首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
氟 对玉米产量品质及土壤性质的影响   总被引:1,自引:0,他引:1  
适量氟对动物和人类健康有益, 而过量氟对动物和人类健康有害。为研究氟对玉米产量品质及土壤性质的影响, 采用盆栽试验研究了添加0、100 mg·kg-1、200 mg·kg-1、500 mg·kg-1、1 000 mg·kg-1 和1 500 mg·kg-1 氟(NaF)对玉米产量、粗蛋白和淀粉含量及土壤pH、水溶性钙和微生物数量的影响。结果表明: 随氟处理浓度的增加玉米产量显著降低, 减产9.9%~85.4%; 玉米籽粒蛋白质含量显著增加, 从91.8 g·kg-1 增加到108.8 g·kg-1。加入氟100 mg·kg-1 和200 mg·kg-1 时, 淀粉含量表现为下降趋势,而当加入氟500 mg·kg-1、1 000 mg·kg-1 和1 500 mg·kg-1 时, 淀粉含量表现为上升趋势。玉米不同部位氟含量基本上随氟浓度的增加而增加, 玉米根部和籽粒含氟量与氟添加量的相关性达极显著水平, 相关系数分别为r=0.998**r=0.915**; 叶含氟量与氟添加量的相关性达显著水平, r=0.852*; 玉米不同部位氟含量的大小顺序为根>叶>叶鞘>茎>籽粒。氟浓度在200 mg·kg-1 时, 籽粒含氟量已超过无公害农产品标准1.0 mg·kg-1。石灰性土壤添加氟后, 可使土壤pH 增加,从8.05 增加到8.70; 水溶性钙含量显著下降, 由2.71 g·kg-1 下降到1.02 g·kg-1。随氟浓度的增加土壤放线菌数量显著降低, 与对照相比, 降低0.92%~65.22%; 低浓度的氟可以促进土壤细菌、真菌的生长, 而高浓度的氟可以抑制细菌、真菌的生长。  相似文献   

2.
以猪粪和秸秆为主要试验材料,添加不同浓度重金属Zn,采取发酵罐处理方法,在好氧高温条件下研究了重金属Zn对猪粪堆肥过程中多酚氧化酶、脱氢酶活性的变化,以及堆腐过程堆体温度、堆料pH值、胡敏酸E4/E6值的变化。结果表明:(1)低量重金属Zn处理(L)较不添加重金属Zn(CK)和添加高量重金属Zn(H)堆料升温快、温度高、高温持续时间长。(2)重金属Zn的加入对堆料的pH值影响不大,不是影响堆肥进程的直接原因。(3)H处理在整个堆肥过程中E4/E6值均高于L和CK,表明高浓度Zn处理抑制腐殖质的缩合和芳构化。(4)L处理的多酚氧化酶活性大多数时间高于H处理的活性,说明低量重金属Zn更好地促进了木质素的降解及其产物的转化。(5)从整个堆肥过程来看,3个不同处理的脱氢酶活性表现出一定的不稳定性,可能是重金属对脱氢酶活性有抑制作用的同时发生"抗性酶活性"现象。  相似文献   

