首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to compare horses’ gaits in hand and when ridden; to assess static and dynamic saddle fit for each horse and rider; to apply the Ridden Horse Pain Ethogram (RHpE) and relate the findings to gait abnormalities consistent with musculoskeletal pain, rider position and balance and saddle fit; and to document noseband use and its relationship with mouth opening during ridden exercise. Data were acquired prospectively from a convenience sample of horses believed by their owners to be working comfortably. All assessments were subjective. Gait in hand and when ridden were evaluated independently, by two assessors, and compared using McNemar’s test. Static tack fit and noseband type were recorded. Movement of the saddle during ridden exercise, rider position, balance and size relative to the saddle was documented. RHpE scores were based on assessment of video recordings. Multivariable Poisson regression analysis was used to determine factors which influenced the RHpE scores. Of 148 horses, 28.4% were lame in hand, whereas 62.2% were lame ridden (P<0.001). Sixty per cent of horses showed gait abnormalities in canter. The median RHpE score was 8/24 (interquartile range 5, 9; range 0, 15). There was a positive association between lameness and the RHpE score (P<0.001). Riding School horses had higher RHpE scores compared with General Purpose horses (P = 0.001). Saddles with tight tree points (P = 0.001) and riders seated at the back of the saddle rather than the middle (P = 0.001) were associated with higher RHpE scores. Horses wearing crank cavesson compared with cavesson nosebands had higher RHpE scores (P = 0.006). There was no difference in mouth opening, as defined by the RHpE, in horses with a noseband with the potential to restrict mouth opening, compared with a correctly fitted cavesson noseband, or no noseband. It was concluded that lameness or gait abnormalities in canter may be missed unless horses are assessed ridden.  相似文献   

2.
OBJECTIVE: To determine whether therapeutic riding resulted in higher levels of stress or frustration for horses than did recreational riding and whether therapeutic riding with at-risk individuals was more stressful for the horses than was therapeutic riding with individuals with physical or emotional handicaps. DESIGN: Observational study. ANIMALS: 14 horses in a therapeutic riding program. PROCEDURE: An ethogram of equine behaviors was created, and horses were observed while ridden by 5 groups of riders (recreational riders, physically handicapped riders, psychologically handicapped riders, at risk children, and special education children). Number of stress-related behaviors (ears pinned back, head raised, head turned, head tossed, head shaken, head down, and defecation) was compared among groups. RESULTS: No significant differences in mean number of stress-related behaviors were found when horses were ridden by recreational riders, physically handicapped riders, psychologically handicapped riders, or special education children. However, mean number of stress-related behaviors was significantly higher when horses were ridden by the at-risk children. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that for horses in a therapeutic riding program, being ridden by physically or psychologically handicapped individuals is no more stressful for the horses than is being ridden in the same setting by recreational riders. However, at-risk children caused more stress to the horses, suggesting that the time horses are ridden by at-risk children should be limited both daily and weekly.  相似文献   

3.
Horses intended for leisure riding do not undergo any selection and most often retired sports horses or defective horses are chosen, as a low selling price determines their purchase by a leisure riding center. Unfortunately, horses bought at low prices usually have low utility value, are difficult to handle, require a special or individual approach and do not provide satisfaction in riding. However, neither modern horse breeding nor scientific research address the need to breed horses for leisure activities. There is no clear definition of a model leisure horse and criteria or information for its selection are not readily available in scientific publications. A wide spectrum of research methods may be used to evaluate various performance traits in horses intended for leisure activities. The fact that the population of recreational horses and their riders outnumber sporting horses should attract the special attention of scientific research. Their utility traits need to be determined with modern technology and methods in the same way they are for sporting horses. Such a system of evaluation would be very helpful for riders.  相似文献   

