共查询到12条相似文献,搜索用时 62 毫秒
1.
抽穗扬花期高温对水稻重组自交系群体RIL47结实率的影响 总被引:3,自引:0,他引:3
以水稻重组自交系群体RIL47 的254 个株系为材料, 在抽穗扬花期于逆境气候鉴定室进行高温处理,并设自然常温对照, 研究了高温对RIL47 群体结实率的影响。结果表明, 自然条件下该群体结实率正常且呈正态分布; 而高温处理下RIL47 群体结实率极显著下降, 平均降幅达81.6%, 结实率下降绝对值符合正态分布。同时, 以热害指数为筛选指标, 从RIL47 中筛选出5 个耐高温株系(07H1619、1590、1521、1706、1608)和3个高温敏感株系(07H1751、1710、1719), 可用于水稻抗高温相关研究。 相似文献
2.
利用经过校准和验证的CERES-Rice模型结合CMIP3数据下的A2和A1B两种方案2020s时段天气数据,通过改变播期(提前6d、12d、18d,推迟6d、12d、18d)和品种耐高温系数G4(G4=1.03、1.06、1.09、1.12、1.15),研究江苏地区孕穗-抽穗期水稻对高温热害的适应性。结果表明:(1)播期提前12d和18d,水稻生育期和开花期延长,与基准期(1961-1990年)相比,其产量增加较多;相反,播期推迟,水稻产量均以降低为主,生育期和开花期缩短。A1B情景下高邮增产最多,达13%,A2情景下吕泗增产最多,为14%。(2)当水稻耐高温系数G4值在1.09~1.15时,所有站点均增产,A1B情景下高邮增产最多,为11%,A2情景下赣榆增产最多,为7%,生育期和开花期均以延长为主。(3)采取播期提前12d同时改变品种参数G4为1.1时,产量增加最明显。可见,将播期适当提前并提高品种的耐高温系数可以提高水稻对高温热害的适应能力,研究结果对未来江苏水稻生产具有一定指导意义。 相似文献
3.
喷施钾钙硅制剂改善高温胁迫水稻叶片光合性能提高产量 总被引:1,自引:0,他引:1
为探明喷施钾、钙和硅制剂对高温热害下水稻光合作用及产量的调控效应,以水稻品种陵两优268为研究对象,持续3 d对叶片分别喷施22.04 mmol/L KH2PO4溶液(T1)、20.0 mmol/L CaCl2溶液(T2)和2.5 mmol/L Na2Si O3·9H 2O溶液(T3),以喷施蒸馏水为对照(CK),测定了3种制剂预处理后对高温胁迫(日均气温35℃)下水稻剑叶光合、荧光参数和产量的影响,并用隶属函数法综合评价了钾、钙和硅制剂处理的水稻剑叶光合作用抗高温能力。结果表明:喷施钾、钙、硅制剂均能提高高温胁迫下水稻的产量,T1、T2和T3分别比CK增产42.67%、29.70%和20.01%(P0.05)。与CK相比,在高温胁迫处理第5 d和高温结束后的第5 d,喷施钾、钙、硅制剂皆可提高水稻剑叶光饱和点、最大净光合速率(Pmax)(P0.05)、光适应下光系统Ⅱ最大光化学效率(Fv?/Fm?)(P0.05)、光系统Ⅱ实际光化学效率(ΦPSⅡ)和光化学猝灭系数(qP),降低非光化学猝灭系数(non-photochemical quenching coefficient, NPQ)(P0.05),叶片光合活性高;钾、钙、硅制剂对提高水稻剑叶光合性能抗高温的能力大小依次为T1T2T3,以喷施22.04mmol/LKH2PO4溶液效果最好,喷施20.0 mmol/L CaCl2溶液次之。 相似文献
4.