3.
氟啶胺对土壤中蔗糖酶活性及呼吸作用的影响   总被引:5,自引:0,他引:5  
使用农药控制作物害虫和疾病可提高农业生产力, 然而农药的使用对土壤造成的污染已成为巨大且日益严重的问题。重复、广泛使用的农药进入土壤影响土壤生物、生物代谢及其生物活性, 已成为农业生态环境重要的研究内容。为了更好地了解氟啶胺对土壤微生物活性和土壤质量等潜在环境危险, 采用实验室模拟的方法研究了氟啶胺农药残留动态, 以及氟啶胺对土壤呼吸强度、蔗糖酶活性及其动力学和热力学特征参数的影响。结果表明: 高剂量(100 mg·kg-1)氟啶胺在土壤的降解速率常数最大, 氟啶胺在土壤中的半衰期范围为0.38~0.59 d。高剂量(50 mg·kg-1、100 mg·kg-1 和1 000 mg·kg-1)氟啶胺对土壤蔗糖酶表现出不同程度的抑制作用; 低剂量(1 mg·kg-1、5 mg·kg-1)处理表现为抑制-激活-抑制作用, 且波动范围较大; 10 mg·kg-1 氟啶胺对土壤蔗糖酶前期表现为抑制、后期表现为激活作用, 波动范围较大。不同浓度氟啶胺胁迫下蔗糖酶促反应的Michaelis 常数(Km)和最大反应速率(Vmax)发生改变, 但变化不大。土壤中氟啶胺浓度为1 mg·kg-1 时蔗糖酶所需的活化能(Ea)比CK 高, 其他浓度都低于CK; 5 mg·kg-1、10 mg·kg-1、50 mg·kg-1、100 mg·kg-1 和1 000 mg·kg-1 所需的活化焓变(ΔH)随氟啶胺的浓度降低而变小; 在相同温度下蔗糖酶的活化熵变(ΔS)表现为: 1 mg·kg-1G)变化差异较小; 320~330 K (开氏温度)时最大速度常数(Q10)最大, 而290~300 K 时Q10 较小。低剂量氟啶胺对土壤微生物呼吸作用的影响表现为随时间变化呈现抑制-激活趋势, 高低剂量表现为抑制作用。土壤微生物的呼吸活性因氟啶胺的加入而产生波动。本研究结果有助于进一步分析研究受农药污染土壤的质量和酶活之间的相关性。  相似文献   

4.
华北山前平原农田土壤肥力演变与养分管理对策   总被引:5,自引:1,他引:5  
通过对2000 年、2008 年栾城县农田土壤养分与1979 年土壤普查资料的比较, 分析了养分肥力指标的变化程度, 研究了30 年间该县农田土壤养分演变趋势及其原因, 提出了养分资源管理的相应对策。研究结果表明, 2008 年土壤肥力状况较2000 年和1979 年发生了明显变化, 土壤有机质、碱解氮、有效磷和速效钾含量均有显著提高(P<0.01), 碱解氮含量增加尤为显著。土壤碱解氮平均含量由1979 年的56.7 mg·kg-1 增加到2000 年的80.0 mg·kg-1 和2008 年的109.1 mg·kg-1, 1979~2000 年间土壤碱解氮以每年1.1 mg·kg-1 的平均速度增长, 年均增长率1.9%, 增幅41.1%; 进入21 世纪后, 增长速度明显加快, 2000~2008 年间以每年3.6 mg·kg-1的平均速度增长, 年均增长率4.5%, 增幅为36.4%。土壤有机质由1979 年的11.6 g·kg-1 增加到2008 年的18.8g·kg-1, 平均每年以0.24 g·kg-1 的速度增长, 年均增长率为2.1%, 增幅为62.1%。30 年间土壤有效磷含量由17.5mg·kg-1 增加到24.7 mg·kg-1, 增加幅度为41.1%。由于受到"北方石灰性土壤不缺钾"的观点影响, 20 世纪该区域农民很少施用钾肥, 1979~2000 年间土壤速效钾含量呈下降趋势, 由140.6 mg·kg-1 下降到111.4 mg·kg-1, 下降幅度20.8%; 进入21 世纪, 由于秸秆还田措施的实施和含钾肥料的施用, 至2008 年全县土壤速效钾平均含量又回升到149.5 mg·kg-1。栾城县农田土壤肥力水平较高, 生产潜力大, 该区域农田养分管理应以氮素的精确管理为核心, 以实现作物持续高产稳产与环境保护相协调为目标, 氮肥管理推行实时诊断与推荐施肥技术,磷钾肥实施恒量监控储备施用技术, 推广秸秆直接还田, 实行有机无机相结合的培肥措施。  相似文献   