4.
REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.  相似文献   

5.
The effect of rider weight on equine welfare and performance requires further investigation. The objective of this prospective, cross-over, randomised trial was to assess gait and behavioural responses of horses to riders of similar ability, but different bodyweights. Six nonlame horses in regular work were ridden by each of four riders: Light (L), Moderate (M), Heavy (H) and Very Heavy (VH). Saddle fit was assessed subjectively throughout the study. Each horse was ridden twice by riders L and M, and once by rider H. Rider VH rode five horses once and one twice. Each horse-rider combination undertook a standardised, 30-min ‘dressage-test' which was abandoned if we observed lameness grade ≥ 3/8 in one limb, grade ≥ 2/8 in ≥ 2 limbs, or ≥ 10/24 behavioural markers of pain. Horses were reassessed in hand 45–60 min after any abandonment. Mean rider bodyweights, body mass index (BMI) values and rider:horse bodyweight percentages for the L, M, H and VH riders were respectively: 60.8, 77.8, 91.0, 142.1 kg; 23.2, 28.0, 26.3, 46.9 kg/m2; 10.0–11.7%, 12.8–15.0%, 15.3–17.9%, 23.6–27.5%. All 13 H and VH rider tests (lameness, n = 12; behaviour, n = 1) and one of 12 M rider tests (lameness) were abandoned. Lameness was confirmed using inertial measurement unit data. All horses trotted sound after test abandonment and completed the study moving well when ridden. Limitations of the study were saddle fit was not ideal in all horse-rider combinations and abandonment criteria were subjective. The conclusions and clinical relevance of the study were that large riders can induce temporary lameness and behaviours consistent with musculoskeletal pain. This may relate to rider bodyweight and/or weight distribution. Riders M and H had similar BMI but markedly different test abandonment rates, therefore bodyweight is likely to be more relevant than BMI. Further work is required to determine if horse fitness, adaptation to heavier weights and better saddle fit for heavier/taller riders will increase horses' weight-carrying capacity.  相似文献   

6.
Horse riders have used layers between saddles and their horse's back since ancient times. Despite the apparent common usage of such layers, most research regarding pressures under horses' saddles seems to have been conducted without such layers present. An online survey of equestrian riders was conducted to quantify the use of such layers and how the layers behaved during use. This produced 1,011 responses from participants in 16 equestrian activities. More than 98% of respondents reported they used some form of layer between their horse's back and the saddle. Differences in layer usage were associated with the respondent's preferred riding discipline and the wither type of their horse. Compensation for perceived saddle fit problems was commonly cited as a reason for using layers. Although horse comfort was nominated by 87.5% of respondents as a reason for using a layer between saddle and the horse's back, many respondents (45%) reported using more than 1 layer. This often resulted in layers thicker than 1 cm, which paradoxically could compromise horse welfare. Half of the respondents reported that the layer between the saddle and the horse's back slipped during riding. Although some significant risk factors for this slippage were identified, they are deemed not to be definitive because of similar factors being identified by the group who did not report layer slippage. These results suggest that incorrect usage of layer between saddles and horses' backs can sabotage good saddle design and compromise equine welfare. Future research on the layers used between the saddles and horses' back is warranted. The question of whether using thicker layers can create greater pressure under saddles or improve rider–horse communication also needs to be investigated.  相似文献   

7.
During competition, stress may affect riders and horses. This stress can affect health, welfare, and/or performance. Our aim was to quantify stress levels during competition in horses and riders. We also searched relationships between these stress levels and performance. Twenty riders and 23 horses were followed up during a show-jumping event (26 courses) held at a riding school. Regular saliva samples taken from horses and riders were assayed to evaluate cortisol levels. We studied salivary cortisol evolution during the days of competition. There was no correlation between instantaneous sampling on horses and their riders. However, we did find a parallel between horse and rider salivary cortisol evolution curves, with a similar peak, reached 20 minutes after the course. The increase was stronger in riders than in horses. Correlations appeared between salivary cortisol concentration and performance, but stress in both partners seems to have an opposite influence on performance. Riders who showed a higher salivary cortisol increase were awarded more penalties, whereas horses that showed a higher increase in salivary cortisol performed better. Stress level measurement in rider–horse pairs would thus lead to improvement in competition conditions and performance, for horses as well as for riders.  相似文献   

8.
Saddle-fit is recognised as an important factor in the pathogenesis of back problems in horses and is empirically being evaluated by pressure measurements in clinical practice, although not much is known about the validity, reliability and usability of these devices in the equine field. This study was conducted to assess critically a pressure measurement system marketed for evaluating saddle fit. Validity was tested by calculating the correlation coefficient between total measured pressure and the weight of 28 different riders. Reliability and discriminative power with respect to different saddle fitting methods were evaluated in a highly standardised, paired measurement set-up in which saddle-fit was quantified by air-pressure values inside the panels of the saddle. Total pressures under the saddle correlated well with riders' weight. A large increase in over-day sensor variation was found. Within trial intra-class correlation coefficients (ICCs) were excellent, but the between trial ICCs varied from poor to excellent and the variation in total pressure was high. In saddles in which the fit was adjusted to individual asymmetries of the horse, the pressure measurement device was able to detect correctly air-pressure differences between the two panels in the back area of the saddle, but not in the front area. The device yielded valid results, but was only reliable in highly standardised conditions. The results question the indiscriminate use of current saddle pressure measurement devices for the quantitative assessment of saddle-fit under practical conditions and suggest that further technical improvement may be necessary.  相似文献   

