiensis (five strains), Escherichia coli (two strains), and Sporanaerobacter acetigens (one strain). Strains isolated from nitrate-enriched populations were identified as Escherichia coli (one strain) and Wolinella succinogenes (three strains). None of these strains degraded NPA. Enriched populations of equine cecal microbes, the isolated pure strains and the type strain of Denitrobacterium detoxificans, a competent NPA-metabolizing microbe, were examined using denaturing gradient gel electrophoresis (DGGE). The DGGE analysis indicated that none of the strains in the enriched population of equine cecal microbes were similar to D. detoxificans. However, we report for the first time the isolation of the anaerobic amino acid–using Sporanaerobacter acetigenes from the equine cecum.  相似文献   

4.
The prevalence of antimicrobial resistant Escherichia coli was tested in symbovine flies and sympatric house martins (Delichon urbica) at a dairy farm. Antimicrobial resistant E. coli was detected in 89% (= 147) of isolates from flies within a calf barn. Isolates with the same antimicrobial resistance phenotypes, genes, and pulsotypes were found between both fly and calf E. coli isolates, suggesting that the calves were the initial source of the antimicrobial resistant strains in fly isolates. Symbovine flies were considered as important reservoirs of antimicrobial resistant E. coli strains at a dairy farm, due to their intensive contact with cattle feces and manure. House martin fecal samples from the same farm contained 4.5% (= 393) of antimicrobial resistant E. coli. House martin isolates displayed different macrorestriction profiles than fly isolates and the significance of house martins as a reservoir and vector of antimicrobial resistant E. coli appears low.  相似文献   

5.
The aim of this study was to evaluate the anthelmintic and antimicrobial efficacy of Euphorbia helioscopia crude extracts. A worm motility inhibition assay and egg hatch assay were used for in vitro study, and a faecal egg count reduction assay was used for in vivo study. The in vitro study revealed anthelmintic effects of crude methanolic extracts of E. helioscopia on live Haemonchus contortus worms as evident from their paralysis and/or death at 8 h after exposure. Different concentrations (12.5 mg?ml?1, 25 mg?ml?1 and 50 mg?ml?1) of aqueous and methanolic extracts were used against H. contortus which exhibited dose-dependent anthelmintic effects on H. contortus. Different extracts of E. helioscopia on percent inhibitory egg hatching was very low as compared to levamisole. The antimicrobial activity of extracts ranging from 100 to 500 mg?ml?1 screened by disc diffusion method against four selected bacterial (Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas multocida and Escherichia coli) and two fungal strains (Aspergillus flavus and Candida albicans) was also dose dependent with the extract showing more inhibitory effects against S. aureus and E. coli and a minimum inhibitory effect against A. flavus. It is concluded that the entire plant of E. helioscopia possesses significant anthelmintic and antimicrobial activity and could be a potential alternative for treating cases of helminth infections in ruminants.  相似文献   

6.
The objective of this study was to evaluate the anthelmintic, antimicrobial and antioxidant activities of Chenopodium album against gastrointestinal nematodes of sheep and some pathogenic microbes. A worm motility inhibition assay was used for in vitro study, and a faecal egg count reduction assay was used for an in vivo study. Various concentrations ranging from 100 to 500 μg/ml of the extract were subjected to antimicrobial screening by disc diffusion method against four selected bacterial (Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas multocida and Escherichia coli) and two fungal (Aspergillus flavus and Candida albicans) strains in order to estimate the medicinal potential of the herb. DPPH (1,1-diphenyl-2-picrylhydrazyl), riboflavin photo-oxidation, deoxyribose, lipid peroxidation assays were used for antioxidant activity. The extracts exhibited dose- and time-dependent anthelmintic effects on the Haemonchus contortus as compared to levamisole. The extract showed maximum inhibitory effect against S. aureus (28 ± 0.14 mm), while as mild inhibitory effect was observed against E. coli among the selected microbial strains. The effect produced by the different extract concentrations was comparable with the standard antibacterial agent streptomycin sulphate and antifungal agent nystatin, which were used as effective positive control in the study. The antioxidant activity showed that the extracts exhibited scavenging effect in concentration-dependent manner on superoxide anion radicals and hydroxyl radicals leading to the conclusion that the plant has broad spectrum anthelmintic, antimicrobial and antioxidant activities and could be a potential alternative for treating various diseases.  相似文献   