5.
脲酶抑制剂NBPT对鸡粪好氧堆肥的保氮效果   总被引:2,自引:0,他引:2  
利用堆肥反应器, 以鸡粪和蘑菇渣为原料进行好氧堆肥, 在堆肥中添加不同浓度的脲酶抑制剂NBPT, 研究其对堆肥氮素转化的影响及保氮效果。结果表明: 添加不同浓度的脲酶抑制剂NBPT对堆肥进程中温度无显著影响, 在堆肥的高温阶段可有效控制堆料pH的升高, 在堆肥高温前期的0~10 d可有效降低堆肥的脲酶活性, 在堆肥中后期10~25 d明显提高全氮含量。堆肥25 d后, 添加0.04 mL·kg-1、0.08 mL·kg-1、0.16 mL·kg-1脲酶抑制剂NBPT分别比CK减少氮素损失6.61%、4.89%和13.51%。堆肥过程中, 堆料铵态氮含量呈升-降-升-降的双峰趋势, 且大部分时间CK处理的铵态氮含量高于添加脲酶抑制剂NBPT处理, 且CK处理铵态氮的两次升高速度均高于添加脲酶抑制剂NBPT处理。在堆肥的升温和高温期硝态氮含量不稳定, 但堆肥结束时, 各添加脲酶抑制剂NBPT处理的硝态氮含量显著高于CK处理。本试验结果表明, 在堆肥过程中添加脲酶抑制剂NBPT可延缓鸡粪中的尿素态氮向铵态氮的转化, 增加堆肥成品中的硝态氮含量。在畜禽粪好氧堆肥中加入脲酶抑制NBPT可起到一定的保氮作用。  相似文献   

6.
铜和维生素A 及其互作效应对肉鸡免疫功能的影响   总被引:1,自引:0,他引:1  
采用4×2(铜×维生素A)完全随机试验设计, 研究了日粮添加不同水平的铜(0 mg·kg-1、8 mg·kg-1、150 mg·kg-1、225 mg·kg-1)和维生素A(1 500 IU·kg-1、5 000 IU·kg-1)对肉仔鸡不同生长阶段(0~4 周龄和5~7 周龄)免疫功能的影响。结果表明: 添加铜为8 mg·kg-1 时, 肉鸡生长前期(0~4 周龄)可显著(P<0.05)或极显著(P<0.01)提高肉鸡脾脏活化T 淋巴细胞百分率和血清抗体效价, 生长后期(5~7 周龄)可极显著(P<0.01)或显著(P<0.05)提高脾脏、胸腺、盲肠扁桃体活化T 淋巴细胞百分率和外周血液中活化T、B 淋巴细胞百分率; 整个试验期添加高铜(150 mg·kg-1、225 mg·kg-1)时, 活化T、B 淋巴细胞百分率均不同程度下降。添加维生素A 5 000 IU·kg-1 时, 肉鸡生长前期可显著(P<0.05)提高其外周血液中活化T 淋巴细胞百分率, 生长后期可极显著(P<0.01)或显著(P<0.05)提高脾脏、盲肠扁桃体活化T 淋巴细胞百分率和血清抗体效价。铜和维生素A 互作效应对肉鸡生长前期的活化T、B 淋巴细胞百分率和血清抗体效价影响不显著, 对生长后期的外周血液、胸腺、盲肠扁桃体活化T 淋巴细胞百分率影响显著(P<0.05), 以8 mg·kg-1 铜× 5 000 IU·kg-1 维生素A 处理最高; 以上结果提示铜和维生素A 对肉鸡免疫功能的影响存在互作效应。  相似文献   

7.
不同改良剂对镉污染土壤中小白菜吸收镉的影响   总被引:15,自引:0,他引:15  
采用盆栽试验, 研究了施用石灰、钙镁磷肥、泥炭、碱渣4种土壤改良剂对外加镉污染的赤红壤上小白菜产量、镉吸收量、土壤有效态镉及pH的影响。结果表明: 外加1 mg·kg-1和5 mg·kg-1镉对小白菜生物量无显著影响, 且1 mg·kg-1镉对小白菜生长有一定的促进作用; 施用改良剂对镉污染土壤上小白菜无显著增产效果。施用4种改良剂均能降低小白菜地上部镉含量, 作用效果为石灰≈泥炭>碱渣>钙镁磷肥。不同改良剂对小白菜根部镉含量影响不同, 泥炭和石灰在所有镉浓度下、钙镁磷肥在0和1 mg·kg-1镉浓度下可显著降低根部镉含量, 而碱渣无明显作用, 种植两茬规律一致。土壤有效态镉含量与pH呈显著负相关; 施用石灰、碱渣、钙镁磷肥使土壤pH显著升高, 有效态镉含量显著降低, 从而降低小白菜对镉的吸收; 泥炭可显著提高土壤pH, 虽降低土壤有效态镉作用效果不显著, 但显著降低小白菜体内镉含量, 这可能与土壤中形成难以被植物吸收的镉有机结合物有关。两茬蔬菜种植结果显示, 施用后期改良剂对镉污染的抑制效果也较明显。  相似文献   