9.
Reason for performing study: Saddle pads are widely used in riding sports but their influence on saddle pressures is poorly understood. Objective: To evaluate the forces acting on the horse's back, and the eventual pressure distribution by using different saddle pads underneath a fitting saddle. Methods: Sixteen sound horses of different breeds and ages were ridden on a treadmill at walk and sitting trot. The horses were wearing a dressage saddle with a fitting saddle tree and 4 different saddle pads (gel, leather, foam and reindeer fur) successively. For comparison, measurements were made without any saddle pad. Right forelimb motion was used to synchronise the pressure data with the stride cycles. A pressure mat was used under the saddle pad to collect the kinetic data. Maximum overall force (MOF) and the pressure distribution in longitudinal and transversal direction were calculated to identify differences between the measurements with and without saddle pads. Results: A significant decrease in MOF was interpreted as improved saddle fit, and a significant increase as worsened saddle fit. Only the reindeer fur pad significantly decreased the MOF from 1005 N to 796 N at walk and from 1650 N to 1437 N at trot compared to without pad measurements. None of the saddle pads increased the MOF significantly when compared to the data without saddle pad. The pressure distribution in longitudinal and transversal direction was also improved significantly only by the reindeer fur pad at trot compared to no pad. Conclusion: This study demonstrated that a well chosen saddle pad can reduce the load on the horse's back and therefore improve the suitability of a fitting saddle.  相似文献   

10.
An enthusiastic crowd of 400 people gathered at Anglia Ruskin University in Cambridge, UK on 29 November 2014 for the second International Saddle Research Trust Conference on the theme of Horses, Saddles and Riders: Applying the Science. The conference was organised under the auspices of the Saddle Research Trust (SRT) which is a charitable organisation based in the UK established with the intention of stimulating and supporting research into the influence of saddles on the welfare, performance and safety of horses and riders using objective scientific methods. The SRT aims to provide a coordinated, focused approach to research in these areas, to facilitate publication of the findings in scientific journals and dissemination of the results to the equestrian world. This approach allows the SRT to act as a link between research, education and the industry. The trust supports research into all aspects of the interaction between the horse, saddle and rider. Areas of specific recent interest include studying welfare, performance and safety issues related to the use of a saddle, the role of the saddle in equine and human back problems, characterising behavioural issues of horses associated with saddle‐related discomfort, assessing the effects of saddle design on rider performance and health and designing saddles for disabled riders. Further information about the SRT is available on the website www.saddleresearchtrust.com . Sponsors of the conference were World Horse Welfare, a practical and forward‐thinking charity that believes in using scientific evidence to help guide its work, Amerigo saddlers, a company that advocates research as a basis for improving product design, the British Equestrian Federation (BEF) and Horse and Hound.  相似文献   

11.
It can be a challenge to find a conventional saddle that is a good fit for both horse and rider. An increasing number of riders are purchasing treeless saddles because they are thought to fit a wider range of equine back shapes, but there is only limited research to support this theory. The objective of this study was to compare the total force and pressure distribution patterns on the horse's back with conventional and treeless saddles. The experimental hypotheses were that the conventional saddle would distribute the force over a larger area with lower mean and maximal pressures than the treeless saddle. Eight horses were ridden by a single rider at sitting trot with conventional and treeless saddles. An electronic pressure mat measured total force, area of saddle contact, maximal pressure and area with mean pressure >11 kPa for 10 strides with each saddle. Univariate ANOVA (P<0.05) was used to detect differences between saddles. Compared with the treeless saddle, the conventional saddle distributed the rider's bodyweight over a larger area, had lower mean and maximal pressures and fewer sensors recording mean pressure >11 kPa. These findings suggested that the saddle tree was effective in distributing the weight of the saddle and rider over a larger area and in avoiding localized areas of force concentration.  相似文献   

12.
13.
The aim of this paper was to select atmospheric factors and their values, which may disrupt the correct behavior and physiological condition of recreational horses. The studies were carried out from 1 July until 1 September on 16 Anglo‐Arabian geldings. Each day, from 09.00 to 10.00 hours, the horses worked under saddle. The riders and the authors gave a qualitative behavioral assessment for each horse. Mood and willingness to work were evaluated. The quantitative assessment was called ‘incorrect behavior of the horse while riding’ (IBHR). The percentage time of duration and the number of occurrences of the features while riding were calculated. Heart rate, body temperature and respiratory rate were taken at 08.00 hours (resting measurement) and at 10.05 hours (post‐exercise measurement). Air temperature, relative air humidity, wind speed and atmospheric pressure were measured at 08.00 and 10.00 hours. The results showed that adverse changes in the behavior of recreational horses can occur if the horse is ridden when the air temperature is above 26°C and when wind speeds exceed 5.5 m/s. Such conditions may cause a reduction in the mood and willingness to work in horses. Physiological parameters like heart rate and body temperature seem to be more sensitive indicators of the horse body reaction to the weather than behavioral reactions.  相似文献   