Denitrification losses from puddled rice soils in the tropics 总被引:4,自引:0,他引:4
Summary Although denitrification has long been considered a major loss mechanism for N fertilizer applied to lowland rice (Oryza sativa L.) soils, direct field measurements of denitrification losses from puddled rice soils in the tropics have only been made recently. This paper summarizes the results of direct measurement and indirect estimation of denitrification losses from puddled rice fields and reviews the status of research methodology for measurement of denitrification in rice fields. The direct recovery of (N2+N2O)-15N from 15N-enriched urea has recently been measured at sites in the Philippines, Thailand, and Indonesia. In all 12 studies, recoveries of (N2+N2O)-15N ranged from less than 0.1 to 2.2% of the applied N. Total gaseous N losses, estimated by the 15N-balance technique, were much greater, ranging from 10 to 56% of the applied urea-N. Denitrification was limited by the nitrate supply rather than by available C, as indicated by the values for water-soluble soil organic C, floodwater (nitrate+nitrite)-N, and evolved (N2+N2O)-15N from added nitrate. In the absence of runoff and leaching losses, the amount of (N2+N2O)-15N evolved from 15N-labeled nitrate was consistently less than the unrecovered 15N in 15N balances with labeled nitrate, which presumably represented total denitrification losses. This finding indicates that the measured recoveries of (N2+N2O)-15N had underestimated the denitrification losses from urea. Even with a probable two-or threefold underestimation, direct measurements of (N2+N2O)-15N failed to confirm the appreciable denitrification losses often estimated by the indirect difference method. This method, which determines denitrification losses by the difference between total 15N loss and determined ammonia loss, is prone to high variability. Measurements of nitrate disappearance and 15N-balance studies suggest that nitrification-denitrification occurs under alternate soil drying and wetting conditions both during the rice cropping period and between rice crops. Research is needed to determine the magnitude of denitrification losses when soils are flooded and puddled for production of rice. 相似文献
5.
水稻对氮素的吸收、分配及其在组织中的挥发损失 总被引:20,自引:5,他引:20
应用15N示踪技术研究了水稻不同生育期吸收的15N在各器官中的分配,以及后期植物组织中的挥发损失。结果发现,水稻在分蘖期吸收的氮量少于在幼穗分化期吸收的氮量;在分蘖期吸收的15N,标记结束时氮素主要分配于水稻的叶片中,至成熟期15N有39%转运至水稻子粒中;水稻在幼穗分化期吸收的15N,标记结束时氮素主要分配在水稻茎和叶鞘中,至成熟期15N有46%转运至水稻的子粒中;水稻在分蘖期和幼穗分化期吸收的氮素在后期可以通过植株组织挥发损失,至成熟期损失的比例分别达16.7%和13.4%。 相似文献
6.
酸性水稻土上水稻对硅、钾、钙、镁的吸收及其动力学研究 总被引:5,自引:2,他引:5
运用盆栽试验研究了南方稻区酸性水稻土上增施硅(Si)、钾(K)、钙(Ca)、镁(Mg)肥对水稻产量的影响及其水稻对Si、K、Ca、Mg的吸收。结果表明,在酸性水稻土上增施Si、K、Ca、Mg肥及其配合施用均具有显著的增产效益,能明显地提高水稻对该种元素吸收速率和总吸收量。施Si肥主要是增加了水稻后期对Si的吸收,使水稻成熟期能保持较高的Si含量;施用K肥使水稻在移栽后能较长时间内保持较高的K吸收速率;施Ca、Mg肥能使水稻保持较高的Ca吸收速率;K和Ca之间存在不同程度的交互作用。扩散方程、Elovich方程和多项式方程均能很好地描述水稻生长期内水稻对Si、K、Ca、Mg的吸收过程。可用扩散方程和Elovich方程的参数b值来评价水稻对Si、K、Ca、Mg吸收速率。 相似文献
7.
为实现农业废弃物的资源化利用,该文以稻壳为原料、K2CO3为活化剂制备稻壳基活性炭。采用Plackett-Burman(P-B)和中心复合设计(central composite design,CCD)法对影响稻壳基活性炭得率和碘吸附性能的5个工艺因素进行筛选和优化,确定样品得率和碘吸附值的预测模型,并进行验证。结果表明,所建立的稻壳基活性炭得率和碘吸附值回归方程的决定系数R2分别为0.90和0.85,影响样品得率的主要因素为:活化温度活化时间K2CO3浓度,影响样品碘吸附值的主要因素为:活化温度K2CO3浓度活化时间,浸渍体积比和浸渍时间影响不显著;经CCD法建立的稻壳基活性炭得率和碘吸附值的预测模型极显著(P0.0001,P0.01),决定系数R2可达0.92和0.90,活化温度和活化时间之间存在较强的交互作用。优化后的工艺条件为:活化温度1029.17 K、K2CO3浓度1.95 mo L/L、活化时间1.17 h、浸渍体积比3,浸渍时间11 h,其得率和碘吸附值的预测值分别为13.61%、1058.83 mg/g,与实测值(14.53%、1021.30mg/g)的误差仅为6.33%、3.67%,拟合性良好,说明运用CCD法对稻壳基活性炭制备工艺的优化是准确可靠的。该结果可为K2CO3活化法制备稻壳基活性炭的工业化生产提供一定的参考。 相似文献
8.