8.
通过向堆肥中添加微生物菌剂和腐熟堆肥研究了其对堆肥腐熟速度的影响。结果表明,添加菌剂和腐熟堆肥在堆制初期均能促进堆体快速升温,较对照提前1~4d到达高温阶段(>50℃),且菌剂添加量越大,升温越快;与对照相比,添加600mg·kg-1菌剂和50g·kg-1腐熟堆肥使高温期(>50℃)延长了3~4d。堆制29d后,添加600 mg·kg-1菌剂和50 g·kg-1腐熟堆肥的处理均较好腐熟,种子发芽指数分别为92.1%和84.4%,其他处理则未达到腐熟。这表明向堆肥中接入一定量的菌剂和腐熟堆肥均可加快堆肥腐熟,缩短堆肥周期。  相似文献   

9.
黄淮麦区小麦籽粒锌含量差异原因与调控   总被引:1,自引:1,他引:1  
小麦高产优质生产对保障我国粮食安全和人们营养健康有重要意义。通过实地调研和取样分析,研究了黄淮麦区276个田块的小麦籽粒锌含量与产量和产量构成、施肥和土壤养分、作物锌吸收利用等参数的关系。结果表明,黄淮麦区缺锌和非缺锌土壤的比例分别为42%和58%,两种土壤上的小麦籽粒锌含量分别介于16~52和17~58 mg·kg-1,分别有7%和9%样本的籽粒锌达到推荐值40 mg·kg-1。缺锌田块,籽粒锌含量与磷肥用量(r = -0.273,P < 0.01)、0~20 cm土壤有效磷(r= -0.283,P < 0.01)显著负相关,高低籽粒锌组的磷肥用量分别为73和137 kg·hm-2,土壤有效磷分别为13和20 mg·kg-1,有效锌分别为0.8和0.7 mg·kg-1,但籽粒产量低于非缺锌土壤(7 204 和7 857 kg·hm-2)。非缺锌田块,籽粒锌含量与磷肥用量显著负相关(r= -0.181,P < 0.05),与0~20 cm(r= 0.236,P< 0.01)和20~40 cm(r= 0.183,P < 0.05)土壤有效锌显著正相关,高低锌组的磷肥用量分别为112和145 kg·hm-2,0~20 cm的土壤有效磷分别为29和30 mg·kg-1,有效锌分别为3.3和2.2 mg·kg-1。因此,在缺锌土壤上,应首先解决土壤缺锌问题,将有效锌提升至临界值1.0 mg·kg-1以上,非缺锌土壤有效锌保持在3.0 mg·kg-1以上,同时适当减少磷肥用量和降低土壤有效磷水平,以减少磷对小麦锌吸收的负面影响,维持黄淮麦区小麦高产并改善籽粒锌营养。  相似文献   