7.
Wild birds have been identified as a relevant reservoir of Campylobacter spp., therefore, a potential source of infection in humans and domestic animals. The objective of this study was to determine the occurrence of Campylobacter spp. on birds of prey in Spain. In addition, antibiotic resistance profiles of the isolates were evaluated. A total of 689 specimens of 28 raptor species were analyzed, with a resulting individual prevalence of 7.5%. C. jejuni was the most frequently isolated species (88.5%), followed by C. coli and C. lari (3.8% each). The occurrence of Campylobacter was significantly higher (p < 0.05) in nocturnal birds of prey (15.3%), in spring season (12.2%) and in carnivorous species (9.4%). Isolates displayed a remarkable resistance to nalidixic acid (69.9%), ciprofloxacin (69.9%), and tetracycline (55.6%), and a low resistance to streptomycin (6.7%).Our findings highlight the importance of birds of prey as reservoirs of Campylobacter strains and their significant role as carriers of antimicrobial resistance.  相似文献   

8.
Wild medicinal plants have been traditionally used as antimicrobial agents. Here, we evaluated the in vitro activity of extracts from wild Egyptian desert plants against Toxoplasma gondii and Neospora caninum. From 12 plant extracts tested, the methanolic extracts from Artemisia judaica, Cleome droserifolia, Trichodesma africanum, and Vachellia tortilis demonstrated potent activity against the growth of T. gondii, with half-maximal inhibitory concentrations (IC50s) of 2.1, 12.5, 21.8, and 24.5 µg/ml, respectively. C. droserifolia, an ethanolic extract of P. undulata, T. africanum, A. judaica, and V. tortilis demonstrated potent efficacy against N. caninum, with mean IC50s of 1.0, 3.0, 3.1, 8.6, and 17.2 µg/ml, respectively. Our data suggest these extracts could provide an alternative treatment for T. gondii and N. caninum infections.  相似文献   

9.
The increasing prevalence of antimicrobial resistances is now a worldwide problem. Investigating the mechanisms by which pets harboring resistant strains may receive and/or transfer resistance determinants is essential to better understanding how owners and pets can interact safely. Here, we characterized the genetic determinants conferring resistance to β-lactams and quinolones in 38 multidrug-resistant Escherichia coli isolated from fecal samples of dogs, through PCR and sequencing. The most frequent genotype included the β-lactamase groups TEM (n = 5), and both TEM + CTX-M-1 (n = 5). Within the CTX-M group, we identified the genes CTX-M-32, CTX-M-1, CTX-M-15, CTX-M-55/79, CTX-M-14 and CTX-M-2/44. Thirty isolates resistant to ciprofloxacin presented two mutations in the gyrA gene and one or two mutations in the parC gene. A mutation in gyrA (reported here for the first time), due to a transversion and transition (TCG  GTG) originating a substitution of a serine by a valine in position 83 was also detected. The plasmid-encoded quinolone resistance gene, qnrs1, was detected in three isolates. Dogs can be a reservoir of genetic determinants conferring antimicrobial resistance and thus may play an important role in the spread of antimicrobial resistance to humans and other co-habitant animals.  相似文献   

10.
Antibiotic resistance is a global problem, and it is known that commensal bacteria can act as reservoir of antibiotic resistance genes of clinical importance. The aim of the present study was to determine the antibiotic resistance phenotype and mechanisms implicated in resistance of Escherichia coli and Enterococcus spp. isolates collected from fecal samples of 90 Lusitano horses from Portugal. Sixteen of the 71 E. coli isolates (22.5%) recovered showed resistance to at least one of the antibiotics tested. The number of E. coli isolates resistant to streptomycin, tetracycline, chloramphenicol, ampicillin, trimethoprim-sulfamethoxazole, and gentamicin was 9, 7, 6, 3, 2, and 1, respectively. The blaTEM-1 and blaOXA-1 genes were detected in ampicillin-resistant isolates and the sul2 and dfrA1 genes in trimethoprim-sulfamethoxazole-resistant, while the aac(3)-I, floR and tet(A) were found in the gentamicin, chloramphenicol and tetracycline-resistant isolates, respectively. Twenty-two of the 71 (31%) recovered enterococci showed antibiotic resistance for at least one of the tested antibiotics, and resistant isolates were identified as Enterococcus faecium (n = 14), E. faecalis (n = 3), E. hirae (n = 2), and Enterococcus spp. (n = 3). The erm(B) and erm(C) genes were identified in erythromycin-resistant enterococci and the tet(M) and/or tet(L) genes in tetracycline-resistant isolates. The slight prevalence of antibiotic resistance among commensal bacteria of healthy Lusitano horses can improve the treatment of upcoming infections in these horses because these microorganisms can be considered as antimicrobial indicator bacteria.  相似文献   