Kim KS Hwang HG Kang HJ Hwang IK Lee YT Choi HC 《Journal of agricultural and food chemistry》2005,53(22):8745-8751
The ultrastructures of isolated starch granules from Ilpumbyeo (IP), a low-amylose japonica rice, and its mutant, Goami2 (G2), a high-amylose rice, which have extreme contrasts in physicochemical properties, cooking qualities (Kang, H. J.; Hwang, I. K.; Kim, K. S.; Choi, H. C. Comparative structure and physicochemical properties of Ilpumbyeo, a high-quality japonica rice, and its mutant, Suweon 464. J. Agric. Food Chem. 2003, 51, 6598-6603. Kim, K. S.; Kang, H. J.; Hwang, I. K.; Hwang, H. G.; Kim, T. Y.; Choi, H. C. Comparative ultrastructure of Ilpumbyeo, a high-quality japonica rice, and its mutant, Suweon 464: Scanning and transmission electron microscopy studies. J. Agric. Food Chem. 2004, 52, 3876-3883), and susceptibility to amylolytic enzymes (Kim, K. S.; Kang, H. J.; Hwang, I. K.; Hwang, H. G.; Kim, T. Y.; Choi, H. C. Fibrillar microfilaments associated with a high-amylose rice, Goami2, a mutant of Ilpumbyeo, a high-quality japonica rice. J. Agric. Food Chem. 2005, 53, 2600-2608), were compared. In isolated preparation, IP consisted entirely of well-separated individual starch granules (ISG), whereas G2 consisted of two populations, the large voluminous bodies and the smaller forms, the ISGs. High-voltage electron microscopy revealed that each of the voluminous bodies consisted of tightly packed smaller subunits, the ISGs, indicating that they represent the compound starch granules (CSGs) of G2. This suggests that the structural as well as functional unit of G2 involved in food processing is, unlike IP and other ordinary rices, not ISG but is primarily CSG. ISGs located at the periphery of CSGs were fused to each other with adjacent ones forming a thick band or wall encircling the entire circumference. The periphery of ISGs separated from CSGs of G2 consisted of thin radially oriented filaments arranged side by side along the entire granule surface, whereas no such filaments occurred in ISG of IP. It appears that the thick band and the peripheral filaments surrounding CSGs and ISGs, respectively, function as a structural barrier that limits the entrance of water into the granules and subsequent absorption, causing the low swelling power, incomplete gelatinization, and finally poor quality of cooked rice in G2. 相似文献
9.