10.
高阳县农田土壤速效养分空间变异特征研究   总被引:10,自引:0,他引:10  
土壤养分空间变异的研究对指导测土配方施肥具有重要意义。为了便于土壤养分的管理, 以河北省保定市高阳县为例, 应用地统计学和GIS相结合的方法, 研究了农田土壤速效氮、磷、钾含量的空间变异特征。结果表明: 土壤速效氮、磷、钾的含量范围分别为10.50~210.00 mg·kg-1、1.02~197.75 mg·kg-1和14.51~376.18 mg·kg-1, 平均值分别为76.32 mg·kg-1、22.28 mg·kg-1和128.34 mg·kg-1, 变异系数范围为36.11%~79.71%, 属于中等强度变异。速效氮、磷、钾的C0/(C0+C)值均介于25%~75%, 表现出中等强度的空间自相关, 空间变异是结构因素和随机因素共同作用的结果, 空间相关距离分别为43.96 km、1.05 km和51.94 km。通过插值误差的比较得出最优拟合模型, 速效氮、磷、钾最好的理论模型分别为球状模型、指数模型和球状模型, 趋势效应参数宜选取0阶。然后用普通克里格方法绘制了土壤速效氮、磷、钾的空间分布图, 速效氮含量绝大部分属低等水平, 无明显分布特征, 速效磷空间分布呈条带状, 速效钾空间分布呈条带状和岛状分布相结合的特点。  相似文献   

11.
The purpose of this study was to assess the spatial variability of the activity of three hydrolytic enzymes, i.e. urease activity (UAc), alkaline phosphatase activity (APAc), and arylsulfatase activity (ASAc), in pasture topsoils using geostatistics. Enzyme activities along a transect in a 1.35-ha pasture were determined using 77 soil samples from the upper 20 cm of soil. UAc varied from 101.0 to 182.7 μg N g−1 soil h−1; APAc varied from 1.56 to 3.62 μg p-nitrophenol g−1 soil h−1; and ASAc varied from 1.50 to 3.26 μg p-nitrophenol g−1 soil h−1. The linear models fit the best semivariogram models for UAc, APAc, and ASAc. Semivariograms for enzyme activities exhibited spatial dependence with ranges of influence of approximately 124.7 m.  相似文献   

12.
Metsulfuron-methyl is one of the widely used sulfonylurea herbicides. However, approximately half of the applied metsulfuron-methyl may remain as bound residues in soil. To characterize the response of rice plants to residual metsulfuron-methyl in soil, the activities of acetolactate synthase (ALS), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were investigated in two rice varieties that differed in susceptibility to the herbicide. Changes in the activity of these enzymes in leaves and roots of Xiushui 63, a sensitive rice variety, were greater than those in a resistant variety Zhenong 952. Irrespective of variety, changes in the enzyme activity were greater in the roots than in the leaves. The activities of ALS and CAT decreased, while the SOD activity increased with the increase in the amounts of bound residues of metsulfuron-methyl (BRM) in soil. The POD activity increased at the BRM level of 0.025 mg kg^-1, but decreased at the BRM level of 0.05 mg kg^-1. The results showed that the bound residues of sulfonylurea herbicides may affect metabolism of rice plants.  相似文献   

13.
Plant functional traits are useful tools for understanding plant impacts on soil nitrogen (N) mineralization. The objective of this study was to examine the root traits that govern the influence of Pisum sativum L. on potential protease and ammonification activities, which are two key microbial activities involved in N mineralization. Ammonification activity was greater during pea reproductive than vegetative stages, whereas potential protease activity did not vary along pea development. Ammonification activity was more strongly affected by root architecture traits (total root length and percentage of fine roots) than by root growth traits (root dry matter content). Pea root traits appear to affect ammonification activity in a complex manner involving variations in rhizodeposition that modulate carbon and N availability for soil microorganisms.  相似文献   

14.
Microorganisms rely on extracellular enzymes to break down insoluble organic polymers such as cellulose, protein, and chitin into smaller units for uptake. Our objective was to investigate the factors affecting the relationship between soil extracellular enzyme activities and C and N turnover. Several aerobic incubations were carried out with ammonium (NH4+) and proteins as N sources and cellulose as the main C source. Cellulase (exocellulase and β-glucosidase) activity was positively correlated with the amount of cellulose added, as well as with the availability of N. A decrease in the C to N ratio of the amendments from 40 to 10 resulted in an increase in exocellulase and β-glucosidase activity of 18% and 10%, respectively. Similarly, the activity of protease initially depended on the amount and kind of protein added; later, however, an increase in carbon availability resulted in an elevated protease activity. Initially, protease and cellulase activity were induced by their corresponding substrates and an increase in activity of both enzymes resulted in a proportional increase in carbon dioxide (CO2) evolution. Over time, however, the level of enzyme activity became increasingly determined by factors other than substrate availability. In addition, N turnover, while initially determined by the amount and kind of N source added, became increasingly dominated by the C to N ratio of the substrates added. Our study showed that even though enzyme activities alone may not be sufficient to describe the decomposition process, they can yield valuable information about the availability of specific organic compounds and their degradation over time.  相似文献   