11.
Bovine mastitis caused by Escherichia coli can range from being a subclinical infection of the mammary gland to a severe systemic disease. Cow‐dependent factors such as lactation stage and age affect the severity of coliform mastitis. Evidence for the efficacy of antimicrobial treatment for E. coli mastitis is very limited. Antimicrobial resistance is generally not a limiting factor for treatment, but it should be monitored to detect changes in resistance profiles. The only antimicrobials for which there is some scientific evidence of beneficial effects in the treatment for E. coli mastitis are fluoroquinolones and cephalosporins. Both are critically important drugs, the use of which in animals destined for food should be limited to specific indications and should be based on bacteriological diagnosis. The suggested routine protocol in dairy herds could target the primary antimicrobial treatment for mastitis, specifically infections caused by gram‐positive bacteria. In E. coli mastitis with mild to moderate clinical signs, a non‐antimicrobial approach (anti‐inflammatory treatment, frequent milking and fluid therapy) should be the first option. In cases of severe E. coli mastitis, parenteral administration of fluoroquinolones, or third‐ or fourth‐generation cephalosporins, is recommended due to the risk of unlimited growth of bacteria in the mammary gland and ensuing bacteremia. Evidence for the efficacy of intramammary‐administered antimicrobial treatment for E. coli mastitis is so limited that it cannot be recommended. Nonsteroidal anti‐inflammatory drugs have documented the efficacy in the treatment for E. coli mastitis and are recommended for supportive treatment for clinical mastitis.  相似文献   

12.
Rectal smears of calves, cows and young bulls, as well as cloacal smears of house sparrows (Passer domesticus), from farms at the villages of Šumice and Troskotovice, Czech Republic, were examined for E. coli resistant to 12 antimicrobials. The resistant isolates were tested for antimicrobial-resistance genes and integrons. Totals of 40% (n = 183), 3% (n = 95), 0% (n = 33), and 9% (n = 54) of Escherichia coli isolates from calves, cows, young bulls and house sparrows, respectively, were antimicrobial resistant. The following genes were identified in cattle E. coli isolates: tetA, tetB (isolates resistant to tetracycline), blaTEM (beta-lactams), strA, aadA (streptomycin), sul1, sul2 (sulphonamides), and cat, floR (chloramphenicol). Seven of 16 antimicrobial-resistant calf isolates from the Šumice farm possessed class 1 integrons with the aadA1 gene cassette integrated, 1 kb in size. On the Troskotovice farm, eight of 57 antimicrobial-resistant calf isolates possessed class 1 integrons. Integrons of 1.5 kb with the dhfr1- aadA1 gene cassette were found in four isolates, followed by a 1 kb integron with the aadA1 gene found in three isolates, and a 1.7 kb integron with the dhfr17-aadA5 gene cassette and the phenotype ASSuTSxtNaCipCCfG. The prevalence of resistant E. coli in calves compared to adult cattle was much higher and probably was influenced by oral antimicrobial usage in calves, feeding with milk and colostrum from treated cows, as well as mechanisms unrelated to antimicrobial drug selection. Although house sparrows lived together with the cattle and came into contact with cattle waste on the farm, they were not infected by resistant E. coli isolates with the same characteristics as those found in cattle.  相似文献   

13.
The zoonotic potential of Escherichia coli from chicken‐source food products is important to define for public health purposes. Previously, genotypic and phenotypic screening of E. coli isolates from commercial chicken meat and shell eggs identified some E. coli strains that by molecular criteria resembled human‐source extraintestinal pathogenic E. coli (ExPEC). Here, to clarify the zoonotic risk of such chicken‐source E. coli, we compared selected E. coli isolates from chicken meat and eggs, stratified by molecularly defined ExPEC status, to human‐source ExPEC and to laboratory E. coli for virulence in rodent models of sepsis, meningitis and UTI, and evaluated whether specific bacterial characteristics predict experimental virulence. Multiple chicken‐source E. coli resembled human‐source ExPEC in their ability to cause one or multiple different ExPEC‐associated infections. Swimming ability corresponded with urovirulence, K1 capsule corresponded with ability to cause neonatal meningitis, and biofilm formation in urine corresponded with ability to cause sepsis. In contrast, molecularly defined ExPEC status and individual genotypic traits were uncorrelated with ability to cause sepsis, and neither complement sensitivity nor growth in human urine corresponded with virulence in any infection model. These findings establish that chicken‐derived food products contain E. coli strains that, in rodent models of multiple human‐associated ExPEC infections, are able to cause disease comparably to human‐source E. coli clinical isolates, which suggests that they may pose a significant food safety threat. Further study is needed to define the level of risk they pose to human health, which if appreciable would justify efforts to monitor for and reduce or eliminate them.  相似文献   