Effect of different methods of land preparation on runoff, soil and nutrient losses from a Vertisol in the Ethiopian highlands 总被引:1,自引:0,他引:1
Abstract. Vertisols are among the most common, high-potential soils in the central highlands of Ethiopia, where over 88% of human and 77% of the livestock population are located. Productivity from these soils is constrained by severe waterlogging due to their physical properties and intensive rainfall in summer. Traditionally, farmers plant late in the season to avoid the waterlogging, which results in harvest yields that are far below optimal. To bridge this yield gap, the broad-bed and furrow system for surface drainage has been introduced. Despite reported yields of various crops, little is known of the on-site and off-site impacts of this system. Consequently, four land preparation methods viz. (i) broad-bed and furrow (BBF), (ii) green manure (GM), (iii) the traditional system of ridge and furrow (RF) and (iv) reduced tillage (RT) were compared on standard runoff plots for 5 years (1998–2002) at Caffee Doonsaa in the central Highlands of Ethiopia. Runoff, sediment, organic carbon and nutrient (organic nitrogen and available phosphorus) losses were determined during the last two years (2001 and 2002). Over 50% of the seasonal rainfall was lost as runoff, regardless of the treatment, with significantly more of the excess water running off BBF and RT treatments in both years. The BBF system drained 67% and 54% of rainfall as runoff in 2001 and 2002, respectively, compared with 61% and 53% from the RT system during the measurement period. Although not statistically significant, the largest sediment and total nutrient losses tended to be from the BBF. The effect of the treatments on total nutrient loss and enrichment ratio was inconsistent. The nutrient concentration in the eroded sediment was greater than that of the originating surface soil but was strongly correlated. The effect of the land preparation methods was significant and varied with crops. Recommended options for best crop productivity are BBF for lentil and RT for wheat and tef. 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(10):993-1004
Abstract Plots from a N, P, and K field fertility experiment were soil sampled each spring and fall from 1971 to 1979 to study the effect of cropping and different rates of added P and K on the content of available soil P and K (Bray I). Phosphorus and K fertilization was in the spring after soil sampling and before planting in 1971, 1972,and 1973 and in the fall after sampling in 1974, 1975, 1976, 1977, and 1978. Over the 8‐year period, available soil P increased 1 kg/ ha for every 2.3 kg/ha of added P; while available soil K increased 1 kg/ha for every 5.7 kg/ha of added K. However, within a growing season and between growing seasons, contents of available soil P and K showed cyclic patterns, increasing and decreasing to a greater extent than the long‐term response. Changes in available P and K from spring to fall and from fall to spring are presented. Variability in the content of available soil P and K for 32 plots receiving a similar treatment of either P or K was greater for P as compared to K. 相似文献
11.
四川省水稻高温热害风险及灾损评估 总被引:2,自引:3,他引:2
高温热害是四川省最主要的农业气象灾害之一,研究高温热害对水稻的影响对于四川省农业可持续发展、保障水稻的安全生产具有重要意义。本文以1981—2015年四川省84个气象台站的逐日气象资料、农业气象观测站水稻生育期资料和县级水稻产量资料为基础,利用水稻高温热害指数,构建四川省水稻关键生育期和全生育期综合高温热害风险模型;分离水稻气象产量,建立高温热害影响下水稻气象产量与高温热害指数间的统计模型,开展1981—2015年四川省水稻高温热害风险和灾损评估。研究结果表明:四川省水稻抽穗扬花期,高温热害较高风险区和高风险区主要集中在盆地东北大部和盆地南部的个别地区,其中达州、广安和泸州的部分地区为高风险区。而低风险区主要分布在盆地西部、南部和川西南的大部地区。灌浆结实期,水稻高温热害较高风险区和高风险区主要集中在盆地东北和盆地南部的大部分地区,其中泸州大部、南充和宜宾的个别地区为高风险区。而低风险区主要分布在盆地北部、西部和川西南的大部地区。水稻全生育阶段高温热害较高风险区和高风险区主要集中在盆地东北和盆地南部的大部分地区,其中泸州、南充和达州的部分地区为高风险区。而低风险区主要分布在盆地北部、西部和川西南的大部地区。构建的水稻高温热害灾损评估模型简单实用,验证结果表明高温热害年水稻统计产量与模拟产量间的相对误差绝对值都小于1.5%,建立的模型能反映四川省高温热害对水稻产量的影响,同时能够较好地评估高温热害下四川省水稻的产量损失。进一步的灾损评估结果表明,高温热害危害下代表站点水稻的减产率为5.6%~10.2%。 相似文献
12.
Kanwar Lal Sahrawat 《Archives of Agronomy and Soil Science》2013,59(4):423-436
The lowland rice system in Asia makes a major contribution to the global rice supply and is often cited as an example of a sustainable system in which two or three crops of rice are grown in sequence under submerged conditions. However, water shortages are becoming critical in some regions for lowland rice cultivation; and there is high potential in exploring rice cultivation under moisture regimes that save water and also increase productivity. The objective of this article therefore is to analyze the consequences of switching growing of rice from flooded to aerobic conditions on soil fertility and its management. Fertility advantages of submerged rice include amelioration of chemical fertility, preferential accumulation of organic matter and improved availability of major, secondary and selected micronutrients, which contribute to the long-term maintenance of soil fertility and sustainability of the lowland rice system. However, the fertility problems under aerobic rice are better addressed with the crop as a component of a cropping system because continuous growing of aerobic rice in sequence does not seem sustainable due to complex, site-specific chemical and biological constraints. 相似文献