15.
Application of biochar to soil has increased considerably during recent years because of its effectiveness as a soil amendment causing beneficial effects on soil health. However, the effects have been reported to vary and depend upon types of feedstock and pyrolysis conditions during biochar production. Therefore, characterization of biochar is extremely important for its efficient utilization as a soil amendment. In the present study, biochar was prepared from agro-industrial by-products (rice husk and sugarcane bagasse) and weeds (Parthenium and Lantana) under similar pyrolysis conditions. Lantana biochar (LBC) showed the highest pH (10.4) while the lowest value (8.5) being recorded in rice husk biochar (RHBC). The energy-dispersive X-ray spectroscopy (EDS) analysis indicated that LBC and Parthenium biochar (PBC) were superior with respect to potassium (K) content than sugarcane bagasse biochar (SBBC) and RHBC. The Fourier-Transform Infrared Spectroscopy (FTIR) study exhibited the existence of different functional groups in biochar. All the biochar treated soils showed significantly higher microbial activities with different degrees. Application of LBC and PBC at 4.50 g kg?1 soil significantly increased K availability in soil. Lantana biochar and PBC amended the soil at 9 g kg?1 significantly increased the soil pH thus makes these biochar as potential liming materials.  相似文献   

16.
Enzyme activities play an important role for the transformation of elements and compounds in soil and, thus, were extensively analyzed for more than 4 decades. The activity of any enzyme in soil may not only be controlled by active organisms. Substantial parts of ‘extracellular’ enzymes may be stabilized by abiotic soil components maintaining their activity. Methods to discriminate the source of enzyme activity were summarized with emphasis on the approach plotting enzyme activity versus a feature integrating the microbial biomass after the addition of glucose and nitrate. Considering the quotient between enzyme activity and microbial biomass content, protease activity will be discussed with reference to nitrogen transformation in soils.  相似文献   

17.
Several chemical and microbial properties of mine soils need to be measured for comprehensive assessment of the reclamation success. The objective of this study was to evaluate the ability of NIR spectroscopy to predict organic C (Corg), total N (Nt), and several microbial properties of mine soils reclaimed for forestry. Soils samples (n = 154) were collected at two reclaimed areas in central and S Poland, and their spectra in the NIR region (including the visible range, 400–2500 nm) were recorded. A half of the samples was used to develop calibration equations, and another half was used for validation. The modified partial least squares regression was applied to build calibration equations using the whole spectrum (0 to 2nd derivative). The best predictions were obtained for Corg and Nt (ratio of standard deviation to standard error of prediction in the validation stage [RPD] = 3.4 and 4.1; the regressions coefficients [a] of linear regression [measured against predicted values] = 0.94 and 0.96; correlation coefficients [r] = 0.96 and 0.97, respectively). Very well predictive models applicable for quantitative measurements were obtained also for microbial biomass, basal respiration, and the activities of dehydrogenase and acid phosphatase (RPD = 2.3–2.5, a = 0.90–0.99, r = 0.90–0.92). Prediction of urease activity was slightly worse (RPD = 2.1, a = 0.88, r = 0.87) but sufficient for rough estimation. The obtained results indicated the ability of NIR spectroscopy to predict complex soil microbial properties. Therefore, application of this analytical method may improve the assessment of recovery of microbial functions in reclaimed post‐mining barrens.  相似文献   