14.
Rhodococcus equi is an opportunistic, intracellular saprophyte that causes severe pyogranulomatous pneumonia in foals. The bacterium displays in vitro susceptibility to many antibiotics. The highest efficacy against R. equi in vitro and in vivo is achieved by using a combination of rifampicin and macrolide antibiotics. Recent years have seen an upward trend in the minimum inhibitory concentration (MIC) of rifampicin and erythromycin, suggesting increasing resistance of R. equi to these antibiotics. The aim of the study was to determine the antimicrobial activity of 24 selected antibiotics against R. equi strains isolated from dead foals and from the environment of horse breeding farms with and without endemic R. equi infections. Minimum inhibitory concentration gradient strips were used to determine the lowest concentration of the antibiotic that inhibited the growth of R. equi. Based on normal MIC distribution, an epidemiologic cutoff values (ECOFF) were assessed for particular antibiotics and R. equi strains. The results were compared with ECOFFs for S. aureus, according to the European Committee on Antimicrobial Susceptibility Testing data. The data indicate that the lowest MIC values were obtained for clarithromycin, rifampicin, imipenem, and vancomycin. The majority of R. equi strains can be classified as wild type in relation to the majority of antibiotics. A small percentage of strains presented non-WT (NWT) with the exception of SXT, for which 35% of strains were classified as NWT. The lack of interpretative criteria for R. equi creates a real problem in the assessment of antibiotic sensitivity both for clinical and scientific purposes.  相似文献   

15.
In order to compare the prevalence of Campylobacter coli and Campylobacter jejuni during the processing of broilers at slaughterhouse a total of 848 samples were analyzed during 2012 in southern Spain. Four hundred and seventy six samples were collected from cloaca, carcass surfaces and quartered carcasses. Moreover, 372 environmental swabs from equipment and scalding water were collected. Minimum inhibitory concentration (MIC) to ciprofloxacin, erythromycin, streptomycin, tetracycline and gentamicin was determined for isolates from chicken meat. The general prevalence of Campylobacter was 68.8% (40.2% of C. coli and 28.5% of C. jejuni). The relative prevalence of C. coli increased from loading dock area (41.5%) to packing area (64.6%). In contrast, the relative prevalence of C. jejuni decreased from 58.5% to 35.4%. These differences between species from initial to final area were significant (p = 0.02). The highest antimicrobial resistance for C. jejuni and C. coli was detected to tetracycline (100%) and ciprofloxacin (100%), respectively. Campylobacter coli showed an antimicrobial resistance significantly higher than C. jejuni to streptomycin (p = 0.002) and erythromycin (p < 0.0001).  相似文献   

16.
17.
Pathogenic Escherichia coli is an important cause of diarrhea, edema disease, and septicemia in swine. In Japan, the volume of antimicrobial drugs used for animals is highest in swine, but information about the prevalence of antimicrobial-resistant bacteria is confined to apparently healthy animals. In the present study, we determined the O serogroups, virulence factors, and antimicrobial resistance of 360 E. coli isolates from swine that died of disease in Kagoshima Prefecture, Japan, between 1999 and 2017. The isolates of the predominant serogroups O139, OSB9, O149, O8, and O116 possessed virulence factor genes typically found in diarrheagenic E. coli. We further found five strains of third-generation cephalosporin-resistant E. coli that each produced an extended-spectrum β-lactamase encoded by blaCTX-M-14, blaCTX-M-15, blaCTX-M-24, blaCTX-M-61, or blaSHV-12. In 218 swine with a clear history of antimicrobial drug use, we further analyzed associations between the use of antimicrobials for the treatment of diseased swine and the isolation of resistant E. coli. We found significant associations between antimicrobial use and selection of resistance to the same class of antimicrobials, such as the use of ceftiofur and resistance to cefotaxime, cefazolin, or ampicillin, the use of aminoglycosides and resistance to streptomycin, and the use of phenicols and resistance to chloramphenicol. A significant association between antimicrobial use and the resistance of E. coli isolates to structurally unrelated antimicrobials, such as the use of ceftiofur and resistance to chloramphenicol, was also observed.  相似文献   