14.
15.
Common causes of poor performance in horses include factors related to the horse, the rider and/or the saddle, and their interrelationships remain challenging to determine. Horse-related factors (such as thoracolumbar region pain and/or lameness), rider-related factors (such as crookedness, inability to ride in rhythm with the horse, inability to work the horse in a correct frame to improve core strength and muscular support of the thoracolumbar spine of the horse), and saddle-related factors (such as poor fit causing focal areas of increased pressure) may all contribute to poor performance to varying degrees.Knowledge of the horse–saddle–rider interaction is limited. Traditionally, saddle fit has been evaluated in standing horses, but it is now possible to measure the force and pressure at the interface between the saddle and the horse dynamically. The purpose of this review is critically to discuss available evidence of the interaction between the horse, the rider and the saddle, highlighting not only what is known, but also what is not known.  相似文献   

16.
A saddle that does not fit either a horse or a rider correctly has potentially far reaching consequences for both horse and rider health. The saddle should be assessed off and on the horse, without and with a rider. The fit of the saddle for both the horse and rider must be evaluated. A well‐fitted saddle should distribute weight evenly via the panels to the horse's thoracic region, with complete clearance of the spinous processes by the gullet. The saddle should remain fairly still during ridden exercise at all paces. The saddle must also fit the rider to enable them to sit in balance. Signs of an ill‐fitting saddle include equine thoracolumbar pain, focal swellings under the saddle, ruffling of the hair, dry spots under the saddle immediately after exercise surrounded by sweat, and abnormal hair wear. If a saddle does not fit the rider, the rider may not be able to ride in balance with the horse, and this may induce equine thoracolumbar pain. A saddle of inappropriate size and shape for the rider may induce rider back pain, ‘hip’ pain, sores under the ‘seat bones’ and perineal injuries.  相似文献   

17.
The socio-economic structure of the breeding farms of Franches-Montagnes horses (FM) in Switzerland is evaluated on the basis of an investigation carried out in 2002 by the Swiss FM breeding federation. Questionnaires were sent to 3500 of its members and the results include data from 968 breeding enterprises, housing a total of 3965 FM. The quality of the husbandry of FM varies according to factors such as the altitude and the geographical situation of the farms and studs. Socio-economic parameters, such as the role of FM in the business, their use (breeding, driving, riding) and the age and level of professional education of the owners may also have an effect on standards of husbandry. The results show that the owners for whom FM represent a source of income more frequently keep their horses in standing stalls, but give them more time to exercise at liberty than the horses belonging to amateur breeders. Younger and better educated breeders are more likely to house their animals in groups.  相似文献   

18.
19.
BackgroundThe clinical presentation of horses with back pain (BP) vary considerably with most horse''s willingness to take part in athletic or riding purpose becoming impossible. However, there are some clinical features that are directly responsible for the loss or failure of performance.ObjectivesTo investigate the clinical features of the thoracolumbar region associated with BP in horses and to use some of the clinical features to classify equine BP.MethodsTwenty-four horses comprised of 14 with BP and 10 apparently healthy horses were assessed for clinical abnormality that best differentiate BP from normal horses. The horses were then graded (0–5) using the degree of pain response, muscular hypertonicity, thoracolumbar joint stiffness and overall physical dysfunction of the horse.ResultsThe common clinical features that significantly differentiate horses with BP from non-BP were longissimus dorsi spasm at palpation (78.6%), paravertebral muscle stiffness (64.3%), resist lateral bending (64.3%), and poor hindlimb impulsion (85.7%). There were significantly (p < 0.05) higher scores for pain response to palpation, muscular hypertonicity, thoracolumbar joint stiffness and physical dysfunction among horses with BP in relation to non-BP. A significant relationship exists between all the graded abnormalities. Based on the cumulative score, horses with BP were categorized into mild, mild-moderate, moderate and severe cases.ConclusionsBP in horse can be differentiated by severity of pain response to back palpation, back muscle hypertonicity, thoracolumbar joint stiffness, physical dysfunctions and their cumulative grading score is useful in the assessment and categorization of BP in horses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号