18.
Summary In Ap horizons of typical arable soils under cereals in Northwest Germany, biological activity was estimated by measuring microbial activity. Twelve soils on local farms and six soils on a research farm were analysed. Microbial biomass, dehydrogenase activity, and alkaline phosphatase activity were compared with the biological availability of P, an index describing the relationship among several P fractions that has been used in ecological agriculture. The correlation between the microbial biomass and dehydrogenase and alkaline phosphatase activity was strong but the correlation between the biological availability of P and the enzyme activities was weak. In contrast, in the farm fields, there was a significant correlation between the microbial biomass and the biological availability of P. The correlation between the biological availability of P and pH was highly significant (r=0.65–0.93***). Explanations for these correlations are discussed and proposals for further investigations are made. (1) Is the pH effect a direct chemical one or an indirect biological one? (2) Which soil organisms affect the biological availability of P in contrast to the microbial biomass, dehydrogenase activity, and alkaline phosphatase activity? (3) Is the method suitable for the investigation of all arable soils?  相似文献   

19.
Bush tea (Athrixia phylicoides DC.) is a popular aromatic plant, indigenous to South Africa. For many decades, indigenous people have widely consumed the tea as a healthy beverage and a medicine. The objective of the study was to investigate the influence of nitrogen fertiliser application on the quality, pharmacological activities and metabolite profiles of the leaves and twigs of bush tea cultivated under greenhouse and field conditions. Treatments consisted of 0, 75, 150, 225, 300 and 375?kg/ha N, arranged in a randomised complete block design with five replicates. Parameters measured were leaf tissue nitrogen, total polyphenols, total flavonoids, total tannins, total antioxidants, antimicrobial activity and cytotoxicity. In addition, metabolites were identified and measured using gas chromatography linked to mass spectrometry (GC-MS) and liquid chromatography linked to mass spectrometry (LC-MS). The results of this study showed a significant quadratic response of total polyphenols, total flavonoids, total tannins and total antioxidants of bush tea leaves and twigs, irrespective of the growth environment ranging from 150 to 225?kg/ha N. The results further suggested that, despite the growing environment, nitrogen treatments did not improve the minimum inhibition concentration and minimum microbicide concentration of bush tea with extract concentrations ranging from 25.0 to 3.1?mg/g. Bush tea was found to be non-toxic (IC50 above 100) under both growing conditions, irrespective of nitrogen treatments. Despite trials being conducted under greenhouse and field conditions and with different nitrogen treatments, there were no distinct differences regarding the gas chromatography linked to mass spectrometry and liquid chromatography linked to mass spectrometry compounds. The future aims of the study are to investigate the effects of nitrogen fertilisation, the timing of nitrogen fertilisation and the planting density on the yield, quality, plant metabolites and pharmacological activity of field-grown bush tea.  相似文献   

20.
Ammonium (NH4+), an important nitrogen (N) source for microorganisms, is assimilated via two major pathways. One route is catalyzed by glutamate dehydrogenase (GDH), while the other mechanism involves two enzymes, glutamine synthetase (GS) and glutamate synthase (GOGAT). The GS/GOGAT enzyme system requires more energy to operate, but has a much higher affinity for NH4+ than GDH. We describe procedures to determine potential GS and GDH activity in soil samples. GS and GDH are intracellular enzymes. We used chloroform fumigation to make cell membranes permeable for substrates and products of the enzymes. Fumigation for 4 h increased GS activity almost ten-fold compared to the unfumigated control. Under optimized assay conditions, GS activity increased linearly for at least 80 min, indicating that the substrates were not limiting. In contrast to what was found for GS activity, direct addition of substrates to the soil to assay GDH activity did not result in a linear increase in GDH activity over time. A linear response for 3 h, however, resulted when the soil samples were first extracted with buffer solution and the reagents were added after centrifugation. The differences between the assays explain why fumigation for 3 d prior to the assay increased GDH activity by only 60%. In a microcosm study with glucose and NH4+ addition, the activity of the two enzymes depended on the carbon (C) to N ratio of the amendment. With increasing C to N ratios from 5 to 120, GS activity doubled, while C to N ratios higher than 120 did not further increase GS activity. In contrast, GDH activity decreased by 13% with increasing C to N ratios from 5 to 200. The GDH to GS activity ratio in soil may therefore yield valuable information about the availability of N relative to C at a specific time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号