18.
This study was carried out to investigate the resistance phenotypes and resistance genes of Escherichia coli from swine in Guizhou, China. A total of 47 E. coli strains isolated between 2013 and 2018 were tested using the Kirby–Bauer (K–B) method to verify their resistance to 19 common clinical antimicrobials. Five classes consisting of 29 resistance genes were detected using polymerase chain reaction. The status regarding extended-spectrum β-lactamase (ESBL) and the relationship between ESBL CTX-M-type β-lactamase genes and plasmid-mediated quinolone resistance (PMQR) genes were analysed. A total of 46 strains (97.9%) were found to be multidrug resistant. Amongst them, 27 strains (57.4%) were resistant to more than eight antimicrobials, and the maximum number of resistant antimicrobial agents was 16. Twenty antibiotic resistance genes were detected, including six β-lactamase genes blaTEM (74.5%), blaCTX-M-9G (29.8%), blaDHA (17.0%), blaCTX-M-1G (10.6%), blaSHV (8.5%), blaOXA (2.1%), five aminoglycoside-modifying enzyme genes aac(3′)-IV (93.6%), aadA1 (78.7%), aadA2 (76.6%), aac(3′)-II c (55.3%), aac(6′)-Ib (2.1%) and five amphenicol resistance genes floR (70.2%), cmlA (53.2%), cat2 (10.6%), cat1 (6.4%), cmlB (2.1%), three PMQR genes qnrS (55.3%), oqxA (53.2%), qepA (27.7%) and polypeptide resistance gene mcr-1 (40.4%). The detection rate of ESBL-positive strains was 80.9% (38/47) and ESBL TEM-type was the most abundant ESBLs. The percentage of the PMQR gene in blaCTX-M-positive strains was high, and the detection rate of blaCTX-M-9G was the highest in CTX-M type. It is clear that multiple drug resistant E. coli is common in healthy swine in this study. Extended-spectrum β-lactamase is very abundant in the E. coli strains isolated from swine and most of them are multiple compound genotypes.  相似文献   

19.
Antimicrobial resistance profile of E. coli and Salmonella serovars isolated from diarrheic calves and handlers in Egypt is unknown due to the absence of monitoring. Therefore, this study aimed to determine the virulence, genetic and antimicrobial resistance profiles of E. coli and Salmonella serovars associated with diarrhea in calves and handlers in intensive dairy farms in Egypt. A total of 36 bacterial strains (20 E. coli and 16 Salmonella) were isolated from fecal samples of 80 diarrheic Holstein dairy calves (10 E. coli and 13 Salmonella) and hand swabs of 35 handlers (10 E. coli and 3 Salmonella) in two intensive dairy farms in Sharkia Governate in Egypt. E. coli strains belonged to six different serogroups and O114:K90 was the most prevalent serogroup (30%). However, Salmonella strains were serotyped into four different serogroups and S. Kiel was the most prevalent serotype (50%). Thirteen (65%) E. coli isolates were harbouring either stx2, eaeA and/or astA virulence-associated genes. However, stn and spvC virulence genes were detected in 2 (12.5%) and 4 (25%) of Salmonella isolates, respectively. E. coli isolates showed marked resistance to ampicillin (75%), while Salmonella strains exhibited high resistance to amikacin (100%), gentamicin (93.75%) and tobramycin (87.5%). Results of the present study showed that E. coli and Salmonella serovars isolated from diarrheic calves and handlers in intensive dairy farms in Egypt exhibited resistance to multiple classes of antimicrobials, which may pose a public health hazard. Thus, the continuous monitoring of antimicrobial resistance is necessary for both humans and veterinary medicine to decrease the economic losses caused by antimicrobial-resistant strains in animals as well as the zoonotic risk.  相似文献   

20.
Escherichia coli play an important ecological role within resistant bacteria populations, and can be used as a bio-indicator of antimicrobial resistance. The aim of the present study was to use this feature of E. coli to investigate the prevalence of antimicrobial resistance and the degree of cross-species transmission of bacteria in pigs and poultry in China. A total of 592 E. coli strains, isolated from pigs and poultry (healthy and diseased animals), were tested for resistance to 22 antimicrobials representing eight antimicrobial drug types.E. coli isolates had high rates of resistance to ampicillin (99.5%), doxycycline (95.6%), tetracycline (93.4%), trimethoprim–sulfamethoxazole (74.3%), amoxicillin (65.1%), streptomycin (54.7%), and chloramphenicol (50.2%). Resistance to cephalosporins, quinolones, and aminoglycosides was also quite prevalent. The majority (81%) of isolates demonstrated multi-antimicrobial resistance, most commonly to 5–6 different antimicrobial types. One isolate was resistant to all 22 antimicrobials. Twenty-two cultures exhibiting multi-antimicrobial resistance were analysed by pulsed-field gel electrophoresis (PFGE) to assess their distribution between farms. Three distinct PFGE types were identified, indicating inter-farm transmission of multi-antimicrobial resistant bacteria. The study confirmed the presence and transmission of multi-antimicrobial-resistant E. coli strains amongst pigs and poultry in China and highlights the urgent need for appropriate monitoring programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号